The ICARUS white paper: A scalable, energy-efficient, solar-powered HPC center based on low power GPUs

Markus Geveler, Dirk Ribbrock, Daniel Donner, Hannes Ruelmann, Christoph Höppke, David Schneider, Daniel Tomaschewski, Stefan Turek

Unconventional HPC, EuroPar 2016, Grenoble, 2016 / 8 / 23

markus.geveler@math.tu-dortmund.de

Outline

Introduction

- \rightarrow Simulation, Hardware-oriented numerics and energy-efficiency
- \rightarrow We are energy consumers and why we can not continue like this
- \rightarrow (Digital-)Computer hardware (in a general sense) of the future

ICARUS

- \rightarrow Architecture and white sheet
- \rightarrow system integration of high-end photovoltaic-, battery- and embedded tech
- \rightarrow benchmarking of basic kernels and applications
 - \rightarrow node level
 - \rightarrow cluster level

Preface: what we usually do

Motivation

Computers will require more energy than the world generates by 2040

"Conventional approaches are running into physical limits. Reducing the 'energy cost' of managing data on-chip requires coordinated research in new materials, devices, and architectures"

- the Semiconductor Industry Association (SIA), 2015

Motivation

What we can do

- \rightarrow enhance supplies
- \rightarrow enhance energy efficiency

HPC Hardware

top-scorer

Today's HPC facilities (?)

www.green500.org Green500 list Nov 2015

Green 500 rank	Top 500 rank	Total power [kW]	MFlops per watt	Year	Hardware architecture		
1	133	50	7031	2015	ExaScaler-1.4 80Brick, Xeon E5-2618Lv3 8C 2.3GHz, Infiniband FDR, PEZY-SC		
2	392	51	5331	2013	LX 1U-4GPU/104Re-1G Cluster, Intel Xeon E5-2620v2 6C 2.1GHz, Infiniband FDR, NVIDIA Tesla K80		
3	314	57	5271	2014	ASUS ESC4000 FDR/G2S, Intel Xeon E5-2690v2 10C 3GHz, Infiniband FDR, AMD FirePro S9150		
4	318	65	4778	2015	Sugon Cluster W780I, Xeon E5-2640v3 8C 2.6GHz, Infiniband QDR, NVIDIA Tesla K80		
5	102	190	4112	2015	Cray CS-Storm, Intel Xeon E5-2680v2 10C 2.8GHz, Infiniband FDR, Nvidia K80		
6	457	58	3857	2015	Inspur TS10000 HPC Server, Xeon E5-2620v3 6C 2.4GHz, 10G Ethernet, NVIDIA Tesla K40		
7	225	110	3775	2015	Inspur TS10000 HPC Server, Intel Xeon E5-2620v2 6C 2.1GHz, 10G Ethernet, NVIDIA Tesla K40		
No Top500 Top500 #1: 17,000 kW, 1,900 MFlop/s/W unconventional hardwar							

What we can expect from hardware

Total efficiency of simulation software

Aspects

 \rightarrow Numerical efficiency dominates asymptotic behaviour and wall clock time

\rightarrow Hardware-efficiency

 \rightarrow exploit all levels of parallelism provided by hardware (SIMD, multithreading on a chip/device/socket, multiprocessing in a cluster, hybrids)

 \rightarrow then try to reach good scalability (communication optimisations, block comm/comp)

\rightarrow Energy-efficiency

 \rightarrow by hardware:

 \rightarrow what is the most energy-efficient computer hardware? What is the best core frequency? What is the optimal number of cores used?

 \rightarrow by software as a direct result of performance

 \rightarrow but: its not all about performance

Hardware-oriented Numerics: Enhance hardware- and numerical efficiency simultaneously, use (most) energy-efficient Hardware(-settings) where available! Attention: codependencies!

Hardware-oriented Numerics

Energy Efficiency

- energy consumption/efficiency is one of the major challenges for future supercomputers
 → 'exascale'-challenge
- in 2012 we proved: we can solve PDEs for less energy 'than normal'
- simply by switching computational hardware from commodity to embedded
- Tegra 2 (2x ARM Cortex A9) in the Tibidabo system of the MontBlanc project
- tradeoff between energy and wall clock time

Hardware-oriented Numerics

Energy Efficiency

To be more energy-efficient with different computational hardware, this hardware would have to dissipate less power at the same performance as the other!

speedup x86 vs ARM

 \rightarrow More performance per Watt! \rightarrow powerdown > speeddown

Hardware-oriented Numerics

Energy Efficiency: technology of ARM-based SoCs since 2012

Something has been happening in the mobile computing hardware evolution:

- \rightarrow Tegra 3 (late 2012) was also based on A9 but had 4 cores
- \rightarrow Tegra 4 (2013) is build upon the A15 core (higher frequency) and had more RAM and LPDDR3 instead of LPDDR2
- → Tegra K1 (32 Bit, late 2014) CPU pretty much like Tegra 4 but higher freq., more memory

 \rightarrow TK1 went GPGPU and comprises a programmable Kepler GPU on the same SoC!

- \rightarrow the promise: 350+ Gflop/s for less than 11W
- \rightarrow for comparison: Tesla K40 + x86 CPU: 4200 Gflop/s for 385W

 \rightarrow 2.5x higher EE promised

 \rightarrow interesting for Scientific Computing! Higher EE than commodity accelerator (of that time)!

An off-grid compute center of the future

Vision

- Insular
- Compute center for
- Applied Mathematics with
- Renewables-provided power supply based on
- Unconventional compute hardware empaired with
- Simulation Software for technical processes

Motivation

- system integration for Scientific HPC
 - \rightarrow high-end unconventional compute hardware
 - \rightarrow high-end renewable power source (photovoltaic)
 - \rightarrow specially tailored numerics, simulation software
- no future spendings due to energy consumtion
- SME-class resource: <80K€</p>
- Scalability, modular design
- (simplicity)
- (maintainability)
- (safety)

Cluster

Whitesheet

- \rightarrow **nodes:** 60 x NVIDIA Jetson TK 1
- \rightarrow #cores (ARM Cortex-A15): 240
- \rightarrow #GPUs (Kepler, 192 cores): 60
- \rightarrow RAM/core: 2GB LPDDR3
- \rightarrow switches (GiBit Ethernet): 3xL1, 1xL2
- \rightarrow cluster theoretical peak perf: ~20TFlop/s SP
- \rightarrow cluster peak power: < 1kW, provided by PV
- \rightarrow PV capacity: 8kWp
- \rightarrow battery: 8kWh

\rightarrow Software: FEAT (optimised for Tegra K1): www.featflow.de

Cluster

Architecture

= electric circuit

Housing and power supply

I.C.A.R.U.S

Photovoltaic units and battery rack

- \rightarrow primary: approx. 16m x 3m area, 8kWp
- \rightarrow secondary: for ventilation and cooling
- \rightarrow battery: Li-Ion, 8kWh
- \rightarrow 2 solar converters, 1 battery converter

Modified overseas cargo container

- \rightarrow Steel Dry Cargo Container (High Cube) with dimensions 20 \times 8 \times 10 feet
- \rightarrow climate isolation (90mm)
- \rightarrow only connection to infrastructure: network cable

We can build better computers

	i5-3470	i5-4690K	Jetson TK1
micro-architecture	Ivy Bridge	Haswell	Cortex-A15 (Tegra K1)
N _{cores}	4	4	4
clock speed	$3.20\mathrm{GHz}~\mathrm{(turbo}~3.60\mathrm{GHz})$	$3.50 \mathrm{GHz} \ (\mathrm{turbo} \ 3.9 \mathrm{GHz})$	$2.3\mathrm{GHz}$
L1-cache	$4x \ 32 \text{ KB} + 4x \ 32 \text{ KB}$	4x 32 KB + 4x 32 KB	32 KB + 32 KB
L2- / L3-cache	$4x\ 256\ KB\ /\ 6\ MB$	4x 256 KB / 6 MB	$2~\mathrm{MB}$ / $-$
memory type	DDR3	DDR3	LPDDR3
peak memory bandwidth	$25.6\mathrm{GByte/s}$	$25.6~{ m GByte/s}$	$14.9\mathrm{GByte/s}$
P_{base}	$51 \mathrm{W}$ (Intel chipset)	$41 \mathrm{W} (Intel chipset)$	$3.9 \mathrm{W} $ (Jetson TK1)
release date	Q2'12	Q2'14	Q2'14

	GTX 660 / Tesla K20x systems	GTX 980 system	Jetson TK1
micro-architecture	Kepler	Maxwell	Kepler
memory type	GDDR5	GDDR5	LPDDR3
peak memory bandwidth	$144.2/250~\mathrm{GByte/s}$	$336.5\mathrm{GByte/s}$	$14.9\mathrm{GByte/s}$
peak performance (SP)	$1881/3935{ m GFlop/s}$	$6054{ m GFlop/s}$	$326\mathrm{GFlop/s}$
peak performance (DP)	$78/1312\mathrm{GFlop/s}$	$189 \mathrm{GFlop/s}$	13 GFlop/s
Phase	$41/45 \mathrm{W}$ (Intel chipset)	$51 \mathrm{W}$ (Intel chipset)	$3.9 \mathrm{W}$ (Jetson TK1)
release date	Q3'12	$Q_{2'15}$	Q2'14

 \bigtriangleup commodity(2015) \Leftrightarrow commodity(2012 desktop) \blacksquare Jetson TK1(2014) \Leftrightarrow commodity(2012 compute)

Testhardware and measuring

Complete 'box'

 \rightarrow measure power at AC-converter (inlet) \rightarrow all power needed for the node

 \rightarrow Note: not a chip-to-chip comparison, but a system-to-system one

Compute-bound, CPU

 \bigtriangleup commodity(2015) \Leftrightarrow commodity(2012 desktop) \blacksquare Jetson TK1(2014) \Leftrightarrow commodity(2012 compute)

Compute-bound, GPU

 \bigtriangleup commodity(2015) \Leftrightarrow commodity(2012 desktop) \blacksquare Jetson TK1(2014) \Leftrightarrow commodity(2012 compute)

Memory bandwidth-bound, GPU

Applications, LBM, full cluster

Power supply

More experiences so far

Reliability

- \rightarrow cluster operation since March 2016
- \rightarrow 61 Jetson boards
 - \rightarrow 57 working permanently
 - \rightarrow 4 with uncritical fan failure
- \rightarrow uptime: since first startup (almost), exept for maintenance

Temperature

- \rightarrow on warm days (31 degrees Celsius external, 50% humidity):
 - \rightarrow 33 degrees Celsius ambient temperature in container
 - $\rightarrow 35\%$ relative humidity
 - $\rightarrow 39-43$ degrees Celsius on chip in idle mode
 - \rightarrow approx. 68 degrees Celsius at load
- \rightarrow monitored by rack PDU sensors

Conclusion and outlook

ICARUS

- \rightarrow built-in power source
- \rightarrow built-in ventilation, cooling, heating
- \rightarrow no infrastructure-needs (except for area)
- \rightarrow Jetson boards are 'cool': with the currently installed hardware, no additional cooling needed
- \rightarrow versatile: compute (or other-) hardware can be exchanged easily
- \rightarrow off-grid resource: can be deployed in areas with weak infrastructure:
 - \rightarrow in developing nations/regions
 - \rightarrow as secondary/emergency system

Conclusion and outlook

To be very clear

- \rightarrow We do not see a future where Jetson TK 1 or similar boards are the compute nodes
- → We wanted to show, that we can build compute hardware differently and for a certain kind of application, it works
- \rightarrow We showed, that system integration of renewables and compute tech is possible

The future

- \rightarrow Tegra X1, ..., or other
- \rightarrow commodity GPUs (?)
- \rightarrow collect data all year (weather!)
- \rightarrow learn how to improve all components

Thank you

www.icarus-green-hpc.org

This work has been supported in part by the German Research Foundation (DFG) through the Priority Program 1648 'Software for Exascale Computing' (grant TU 102/48).

ICARUS hardware is financed by MIWF NRW under the lead of MERCUR.