Machine Learning Approaches for the Acceleration of the Linear Solver in PDE Simulations

<u>Markus Geveler,</u> Hannes Ruelmann, Stefan Turek

@ Sci. Comp. + ML, Nottingham 2019

> tu technische universität dortmund fakultät für **m**!

U technische universität dortmund

fakultät für **m**athematik

This is us @ TU Dortmund University

markus.geveler@math.tu-dortmund.de

hannes.ruelmann@math.tu-dortmund.de

stefan.turek@math.tu-dortmund.de

Advanced PDE techniques for incompressible flows, Hardware-oriented Numerics, Multilevel domain decomposition solvers, High performance and high quality CFD simulations

Unconventional High Performance Computing

www.mathematik.tu-dortmund.de/lsiii/

Where everything is leading: simulation of technical flow

- Task: determine physical quantities for a huge number of points in space and repeat very often
- Multiphysics: increasing complexity of problems and thus methods
- Models are versatile: applications in many fields
- Ressource-hungry: memory, time,
- Methods: DD Newton-Krylov-Multigrid schemes +FEM

The "why" part

Why we think Machine Learning can be used in our simulation pipelines

Parallel Multilevel **Pressure** Schur Complement solver

- Pressure Poisson
 Problem consumes most of the time
- Recursive domain decomposition Newton-Krylov-*multigrid schemes*
- Local geometric multigrid highly hardware-optimised and accelerated with GPUs or similar
- smoother determines overall efficiency

NSEs $u_t - \nu \Delta u + u \cdot \nabla u + \nabla p = f,$ How we solve the $-\nabla \cdot u = 0$ incompressible NSEs weak $\int_{\Omega} \partial_t u \ v \ dx + \int_{\Omega} (u \cdot \nabla u) \ v \ dx - \nu \int_{\Omega} \Delta u \ v \ dx + \int_{\Omega} \nabla p \ v \ dx = \int_{\Omega} f \ v \ dx$ form $\int_{\Omega} (\nabla \cdot u) \ q \ dx = 0$ $(\partial_t u_h, v_h) + (u_h \cdot \nabla u_h, v_h) + \nu(\nabla u_h, \nabla v_h) - (p_h, \nabla \cdot v_h) = (f, v_h)$ FEM $-(q_h, \nabla \cdot u_h) = 0$ matrix $\begin{bmatrix} M & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \partial_t u \\ 0 \end{bmatrix} + \begin{bmatrix} K(u) + \nu L & B \\ -B^T & 0 \end{bmatrix} \begin{bmatrix} u \\ p \end{bmatrix} = \begin{bmatrix} F \\ 0 \end{bmatrix}$ $S(u) = \alpha M + \theta \Delta t (K(u) + \nu L)$ theta $q = [M - (1 - \theta)\Delta t(K(u) + \nu L)] \cdot u^n + \theta \Delta t F^{n+1} + (1 - \theta)\Delta t F^n.$ scheme $\begin{bmatrix} S(u) & B \\ -B^T & 0 \end{bmatrix} \begin{bmatrix} u^{n+1} \\ p^{n+1} \end{bmatrix} = \begin{bmatrix} g \\ 0 \end{bmatrix}$ $S(\tilde{u}) \cdot \tilde{u} = f_{FP}$ decouple $P \cdot q = \frac{1}{\Delta t} B^T \cdot \tilde{u}$ + magic

Performance engineering for technical flow simulation

 Influences on incore performance of technical flow simulation (hardware efficiency):

FEM space(s)
mesh adjacencies (fully unstructured)
DOF numbering
matrix storage (SELL)
accuracy (mixed, low)
assembly of matrices (SPAI methods)

 Influences on incore performance of technical flow simulation (numerical efficiency):

solver scheme
preconditioners / smoothers
mesh anisotropies

Hardware efficiency and performance engineering for technical flow simulation

- most of our codes are memory bandwidth-bound
- proper exploitation of SIMD is key to single core performance. Often: optimised SpMV.
- the memory interface is saturated with a (small) amount of cores
- GPGPU usually gives us a speedup of 5 10 through larger on-chip memory bandwidth. GPUs can also saturate that bandwidth.
- mixed precision provides another x1.5 max sustainable (double-single). More possible (double-half)
- low precision: with some methods, perhaps....
- baseline power of all devices has to be amortized via hybrid computation with careful load balancing

Numerical efficiency and performance engineering for technical flow simulation

- clever smoother construction example: SPAI-types
- in theory: SPAI with same structure as A gives convergence rates like GS (SPAI-1)
- works very well as MG smoother
- construction phase: different ways to do this
- application phase: SpMV

$$\mathbf{x}^{k+1} \leftarrow \mathbf{x}^{k} + \omega M(\mathbf{b} - A\mathbf{x}^{k})$$

$$I - MA \parallel_{F}^{2} = \sum_{k=1}^{n} \parallel e_{k}^{\mathrm{T}} - m_{k}^{\mathrm{T}}A \parallel_{2}^{2} = \sum_{k=1}^{n} \parallel A^{\mathrm{T}}m_{k} - e_{k} \parallel_{2}^{2}$$

$$min_{m_{k}} \parallel A^{\mathrm{T}}m_{k} - e_{k} \parallel_{2}, \quad k = 1, \dots n.$$

The Successor of GPUs?

- Vendors adjust their chips to ML
- Scientists are never in the position to determine hardware micro architecture
- With GPGPU, we have been able to exploit a rough x10 in bandwith in the last decade
- ML Hardware:
 - (Cloud-)TPUs: Inferencing is fast and low precision
 - Volta and Turing GPUs: Tensor Processing Cores as in TPUs, low precision instruction sets and libraries
 - How can that help?

Numerical efficiency: recent SPAI preconditioner results from the EXA-DUNE project

- SPAI is exceptionally adaptable
- allows for good balancing of effort/energy to effectivity of preconditioner/smoother
- high reuse potential of once created approximate inverse
- many screws to adapt to hardware (assembly stage)

 predefined sparsity pattern (SPAI-1)
 refinement of sparsity pattern
 refinement of coefficients
 rough inverses often good enough

The problem: No smoother for (some) real world meshes

MG(8xRich,8xRich), Tesla P100

IvI	dofs	Jacobi (0,8)	GS (1.0)	SPAI-1 (1,0)	ILU-0 (0,5)
10	4.198.401	4	4	3	4
9	1.050.625	4	4	3	4
8	263.169	4	4	3	4

IvI	dofs	Jacobi (0,5)	GS (1.0)	SPAI-1 (1,0)	ILU-0 (0,5)	ILU-RCMK
10	2.100.225	109	33	24	26	7
9	525.825	106	32	23	25	7
8	131.841	103	30	22	24	7
 7	32.960	98	28	21	23	7
6	8.240	90	25	19	21	6
5	2.060	78	22	17	18	6
4	515	55	16	13	12	6
3	129	35	9	10	8	6

— — —			lvl	dofs	Jacobi (0,5)	GS (0,7)	ILU (0,7)	SPAI-1 (1,0)
			9	2.362.369	654	370	102	140
			8	591.361	619	350	95	130
-			7	148.225	562	319	85	118
		6	37.249	486	289	75	103	
			5	9.409	377	218	57	80
		4	2.401	258	166	34	51	
		3	625	175	96	20	31	

Real world applications generate **complex geometry and mesh anisotropies**.

2 The "how" part

How we use Machine Learning in the basic building blocks of solving PDEs

Our idea: train an artificial neural network to guess an approximate inverse...

...and: do it faster than SPAI can be assembled
 ...and: do it better than SPAI in the case of mesh anisotropies

$$(A_{h})_{ij} = \sum_{m=1}^{N} \int_{K_{m}} \nabla \phi_{j} \cdot \nabla \phi_{i} dx = \sum_{m=1}^{N} A_{ij}^{(m)}$$

$$(b_{h})_{i} = \int_{\Omega} f \phi_{i} dx$$

$$A_{h}x = b_{h}$$

$$M \approx A_{h}^{-1}$$

$$M \approx A_{h}^{-1}$$

$$M \approx A_{h}^{-1}$$

Test and Training

Ingredients

- Multi-Layer Perceptron
- Supervised Learning
- Back Propagation
- Random initialisation

Test and Training: Data

$$-\Delta u = f \quad \text{in } \Omega, \quad u = 0 \quad \text{on } \partial\Omega$$
$$a_h(u_h, v_h) = b_h(v_h) \quad \forall v_h \in V_h$$
$$(A_h)_{ij} = \sum_{m=1}^N \int_{K_m} \nabla \phi_j \cdot \nabla \phi_i dx = \sum_{m=1}^N A_{ij}^{(m)}$$
$$(b_h)_i = \int_\Omega f \phi_i dx \qquad A_h x = b_h$$

Algorithm 1 test and training phase

input: $n_{\rm hl}$, $n_{\rm i}$, $n_{\rm epoch}$, $n_{\rm batch}$, $n_{\rm train}$, l, $n_{\rm test}$, $n_{\rm testbatch}$ · define the neural network $(n_{\rm hl}, n_{\rm i})$ · initialize weights · initialize bias neurons b · define error function and optimizer start training: for i in $n_{\rm epoch}$ do A = load_training_matrices (n_{train}) A_inv = load_training_inverses (n_{train}) for j in n_{batch} do $x = A_batch_i$ $y = A_{inv}batch_{j}$ apply optimizer: (W, b) = opt(x, y, l)test phase: for i in $n_{\rm testbatch}~{\rm do}$ A = load_test_data (n_{test}) evaluate the neural network apply error function or test scenario output: W, b

First numerical experiments

$$x^{(k+1)} = x^{(k)} + \omega M(b_h - A_h x^{(k)})$$

		# it			it down	κ	
lvl	n	$J_{\omega=0.7}$	GS	NN		before	after
2	9	49	17	8	2.13	5.9	1.6
3	49	273	95	21	4.52	29.8	2.9
4	225	1 323	463	66	7.02	127.3	7.8
5	961	5879	2057	39	52.74	516.0	23.4

(w. different nets)

Current work

- How fast is it in **actual MG** compared to standard SPAI/ILU?
- Even when it is slower: What is the total efficiency for high anisotropies?
- What about actual TP hardware?
- From prototype to production: Problem size, sparsification.
- Going deeper into ML: Networking anybody?
- Other ideas: optimal control of parameters in linear solvers like relaxation in SSOR, damping in Jacobi.
- Going beyond the linear solver...

Thanks!

This work has been supported in part by the German Research Foundation (DFG) through the Priority Program 1648 'Software for Exascale Computing'.

Meet us at ENUMATH 2019: We have a Minisymposium there! 30th sep - 4th okt 2019, Egmond aan Zee, The Netherlands.

Backup: Numerical experiments: Sparse

 $O(n^2 \cdot M) = O(\bar{n} \cdot M)$

n	49	225	961	3969	16129
full	2 401	50625	923.521	15752961	260144641
\bar{n}	289	1457	6481	27281	111889
diag	180	868	3780	15748	64260
%	7.497	1.715	0.409	0.100	0.025

system matrix: dense to sparse

	$NN_{sparse} (1000)$			$NN_{full}(1500)$			$\left[NN_{full} (2000) \right]$		
ω	0.6	0.7	0.8	0.6	0.7	0.8	0.6	0.7	0.8
1	33	27	23	118	110	88	29	24	37
2	37	31	26	110	94	82	31	25	20
3	35	29	25	109	93	81	29	24	22

different weighting and different size of training data for 3 matrices

Backup: Numerical experiments: Sparse

filter matrix entries < ϵ

ϵ	# it (NN)	$\bar{n}(\mathrm{NN})$	%	# it (exact)	\bar{n} (exact)
0.00	23	50625	100.0	1	50625
0.01	24	35469	70.1	9	35319
0.02	29	26755	52.8	12	26663
0.03	48	21029	41.5	21	21095
0.04	58	17133	33.8	38	17173
0.05	279	14171	28.0	620	14233

inverse: dense (semi) sparse

Thanks!

This work has been supported in part by the German Research Foundation (DFG) through the Priority Program 1648 'Software for Exascale Computing'.

Meet us at ENUMATH 2019: We have a Minisymposium there! 30th sep - 4th okt 2019, Egmond aan Zee, The Netherlands.