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Where everything is leading:
simulation of technical flow

▫ Task: determine physical quantities for a 
huge number of points in space and 
repeat very often 

▫ Multiphysics: increasing complexity of 
problems and thus methods

▫ Models are versatile: applications in 
many fields

▫ Ressource-hungry: memory, time, 
energy

▫ Methods: DD Newton-Krylov-Multigrid 
schemes +FEM
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The „why“ part

Why we think Machine Learning can be used in our simulation pipelines



How we solve the
incompressible NSEs
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Parallel Multilevel Pressure

Schur Complement solver

▫ Pressure Poisson 
Problem consumes most
of the time

▫ Recursive domain
decomposition Newton-
Krylov-multigrid 
schemes

▫ Local geometric
multigrid highly 
hardware-optimised and 
accelerated with GPUs or
similar

▫ smoother determines
overall efficiency



▫ Influences on incore performance of technical flow 
simulation (hardware efficiency): 

▫FEM space(s)
▫mesh adjacencies (fully unstructured)
▫DOF numbering
▫matrix storage (SELL)
▫accuracy (mixed, low)
▫assembly of matrices (SPAI methods)

▫ Influences on incore performance of technical flow 
simulation (numerical efficiency): 

▫solver scheme
▫preconditioners / smoothers
▫mesh anisotropies
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Performance engineering for 
technical flow simulation



Hardware efficiency and 
performance engineering for 

technical flow simulation

▫ most of our codes are memory bandwidth-bound

▫ proper exploitation of SIMD is key to single core 
performance. Often: optimised SpMV.

▫ the memory interface is saturated with a (small) 
amount of cores

▫ GPGPU usually gives us a speedup of 5 - 10 through 
larger on-chip memory bandwidth. GPUs can also 
saturate that bandwidth.

▫ mixed precision provides another x1.5 max sustainable 
(double-single). More possible (double-half)

▫ low precision: with some methods, perhaps….

▫ baseline power of all devices has to be amortized via 
hybrid computation with careful load balancing
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Numerical efficiency and 
performance engineering for 

technical flow simulation

▫ clever smoother construction example: SPAI-types

▫ in theory: SPAI with same structure as A gives 
convergence rates like GS (SPAI-1)

▫ works very well as MG smoother

▫ construction phase: different ways to do this

▫ application phase: SpMV

arithmetic intensity

p
e

rf
o

rm
a

n
ce



The Successor of GPUs?

▫ Vendors adjust their chips to ML

▫ Scientists are never in the position to determine
hardware micro architecture

▫ With GPGPU, we have been able to exploit a rough x10 
in bandwith in the last decade

▫ ML Hardware:
▫ (Cloud-)TPUs: Inferencing is fast and low

precision
▫ Volta and Turing GPUs: Tensor Processing 

Cores as in TPUs, low precision instruction sets
and libraries

▫ How can that help?

source: 

Google

source: 

NVIDIA



Numerical efficiency: recent 
SPAI preconditioner results 
from the EXA-DUNE project

▫ SPAI is exceptionally adaptable

▫ allows for good balancing of effort/energy to 
effectivity of preconditioner/smoother

▫ high reuse potential of once created approximate 
inverse

▫ many screws to adapt to hardware (assembly stage)
▫predefined sparsity pattern (SPAI-1)
▫refinement of sparsity pattern
▫refinement of coefficients
▫rough inverses often good enough 



The problem:
No smoother for (some) real 

world meshes

Real world applications generate complex geometry and 
mesh anisotropies.

MG(8xRich,8xRich), 

Tesla P100
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The „how“ part

How we use Machine Learning in the basic buiding
blocks of solving PDEs



Our idea: train an artificial
neural network to guess an 

approximate inverse…

▫ …and: do it faster than SPAI can be assembled
▫ …and: do it better than SPAI in the case of mesh

anisotropies

weights and 

bias

output from

previous layer smoother



Test and Training

Ingredients

▫ Multi-Layer Perceptron
▫ Supervised Learning
▫ Back Propagation
▫ Random initialisation



Test and Training: Data



First numerical experiments

NN:

50 and 

225

neurons

per layer

resp.



Numerical experiments: Aniso

1:3 1:10

(w. different nets)



Current work

▫ How fast is it in actual MG compared to standard
SPAI/ILU?

▫ Even when it is slower: What is the total efficiency for
high anisotropies?

▫ What about actual TP hardware?

▫ From prototype to production: Problem size, 
sparsification.

▫ Going deeper into ML: Networking anybody?

▫ Other ideas: optimal control of parameters in linear 
solvers like relaxation in SSOR, damping in Jacobi.

▫ Going beyond the linear solver…

source: 

Google
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Backup: Numerical
experiments: Sparse

system matrix: dense to sparse

different weighting and different size of training data for 3 matrices



Backup: Numerical
experiments: Sparse

inverse: dense        (semi) sparse

filter matrix entries < 
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