Fundamentals of a numerical cloud computing for applied sciences – Preparing cloud computing for 'Simulation as a Service'

Markus Geveler, Stefan Turek

Cloud consultation workshop, Brussels, November 7th 2016

markus.geveler@math.tu-dortmund.de

Simulation as a service (SIMaaS) : our vision

Special purpose cloud meets special purpose software

SIMaaS

Simulation of technical flows

→ billions of globally coupled equations

- \rightarrow 'big compute' not big data
- → but our 'compute' load is memory bandwidth-bound

Numerical cloud computing imposes fundamental mathematical problems

 \rightarrow numerically scalable asynchronous parallel solution of large systems of globally coupled equations on 'a priori' unknown heterogenous hardware platforms

 \rightarrow challenges close to the 'exascale challenges' but not exactly the same

- \rightarrow domain decomposition
- $\rightarrow \text{asynchronicity}$
- \rightarrow loadbalancing
- \rightarrow scheduling, mapping
- \rightarrow autotuning
- \rightarrow resilience, fault tolerance
- → when the provider changes the hardware: will you re-develop?

$$A_{\Omega}^{-1} \leftarrow \sum_{i}^{\tilde{}} (A_{\Omega_i}^{-1} = R_i A_{\Omega}^{-1})$$

Current state of SIMaaS (in the EU)

SIMaaS research funding in the EU: Fortissimo 1 + 2

- \rightarrow SME-driven 'showcases'
- \rightarrow +domain specialist
- \rightarrow +HPC center
- \rightarrow also covering technical flow simulation
- \rightarrow promising, **but**:

→ not covered: fundamental research (exascale challenges under the special constraints of cloud computing)

 \rightarrow if we start to push forward like this, important aspects are not covered

→ SIMaaS will happen, but at suboptimal efficiency, welfare

(Numerical) cloud computing should be dealt with

- \rightarrow from a theoretical point of view as well as
- \rightarrow from a feasibility perspective

What we can expect from hardware

Hardware efficiency: apply performance models until optimal

Hardware-centric perspective

In-house HPC

Performance is a function of hardware and code

- \rightarrow quality of hardware-oriented numerics decides production efficiency
- \rightarrow speedups of 1000 possible, most of it due to knowledge of HW details, 'in-house control'

SIMaaS means hardware abstraction

With cloud computing?

 \rightarrow hardware no longer known 'a priori', heavily dependent on vendor investment

- \rightarrow how integrate?
 - \rightarrow arbitration?
 - \rightarrow automation?

First steps into numerical cloud computing

Vertical integration into scientific workflow

Core

- \rightarrow mathematical fundamentals: asynchronous domain decomposition type schemes
- \rightarrow hardware-oriented development of numerical components
- \rightarrow selection, scheduling, mapping of numerical components for a given SIMaaS allocation
- \rightarrow autotuning simulation code parameters for selected components
- \rightarrow loadbalancing for a maximum of node exploitation

Others

- \rightarrow simulation end user-oriented development toolchain, 'sandbox mode'
- \rightarrow security, licensing
- \rightarrow reproducibility? Will the vendor provide the hardware again? Maybe years later?
- \rightarrow 'build versus buy': at what scale should a university kick in? \rightarrow performance/cost modelling! \rightarrow ...

Proposal: from feasibility to efficiency

Solution: heavy investment in interdisciplinary research

Providers (aka cloud computing specialists) and simulation end-users (aka applied sciences software specialists) have to learn

- \rightarrow performance/cost modelling to gain control of what is going on
- \rightarrow what can be automated?
- \rightarrow what has to be (re-)developed, crafted from scratch (AVX kernel)?
- \rightarrow how to integrate automation mechanisms into software (end user side)

Thank you

This work has been supported in part by the German Research Foundation (DFG) through the Priority Program 1648 'Software for Exascale Computing' (grant TU 102/48).