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Abstract

In this paper we propose a course of action towards a better un-
derstanding of energy consumption-related aspects in the develop-
ment of scientific software as well as in the development and us-
age of ‘unconventional’compute hardware in applied sciences. We
demonstrate how the applied sciences community can make a sig-
nificant contribution in reducing the energy footprint of their com-
putations.
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1 Introduction

1.1 Scientific computing cannot continue to be done
the way it has been

There is no denial that the transition from nuclear- and fossil-driven
energy supplies to more sustainable options is one of the most chal-
lenging tasks of our time. While this transitioning is usually re-
ferred to as ‘the energy revolution’ its basic pillars are not limited
to alternative energy production but also are agreed to include bet-
ter energy grids as well as more energy-efficient consumers. In this
sense computing in general and particularly scientific computing as
the basic tool for applied sciences contain a great deal of energy
consumption since the computers (devices), compute clusters and
data-/compute centers do.

Recently the Semiconductor Industry Association (SIA) released a
report where a prediction on the world’s total energy production
was made alongside an analogous prediction for the energy con-
sumption of the world’s computers [SIA 2015]. In order to demon-
strate the urgency of what shall later be proposed here let us first
summarize these findings. For this purpose consider Figure 1. Here
the world’s total energy production is extrapolated with a compara-
tively slow increase leveling out at approximately one Zettajoule in
2015. Speaking on these scales this value is not expected to increase
much in this century. On the demand side energy consumption due
to usage of computers is expected to increase much faster: Based
on current technology (with today’s (digital) computer technology
and the way single devices are built and clustered to larger units) the
total energy consumed (only by computing) will exceed the world’s
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Figure 1: Prediction of world’s total energy production and overall
energy consumption by computing

energy production and supply by around 2040. Even based on ex-
trapolating current technology to a hypothetical future technology
level (mainly based on improved manufacturing processes leading
to smaller transistors) this would lead to only an insignificant de-
lay of this point in time. Consider this as the catastrophe that it is:
No additional electrical device would be able to be plugged into the
power grid any more. Applications on the other side are continu-
ing to increase their hunger for ever more computational resources.
Consider the lowest plot in Figure 1. It represents a theoretical
lower bound for the energy consumption per year based on a hy-
pothetical device that needs the minimum amount of energy to flip
a bit of information. This limit is called the Landauer Limit. Due
to an increasing demand for computational capacities this limit will
also be increasing over time since more and more computers will
be built. It is more or less increasing with the same rate as today’s
or close future’s computer systems’ consumption and such optimal
computers would therefore also only postpone the inevitable.

1.2 Hardware and software in applied sciences are
blind on the ‘energy eye’

Today’s compute and data centers mostly rely on massively parallel
distributed memory clusters. The compute nodes are also multi-
level parallel and heterogeneous. They usually comprise one or
more high-end server CPUs based on the x86, Power, or SPARC
architectures optionally accelerated by GPUs or other (accelerator)
hardware. Large HPC sites of this type have substantial energy re-
quirements so that the associated expenses over the lifetime of the
system may exceed the initial acquisition costs. In addition, the
energy supply for supercomputers is not always an integral part of
its overall design - consumers (such as the compute cluster, cool-
ing, networking, management hardware) are often developed inde-
pendently from the key technologies of the energy revolution, e.g.
renewable energy sources, battery and power grid techniques. Tak-
ing a look at the largest supercomputers today it can be observed
that as a consequence of decades of performance-centric hardware
development there is a huge gap between pure performance and en-



ergy efficiency in these designs: The Top500 list’s best performing
HPC system (dissipating power in the 20 Megawatts range making
a power supply by local solar farming for instance an impossible-
to-achieve aim) is only ranked 84th on the corresponding Green500
list whereas the most energy-efficient system in place only per-
forms 160th in the metric of raw floating point performance [Meu-
er et al. 2015; Feng et al. 2015]. It is well known [Schäppi et al.
2009] [Lawrence Berkeley National Laboratory 2006] that 40–60%
of the energy consumption of an HPC site can be attributed to the
compute nodes (processors and memories).

Using and developing scientific software on the other hand requires
knowledge of the specific target hardware architecture which im-
plies adjustments of numerical methods and their implementation.
Otherwise efficiency losses are axiomatic and always imply too
much energy spent. Therefore scientific software should not fol-
low a hardware-oblivious design paradigm. In the resulting perfor-
mance engineering studies for decades energy efficiency has been
eclipsed by computational performance and only recently power
and energy metrics started being included into performance mod-
els for numerical software [Hager et al. 2014; Benner et al. 2013;
Anzt and Quintana-Ortı́ 2014; Malas et al. 2014]. This in-depth un-
derstanding of energy and power requirements of different classes
of scientific applications is essential on two levels: First applica-
tion developers and users must control the overall (energy) costs;
second HPC site operators (such as data centers / universities) have
to identify the most economical way to operate their computa-
tional facilities. Both levels are related since the application user
is very much interested in efficient utilization of available compu-
tational resources whereas system operators are just as motivated
that platform-optimized application codes are being used.

1.3 Consequences and paper contribution

From the previous section we can find two major facts: (1) With
current knowledge and (digital) computer technology there is no
instant solution available to a possible ‘black out’situation in sci-
entific computing: Providing better devices only leads to a global
energy consumption converging to a theoretical limit that also ulti-
mately leads to an energy shortage in the mid 21st century. Remem-
ber that these numbers are only for computer devices and do not
even cover all other energy consumers. (2) For too many years per-
formance engineering and hardware engineering has been eclipsed
by the misdirected longing for ever more performance where faster
seemed to be the only paradigm. A movement towards incorpora-
tion of power and energy into performance models gains momen-
tum but resulting efforts are often limited to simple, basic kernels
and not very visible in applied sciences.

In the following sections we describe how the applied sciences
community can contribute to tackle the fundamental problem of
limited future energy supplies for (scientific) computing. This is
achieved by presenting a simple course of action in scientific hard-
ware usage and software development. This requires thinking more
‘out-of-the-box’in two aspects: Application software usage and de-
velopment as well as hardware usage and development.

2 Ways to tackle a future energy crisis in sci-
entific computing

2.1 Hardware-oriented Numerics revisited

The major aspect in performance engineering for energy efficiency
is the numerical methods used in application and their implementa-
tion: (1) ‘Classical’performance engineering can be applied to
enhance the efficiency of the current method on the target hard-

ware and/or in many cases numerical alternatives can be found
that might better fit to the hardware in use and/or (2) other
numerical methods can be found to improve the numerical ef-
ficiency. Both are heavily interdependent: Overall tuning in (1)
might have negative effects on the numerical scaling whereas im-
proving in (2) often results in numerically stronger but slower/less
hardware-efficient methods. Tuning both simultaneously is what
we used to call hardware-oriented numerics [Turek et al. 2006;
Turek et al. 2010; Geveler et al. 2013]. Now we plead for adding
a new dimension to this former dualism of hardware and numerical
efficiency: (3) energy-efficiency. Although tuning (1) and (2) nor-
mally leads to improvements in (3) this is not always the case as
we exemplify in the following section. In this example everything
essentially breaks down to powering the memory interface. This is
a very representative case for many simulation codes.

It also shows that for all improvements of application codes proper
performance modeling is key. A performance model is intended to
predict performance in some metric, i.e. number of floating point
operations per time unit or its inverse: time to solution. The pre-
diction can then be related to obtained measurements (for instance
execution wall clock times) and the information one gains is how
good a given code performs on the hardware compared to sustain-
able performance on that hardware. We demonstrate how such a
model can be derived empirically that is, by taking a few time and
power measurements.

2.2 Taking control of energy consumption on the ap-
plication level

The importance of modeling energy to solution in scientific codes
can be illustrated by a simple example: Many performance-critical
kernels of numerical partial differential equation (PDE) solvers in-
volve stencil discretizations or large linear equation systems. Such
applications tend to be memory bandwidth-bound that is the over-
all computational intensity is comparatively small. As a conse-
quence any increase in the number of parallel cores reduces the
core saturation resulting in poor parallel scaling i. e., there exists
a certain number of cores Nmax for which adding another core pro-
duces marginal performance gains. From the user’s point of view
(and even from the classical performance-engineers’ point of view)
running the application with Nmax or Nmax + 1 shouldn’t make a
difference because there is no loss in performance.

Additional cores however usually dissipate the same power (for
a short period of time) as fully saturated ones making the perfor-
mance gains infinitely disproportional to energy consumption rises.
In other words: With regard to the energy-efficiency there is an op-
timal number of cores Nopt that is usually smaller than the max-
imum number of available cores Ncores (because of the saturated
memory interface). Since the majority of codes are still lacking re-
liable energy models running an application on Ncores is still a com-
mon choice. Although power signatures of sophisticated simulation
codes as well as the hardware behavior on the specific workloads
are very complex the measurement, modeling, tuning and predic-
tion of the energy to solution can often be achieved quite easily. In
recent work we have shown that this goal can be achieved by only
a few power and time measurements on the system level result-
ing in a robust model that predicts energy consumption of a whole
application class as well as prevents the user from choosing the
wrong run time parameters such as – like in the scenario rendered
above – launching a suboptimal amount of threads on a compute
node [Geveler et al. 2016a].

In the following we show how to deduce a model that predicts the
energy to solution E for a given CFD code. This model hence is
simply an equation, that determines E when running the applica-



tion with certain run time parameters. This model is given in Equa-
tion 1. Its construction requires empirical data – in this case, time
and energy measurements.

In order to deduce a model that incorporates the energy to solu-
tion as a metric for energy efficiency we consider the averaged time
to solution for a time step to complete (T ), the averaged power
dissipation during that time (P ), and the resulting energy to solu-
tion (E). For this type of application once a problem is big enough
to saturate the memory interface its wall clock time can be used to
make predictions for other problem sizes because the time to solu-
tion is expected to behave as T (N) = (N/Nmeasured)Tmeasured. All
three T , P and thus E are then functions of the number of used
cores, k. Additionally, we introduce variables ∆T for the total de-
crease in wall clock time and ∆P for the total increase in power
dissipation

∆T = ∆T (k) = Tk−1 − Tk, ∆P = ∆P (k) = Pk − Pk−1 .

We summarize some of the performance measurements that lead to
the performance model described in the subsequent Equation (1)
for a 3D PDE solver for the simulation of global ocean circula-
tion on two different hardware architectures: the Intel Haswell [In-
tel Corp 2015a; Intel Corp 2015b] and the Cortex-A15, the CPU
in an NVIDIA Tegra K1 [NVIDIA Corp 2014] SoC, in Table 1.
With these results substantiating our hypothesis that we have in

k T [s] P [W] E [J] ∆T [s] ∆P [W]
Haswell

1 0.0768 65.6 5.038 – –
2 0.0434 80.7 3.502 0.0334 15.1000
3 0.0352 91.4 3.217 0.0082 10.7000
4 0.0316 100.3 3.169 0.0036 8.9000

Cortex-A15
1 0.477 7.5 3.577 – –
2 0.249 10 2.49 0.228 2.5000
3 0.173 12 2.076 0.076 2.0000
4 0.170 13.9 2.363 0.003 1.9000

Table 1: Performance and power measurements and values of basic
model variables

fact a memory bandwidth-bound situation here the expected so-
lution time for this code (given the problem size and application
parameters but independent from the hardware architecture) can be
modeled as a super-linear function in the number of used threads
with quickly decreasing slopes, that is, ∆T (k) = 0 for moderate
values of k. Power on the other hand behaves more linearly: First
one can notice that when leaving the idle state a comparatively large
power jump occurs which can be explained with the CPU being re-
connected to the system clock or in other words, with all four cores
being provided with a baseline power independent of the core work-
load denoted by Pbase. Once at least one core is tasked with a job,
i. e., k ≥ 1, the chipset baseline power is increased by an additional
constant power dissipation called Psocket. Second it can be seen that
∆P is roughly 10 W for Haswell and ca. 2 W for Tegra K1. Based
on these findings power (and therefore energy) for this application
can be modeled as a simple linear function in the number of used
cores:

E(k) = P (k)T (k) = (Pbase + Psocket + k∆P ) T (k) , k ≥ 1
(1)

The practical effects of this model can be understood better when
the above values are displayed differently in an energy / time chart
like in Figure 2. Because of an over-proportional power increase
compared to performance increase there is an optimal number of
threads as described above: Using more than three threads is obvi-
ously not beneficial and – for one of the two hardware architectures

Figure 2: Energy and time to solution of a memory bandwidth-
bound application on two different hardware architectures

– sometimes even comprises an energy efficiency penalty since en-
ergy to solution increases with no benefits for the execution time.
For many codes this qualitative finding by simple means holds true
for many different runs on many nodes of a local cluster or on a
workstation offering a great source of energy savings.

Hence we propose a rigorous performance measurement, mod-
eling and engineering policy in the development of applied sci-
ences codes.

2.3 Taking control of the hardware to target

Let us reconsider Figure 2. Another aspect that is depicted here
is that the hardware architectures used for scientific computing are
fundamentally different: The two processors used there can be both
considered multi-purpose processors with one (the Cortex-A15) not
originating from the field of computing. Recently a game-changing
impulse regarding energy-efficient compute hardware comes from
mobile/embedded computing with devices featuring a long history
of being developed under one major aspect: they have had to be op-
erated with a (limited) battery power supply. Hence as opposed to
x86 and other commodity designs (with a focus on chipset compat-
ibility and performance) the resulting energy efficiency advantage
can be made accessible to the scientific community.

In our example the CFD code shows higher energy efficiency on the
mobile CPU than on the commodity CPU. This is possible because
comparing the respective run on the two micro architectures the
power down is larger than the speed down. Obviously this comes
with a price: the execution time is larger when using the embedded
processor. This exemplifies a general problem: Energy to solution
is not only barely visible to the applied sciences community but also
minimizing it is not an inherent goal of what is usually done and
even worse: Using the most energy-efficient hardware penalizes
the user with a slowdown. We shall demonstrate how to overcome
this issue by scaling such unconventional hardware resources and
numerically scale the code, see below.

However in situations when it is possible in future times energy
efficiency should be favored over performance and in this case a
good knowledge of the energy-related hardware specifics is needed.
Luckily the performance modeling described in the above section
offers a good way to explore these. Devices of the family used in



the above benchmarks are on the march and are more and more
built into servers and data centers. Normally in a local data cen-
ter in future times or even now there might be a variety of types of
compute nodes available to the user or a department comprises sev-
eral clusters and workstations of different kind. As a basic pattern
to reduce the energy footprint of applied sciences work the perfor-
mance modeling allows for choosing the most energy-efficient
hardware for a workload or application.

To fortify our point here we demonstrate the performance and en-
ergy efficiency on the device level for very different hardware ar-
chitectures and very different types of codes in Figures 3 and 4.

Figure 3: Energy and time to solution of compute-bound basic ker-
nels on different hardware architectures

The results depict two very well known but often not addressed
phenomena: (1) Performance and energy efficiency are functions
of device hardware and (the operational intensity of) code; and (2)
the hardware ecosystem is evolving very fast over time.

For (1) consider for example the top diagram in Figure 3. The pur-
ple plot marks performance for the same ARM Cortex-A15 CPU
as in Figure 2. Note that this time for a compute-bound kernel
(dense matrix matrix multiply, GEMM) performance and energy
efficiency are considerably higher when using commodity proces-
sors based on the x86 architecture. Hence over-generalized assump-
tions like ‘ARM-based devices/computers are always more energy-

Figure 4: Energy and time to solution memory bandwidth-bound
basic kernels on different hardware architectures

efficient than x86 ones’ are as wrong as they are futile. For (2) con-
sider the bottom plot in Figure 3 where this time commodity and
embedded GPUs of different hardware generations are compared.
Here we examined the low power GPUs of the NVIDIA Tegra-K1
SoC [Geveler et al. 2016b]. Note how the low power GPU is able
to beat desktop CPUs of their time as well as later generation desk-
top GPUs in terms of energy efficiency whereas same-generation
compute GPUs (Tesla line) are the most energy efficient floating
point accelerators of that time. For a different type of kernel the
picture is changing: In the memory bandwidth-bound case in Fig-
ure 4 (as with the sparse matrix vector multiply) powering memory
interfaces is much more important and thus hardware generation
determines the energy-efficiency due to the enhanced memory in-
terface of the 2015 GPU. Also the embedded GPUs are evolving
and the next generations (Tegra X1 and X2) may turn this picture
upside down again. Hence continuous work regarding measure-
ment and modeling energy for application codes and available
hardware is crucial and nothing should be taken as carved in
stone.

Another point here is that computing is not all about CPUs and
memory interfaces. A compute node in a cluster may be a com-
plex architecture which is then aggregated into an even more com-
plex system with communication switches storage and control hard-
ware. This cluster is integrated into a housing with cooling systems.
All these systems drain energy for the sake of computations. Let
us now take a look at the cluster level where everything is scaled
up. In Figure 5 we demonstrate results from a cluster of compute
nodes consisting of single Tegra K1 SoCs which combine 4 Cortex-
A15 CPU cores and a low power Kepler GPU. These results show
that together with energy-efficient switches we can use a number
of nodes comprising the ‘unconventional’ computer hardware to be
both more energy-efficient as well as faster. Hence we can scale
the energy-efficiency bonuses by embedded hardware up to a
point where the resulting cluster performs faster and uses less
energy at the same time as compared to single commodity de-
vices. It is very important to understand that this is only possible
by developing numerics that fit to the underlying hardware and
are able to be scaled numerically and hardware efficiency-wise
to reach that point.

Another aspect concerning hardware is that the energy revolution is
not all about energy efficiency. Up to now we basically proposed to



Figure 5: Energy and time to solution of a CFD application on
a cluster of Tegra K1 SoCs and several workstations comprising
commodity hardware

reduce energy by enhancing hardware or software energy efficiency
on the scale of our own codes and hardware devices. This does not
ease the problem that even with optimal devices the problem of too
few energy supplies for future computing cannot be resolved – at
least not with ‘standard’ computers. This kind of thinking led us
to a system integration project where we built a compute-cluster
alongside with its power supply by renewable energies, see Fig-
ure 6 for snapshots of the ICARUS project site [Geveler and Turek
2016]. This prototypical data and compute center comprises a great
deal of theoretical peak performance (around 20 TFlop/s) provided
by 60 Tegra K1 processors that all have a low power GPU on the
SoC. By applying a 45 m2 solar farm offering a 8 kWp power
source alongside with a Lithium-Ion battery with a capacity of 8
kWh we can maintain operation of the 1 kW peak power dissipation
computer even during nighttime for several hours. Even with com-
paratively cloudy weather and considerably large nightly workloads
we can recharge the battery at day times while computing under full
load. This computer has all its energy needs fed by renewables even
the cooling system and it is not connected to the power grid at all.

The idea of the project is: If we cannot tackle the overall problem of
energy demand increasing much faster than its supply why not build
any new needed supply directly with the system? In recent work
we proved that this is possible [Geveler et al. 2016b]. With this we
come back to Figure 1. Note that finally building new renewable
energy sources alongside with its demand in the model used by the
SIA the supply curve would be parallel to the consumption. Higher
energy efficiency is still needed because renewable energy sources
such as photovoltaic units impose new constraints like area or ini-
tial cost that should be minimised. Building compute centers this
way we could reduce the follow-up energy cost of a computational
resource to zero.

3 Conclusion

Keep in mind that the system integration described in the previ-
ous section is only possible due to simple yet very effective perfor-
mance modeling which allows for choosing hardware and numerics
as well as tuning them properly. Therefore hardware-oriented nu-
merics is the central aspect here: The approach is successful for a
specific type of numerics that can be scaled effectively i.e. numer-

Figure 6: Snapshots of the ICARUS cluster at TU Dortmund

ically and in terms of hardware- and energy-efficiency. Hardware-
oriented numerics therefore means:

(1) The extension of the original paradigm by the aspect of energy-
efficiency. New methods in performance modeling have to be de-
veloped and applied and energy to solution has to be internalized
into tuning efforts of software on the application level.

(2) The selection of compute hardware should be based on
these models. In any decision and where necessary energy ef-
ficiency should be favored over raw performance although we
have shown how this can be bypassed by clustering unconventional
computer hardware and enhancing scalability properties of a given
code.

(3) Furthermore knowledge concerning energy efficient comput-
ing has to be spread in the applied science community. A knowl-
edge base should be installed that disseminates methods in power
and energy measurement as well as profiling and benchmarking
techniques in order to bring up sophisticated performance mod-
els for the application level, performance engineering for energy-
efficiency, energy consumption of compute devices in local com-
pute resources and energy consumption of compute clusters and
whole data centers.

(4) After hardware selection many hardware parameters have to
be tuned during operation. We demonstrated how to determine
an optimal number of threads for a maximum of energy efficiency.
Another good example here is finding an optimal preset core fre-
quency. Although with Dynamic Frequency Scaling modern pro-
cessors show very complex behavior for different workloads and
especially during runs of complex applications, in many cases one
can find an optimal frequency for a certain type of applications with
similar sets of measurements like in our example.

(5) Finally, the development of the ICARUS system has been ac-
companied by a two semesters student project where the partici-
pants actively contributed to the system design. Here they learned
how to co-develop hard- and software/numerics from scratch for
computations being powered by renewables and batteries starting
with performance modeling and hardware details up to integrating



everything into a future-proof resource. It is bringing sensitivity
for energy efficiency and consumption into the peoples’ minds
which starts with being integrated into teaching which is in the
end maybe the most important thing one can do.
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