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Motivation

The free ride is over, scientific computing faces a paradigm shift:

physical barriers (heat, power consumption, leaking voltage)

memory wall (in particular for sparse LA problems)

applications no longer run faster automatically on newer hardware

Fine-grained parallelism addresses these problems:

multi-core commodity CPUs Cell BE processor graphics cards

HPC accelerators (e.g. ClearSpeed) reconfigurable hardware

We have to rethink the way we design algorithms for these
architectures. We do not want to reimplement entire programs.
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Good performance for (serial) FEM
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Fully adaptive grids, stochastic numbering: maximum flexibility,
unstructured sparse matrices, huge performance drop for large problems

Generalised tensorproduct grids: banded matrices, better sustained
performance

Exploit structured parts of the discretisation: high performance,
tuned local solvers, (co-processor acceleration)
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Good performance for (parallel) FEM

FEAST, MPI-based Finite Element package for PDEs

Global discretisation with unstructured collection of tensorproduct macros

Generalised DD/MG approach, parallel recursive MG smoothers with only
implicit overlap instead of (standard) data-parallel multigrid.

Hide anisotropies locally via recursive global/local MG:
numerical robustness, decoupled local work, scalability
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Bandwidth, bandwidth, bandwidth

FEM codes are 95% memory bound,
bandwidth is the crucial factor for performance.

GPUs offer superior bandwidth, are readily available, fast, cheap, ..., in
short, seem like an ideal candidate to improve commodity based clusters.
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Goals

Goal of this project: Include GPUs into an existing FE package...

...without changes to application code built on top of the package,

...without fundamental refactoring of the package,

...without sacrificing either functionality or accuracy,

...but with noteworthy speedups,

...a reasonable amount of generality wrt. other co-processors,

...and additional benefits in terms of space/power/etc.
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Integration overview
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GPU library

GPU library:

offers a lean and efficient
interface to the outer package,

hides all hardware-dependent
details,

provides tuned hardware
adaptions of multigrid solvers.

Advantages: Interface is independent of the actual hardware
underneath. Backends can be implemented, tested and tuned

independently and standalone.

Main challenge: Efficient data transfers interleaved with format
conversions to reduce the impact of the PCIe bottleneck.
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GPU smoother

Hardware acceleration:

Integrated on the node level, as
a new type of local smoother,

by implementing the existing
local interfaces.

Global communication
framework remains unchanged.

Decoupled approach: Sufficient amount of local work between MPI
communication makes hardware acceleration feasible despite the transfer

bottleneck.

Effort: Less than 300 lines of wrapper code.
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Tradeoffs in parallelism

Coarse-grained parallelism:

Heterogeneous task scheduling
based on problem size, expected
run-time, smoother capabilities.

Careful assignment of MPI jobs
to existing resources.

Approx. 700 lines of code.

Fine-grained parallism: Outer multigrid generates small sub-problems
on lower levels, transfer overhead prevents hardware acceleration:

Provide CPU fallback solver.

Rule of thumb: small tasks to the CPU, large tasks to the GPU
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Applications

Application perspective:

No changes to application code.

Acceleration enabled by simple
change in parameter files.

If hardware acceleration is
unavailable, FEAST solvers
provide software fallback.

SOLVER: BICG,256,REL:1.0E-6

PREC: BGS,1.0

SOLVER: MG,1,REL:1.0E-99,V,1,1,GLOBAL

SMOOTHER: 0.7

SOLVER: MG,1,REL:1.0E-99,F,4,4,MACRO

SMOOTHER: 0.7

LSMOOTHER: JACOBI

COARSE: CG,4096,REL:1.0E-6,MACRO

PREC: 1.0

LSMOOTHER: JACOBI

COARSE: LU DECOMP,GLOBAL

SOLVER: BICG,256,REL:1.0E-6

PREC: BGS,1.0

SOLVER: MG,1,REL:1.0E-99,V,1,1,GLOBAL

SMOOTHER: 0.7

LSMOOTHER: MG-GPU,1,REL:1E-99,F,4,4,JACOBI,0.7,

COARSE: CG,4096,REL:1.0E-6,JACOBI,

CPU: 4,CG,4096,REL:1.0E-6,JACOBI

COARSE: LU DECOMP,GLOBAL
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Application: Structural Mechanics

Fundamental model problem: elastic, compressible material
(e.g. steel) exposed to small deformations in a static loading process.

Linearized strain tensor and kinematic relation, Hooke’s material law:
Lamé equation

−2µ div ε(u) − λ graddiv u = f, x ∈ Ω

u = g, x ∈ ΓD

σ(u) · n = t, x ∈ ΓN

FEM discretisation, separate displacement ordering:

(

K11 K12

K21 K22

) (

u1

u2

)

=

(

f1
f2

)

Solver: Global Krylov subspace method, block-preconditioned
(Gauss-Seidel) by treating K11 and K22 with FEAST solvers.
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Test cases

Coarse grids, partitions, boundary conditions:

CRACK simulated test environment for assessing material properties

BLOCK standard benchmark configuration in CSM

PIPE circular cross-section of a pipe clamped in a bench vise
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Test cases

Computed displacements and van Mises stresses:
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Accuracy

Test procedure:
Analytically prescribed dis-
placements, L2 error for
various refinement levels L.
Each macro has (2L + 1)2
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Vertical: Error reduction by a factor of 4 (h2) when increasing L.
Horizontal: Independence of macro distribution and refinement level:

16 macros on L9 are equivalent to 64 macros on L8.
Diagonal: Quadrupling the number of macros on the same level gives

same error reduction as refining.

Identical convergence and computed solutions with and without hardware
acceleration despite restriction to single precision for smoothing
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Speedup

Hardware configuration:
16 nodes, Infiniband,
128 Mi DOFs total

2x Intel EM64T per node,
3.4 GHz, 6.4 GB/s shared
bandwidth

1x NVIDIA Quadro FX4500
per node, 33.6GB/s band-
width, 512 MB, PCIe

 0

 10

 20

 30

 40

 50

 60

 70

BLOCK
speedup 1.9

PIPE
speedup 1.8

CRACK
speedup 2.4

<
--

--
 s

m
al

le
r 

is
 b

et
te

r 
<

--
--

 ti
m

e 
pe

r 
ite

ra
tio

n 
in

 s
ec

CPU
GPU

Speedup of 1.8 – 2.4 for BLOCK, PIPE and CRACK

Introduction Co-Processor integration Results for a structural mechanics application Summary and conclusions



Universität Dortmund

Scalability

Hardware configuration:
4–128 nodes, Infiniband,
8 Mi DOFs per node

2x Intel EM64T per node,
3.4 GHz, 6.4 GB/s shared
bandwidth

1x NVIDIA Quadro FX1400
per node, 19.2GB/s band-
width, 128 MB, PCIe
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Good weak scalability for BLOCK configuration
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Summary

Goal of this project: Include GPUs into an existing FE package...

...without changes to application code built on top of the package,
ok

...without fundamental refactoring of the package,
only 1% of the code base has been touched

...without sacrificing either functionality or accuracy,
identical L2 errors and convergence behaviour

...but with noteworthy speedups,
up to 2.4x for a reasonably challenging application

...a reasonable amount of generality wrt. other co-processors,
in progress

...and additional benefits in terms of space/power/etc.
promising preliminary results
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