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MotivationMotivation

• Co-processor hardware offers tremendous potential
– Both raw compute and bandwidth
– Example: observed 345 GFLOP/s, 80 GB/s on NVIDIA's G80 GPU
– Better than CPUs in Performance / Dollar and Performance / Watt

• Examples
– GPUs
– Cell Blades and Cell Accelerator Boards
– ClearSpeed Adcance Accelerator Boards
– ...

• But:
– Different languages, different APIs, different compilers
– No --march=gpu,cell,cpu in gcc ☺



5

ARCS 2008

Motivation in Motivation in casecase of FE of FE softwaresoftware

• Performance improvements
– Can only be achieved by ‘hardware oriented numerics’
– Combine state-of-the-art numerical methodology with hardware-aware

implementations

• Paradigm change
– Frequency scaling is over, we now scale cores
– No more automatic speedups for serial code

• Numerical and algorithmic foundation research must go 
hand in hand
– To find a good balance between numerical and computational 

efficiency
– Optimal technique for one architecture might not be optimal for a 

different one
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Motivation (Motivation (contcont.).)

• Challenge of co-processor integration
– Significant reimplementations are prohibitive
– In particular for large, established codes

• Balance needed
– Actual hardware is evolving too rapidly
– Integration should be reasonably future-proof
– For several co-processor(s) and generations

• Our approach: High level of abstraction
– Identify and isolate "accelerable" parts of a computation
– Chunks must be large enough to amortise co-processor drawbacks
– Encapsulate several co-processors under one interface
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ExampleExample: : BandwidthBandwidth in a CPUin a CPU--GPU GPU systemsystem

CPU in cache approx. 
GPU streaming

GPU connection to main memory 
(PCIe) can be a significant bottleneck.
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ExampleExample: Data : Data localitylocality and and performanceperformance

Cache Seq. Rand.          Cache Seq. Rand 

GPU memory access speed: Cached, sequential and random 
(left diagram: only gather)

Charts courtesy Ian Buck and Naga Govindaraju

Å
S

m
al

le
r i

s 
be

tte
r (

tim
e 

m
s)

 Å

Æ
La

rg
er

 is
 b

et
te

r (
G

B
yt

e/
s)

 Æ



9

ARCS 2008

CoCo--processorprocessor evaluationevaluation

• Evaluation strategy
– Perform experiments before attempting co-processor integration
– Try to select relevant tests
– Do not focus on microbenchmarks alone
– Compute-bound codes on the CPU can be memory-bound on co-

processors

• Key tests for us
– Performance of matrix-vector multiplication typically a good estimate

of overall performance
– FE solvers are prone to suffer from reduced accuracy
– Poisson equation as representative for scalar elliptic PDEs
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Test 1 Test 1 -- MicrobenchmarksMicrobenchmarks

• Model problem
– Poisson on unitsquare
– Generalised tensorproduct mesh
– Conforming bilinear elements (Q1)
– Band-structured matrix with 9 bands

• Benchmark results
– Matrix-vector multiplication on Geforce 8800 GTX GPU
– Arithmetic intensity: 17N flops, 19N loads/stores (extremely

bandwidth-limited)
– Sustained 18 GFLOP/s (5% peak)
– Sustained 65-70 GByte/s (>80% peak)

• So far: quite promising
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Test 2 Test 2 -- AccuracyAccuracy

• Test scenario
– Laplacian of analytic test function as RHS to Poisson equation
– Multigrid solver, first in double then in single precision
– Expect L2 error reduction by factor of 4 per refinement step

• Not promising at all, advanced techniques required
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FEASTFEAST

• FEAST – Finite Element Analysis and Solution Tools
– Under development at TU Dortmund in Stefan Turek‘s group
– http://www.feast.tu-dortmund.de

• Core features
– Separation of unstructured and structured data for optimised linear 

algebra components
– Finite Element discretisations
– Parallel generalised domain decomposition multigrid solvers
– Scalar and vector-valued problems
– applications in CFD and CSM
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FEAST FEAST gridsgrids
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Data Data structuresstructures

• Cover domain by unstructured collection of subdomains
– Resolve complex geometries, boundary layers in fluid dynamics, etc.

• Refine each subdomain independently and discretise
using FEs
– Generalised tensorproduct fashion
– Isotropic and anisotropic refinement combined with r/h/rh adaptivity

• Performance
– Clear separation of globally unstructured and locally structured parts
– Nonzero pattern of local FE matrices known a priori
– Exploit spatial and temporal locality for tuned LA building blocks

(Sparse Banded BLAS)
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Parallel Parallel multigridmultigrid solverssolvers

• Contradictory properties
– Numerical vs. computational efficiency
– Weak and strong scalability vs. numerical scalability

• Parallel multigrid
– Strong recursive coupling optimal in serial codes
– Usually relaxed to block-Jacobi due to high comm requirements
– Degrades convergence rates in the presence of local anisotropies

• Generalised DD/MG approach (ScaRC)
– Global MG, block-smoothed by local MGs
– Hide anisotropies locally
– Good scalability by design
– Global operations realised via special local BCs and syncronisation

across subdomain boundaries (no overlap!)
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VectorVector--valuedvalued problemsproblems

• Guiding idea
– Tune linear algebra and solver implementation once per architecture 

instead of over and over again per application

• Block-structured systems
– Equation-wise ordering of the unknowns
– A11 and A22 correspond to scalar elliptic operators

• Examples
– Elasticity with compressible material
– Stokes
– Elasticity with (nearly) incompressible material



18

ARCS 2008

VectorVector--valuedvalued problemsproblems

• Solution approach
– Illustrative example: Richardson iteration with block-Jacobi 

preconditioning

• Real solvers
– Block-preconditioning with Gauss-Seidel, SOR etc.
– Krylov-subspace methods, multigrid
– Implemented as sequences of operations on individual blocks
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SolverSolver exampleexample

• First step: Identify accelerable parts of the solver

• Global BiCGStab
– Preconditioned by

• Global MG
– Smoothed by

• Local MGs per subdomain
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SolverSolver exampleexample

• First step: Identify accelerable parts of the solver
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– Preconditioned by

• Global MG
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SolverSolver exampleexample
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SolverSolver exampleexample

• First step: Identify accelerable parts of the solver

• Global BiCGStab
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• Global MG
– Smoothed by

• Local MGs per subdomain

Realised as a series of local
operations on each subdomain.

Typically one operation (defect
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directly followed by neighbour

communication (MPI).

Poor acceleration potential due to 
PCIe bottleneck.

1-2 full MG cycles with up to 1e6 
unknowns.

Good spatial locality.
Enough work for fine-grained

parallelism.

Good acceleration potential.

Only accelerate scalar solvers.
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Integration Integration overviewoverview
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Integration Integration summarysummary

• Isolate suitable parts
– Balance acceleration potential and acceleration effort

• Diverge code paths as late as possible
– Local MG solver
– Same interface for several co-processors

• Important benefit of this minimally invasive approach:  
No changes to application code
– Co-processor code can be developed and tuned on a single node
– Entire MPI communication infrastructure remains unchanged
– But: prone to suffer from Amdahl's Law (discussed later)
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Integration Integration challengeschallenges

• The usual perils and pitfalls in parallel computing
– Heterogeneity complicates load balancing
– Heterogeneity complicates assigning jobs to specific resources
– Don't want to leave the CPU idle while the co-processor computes

• GPU-specific issues
– Building GPU clusters (density, power supplies, cooling)
– Maintenance slightly increased
– Our experience: MTBF and MTBM not affected (for professional-level

cards)
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Integration Integration challengeschallenges

• Data transfers to and from device
– Model: huge L3 cache with prefetching
– Automatic prefetching: Pass control over all matrix data in a 

preprocessing stage
– Manual prefetching: Complicated as older GPUs (pre-CUDA) don't

support async. transfers

• Precision vs. accuracy
– Double precision needed, but only at crucial stages of the computation
– Mixed precision iterative refinement approach
– Outer solver: high precision
– Inner solver: low precision
– Accuracy not affected (see results in a minute)

Paper: Göddeke et al., Using GPUs to improve multigrid solver performance on a cluster, 
accepted for publication in "Computational Science and Engineering", 2007
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LinearisedLinearised ElasticityElasticity

• Computational Solid Mechanics Application FEASTsolid
– Fundamental model problem: elastic, compressible material
– Small deformations, static loading process
– Hooke's material law

• Lamé equation

• Separate displacement ordering
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DiscretisationDiscretisation and and solversolver detailsdetails

• Discretisation of reordered Lamé equation
– block-structured system

• Coupling of K11, K21, K22
– Block Gauß-Seidel smoothing of global multigrid solver
– K11 u1 = f1 and K22 u2 = f2 correspond to scalar elliptic equations and 

solvers for them can be accelerated

• Solver specialisation
– Global BiCGStab (vector-valued) preconditioned by
– Global multigrid (vector-valued) block-GS-smoothed by
– Local multigrids (scalar) per subdomain
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Test Test goalsgoals

• Accuracy
– Evaluate impact of reduced precision
– Analytic reference solution
– Global anisotropies to worsen condition numbers

• Scalability
– Here: only weak scalability

• Speedup
– Exemplarily for some test scenarios
– Detailed analysis and understanding of speedup components



39

ARCS 2008

AccuracyAccuracy

• L2 error against analytically known reference solution

• Same results for CPU and GPU
– expected error reduction independent of refinement and subdomain

distribution
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IllIll--conditionedconditioned systemssystems

• Test case: Cantilever beam
– Global anisotropy and ratio of fixed

Dirichlet and free Neumann BCs
proportional to # of processors

• Illustration of ill-conditioning
– Plain Conjugate gradient solver
– Anisotropies of 1:1, 1:4 and 1:16
– Plot: Number of iterations for

increasing problem size, logscale
– Aniso16 does not even exhibit

doubling of iterations any more
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IllIll--conditionedconditioned systemssystems

• CPU-GPU comparison

• Same solution for GPU and CPU
– Volume of deformed body
– Displacement of reference point at tip of the beam
– Same number of iterations until convergence
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WeakWeak scalabilityscalability

• Good scalability
– original and accelerated

CSM solver
– Infiniband, Xeon EM64T,

3.4GHz, outdated
Quadro 1400 GPU

• More results
– Poisson problem for 1.3 billion unknowns in less than 50 seconds on 

160 outdated GPUs (Quadro 1400)

Paper: Göddeke et al., Exploring weak scalability for FEM calculations on a GPU-enhanced cluster, 
Parallel Computing 33(10-11), 685-699, 2007
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Test Test configurationsconfigurations

Test system with 16 nodes: dualcore Santa Rosa 
Opteron CPU, Quadro 5600 GPU, Infiniband
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DisplacementsDisplacements and von and von MisesMises stressesstresses
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SpeedupSpeedup
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SpeedupSpeedup analysisanalysis

• Speedups in 'time to solution' for one GPU
– 2.6x vs. singlecore, 1.6x vs. dualcore

• Amdahl's Law is lurking
– Profiling: Local speedup of 9x and 5.5x by the GPU
– Observation: 2/3 of the entire solver can be accelerated, so the

theoretical upper bound for the speedup is 3x (2.6x is quite good!)
– For dualcores, we expect 2.2x but see only 1.6x
– Explanation: Overlapping communication / memory access and 

computation are giving the dualcore an 'unfair advantage' 

• Avenue for future work
– Exploit available resources within the node better
– Three-way parallelism in our system: coarse-grained (MPI) -

medium-grained (resources within the node) - fine-grained (compute
cores in the GPU)
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SummarySummary and and conclusionsconclusions

• Identify accelerable parts of established code
– Balance acceleration potential and acceleration effort

• Minimally invasive integration without changes to 
application code
– Instead, hardware acceleration available under the same interface
– User gets acceleration for free, just a change in a parameter file

• Good speedups
– Limited by Amdahl's Law
– Future work needs to address 3-way parallelism

coarse-grained (MPI between nodes) 
medium-grained (resources within the node) 
fine-grained (compute cores in the GPU)s
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