

ARCS 2008

Case study: GPU acceleration of parallel multigrid solvers

Dominik Göddeke

ARCS 2008 - Architecture of Computing Systems GPGPU and CUDA Tutorials Dresden, Germany, February 25 2008

- Hilmar Wobker, Stefan Turek and the FEAST group
 TU Dortmund
- Robert Strzodka, Max Planck Institut Informatik Saarbrücken
- Patrick McCormick, Jamaludin Mohd-Yusof Los Alamos National Labs

Outline

Introduction

- Starting point: FEAST Finite Element Analysis and Solution Tools
- Co-processor integration
- Exemplary results
- Summary and conclusions

Motivation

Co-processor hardware offers tremendous potential

- Both raw compute and bandwidth
- Example: observed 345 GFLOP/s, 80 GB/s on NVIDIA's G80 GPU
- Better than CPUs in Performance / Dollar and Performance / Watt

Examples

- GPUs
- Cell Blades and Cell Accelerator Boards
- ClearSpeed Adcance Accelerator Boards

- ...

- But:
 - Different languages, different APIs, different compilers
 - No --march=gpu,cell,cpu in gcc ☺

Motivation in case of FE software

Performance improvements

- Can only be achieved by 'hardware oriented numerics'
- Combine state-of-the-art numerical methodology with hardware-aware implementations

Paradigm change

- Frequency scaling is over, we now scale cores
- No more automatic speedups for serial code
- Numerical and algorithmic foundation research must go
 hand in hand
 - To find a good balance between numerical and computational efficiency
 - Optimal technique for one architecture might not be optimal for a different one

Motivation (cont.)

Challenge of co-processor integration

- Significant reimplementations are prohibitive
- In particular for large, established codes

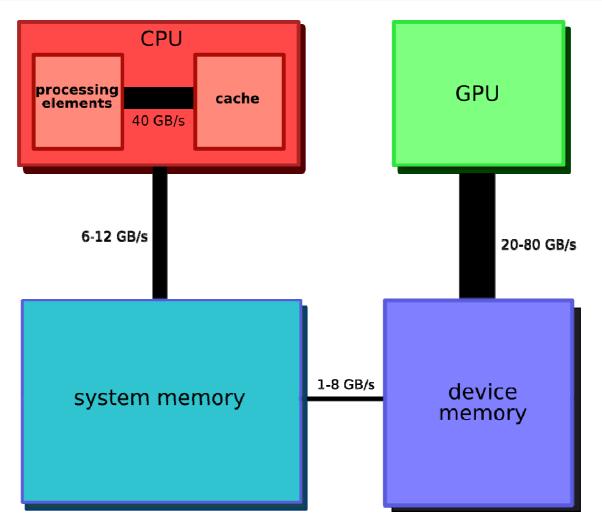
Balance needed

- Actual hardware is evolving too rapidly
- Integration should be reasonably future-proof
- For several co-processor(s) and generations

• Our approach: High level of abstraction

- Identify and isolate "accelerable" parts of a computation
- Chunks must be large enough to amortise co-processor drawbacks
- Encapsulate several co-processors under one interface

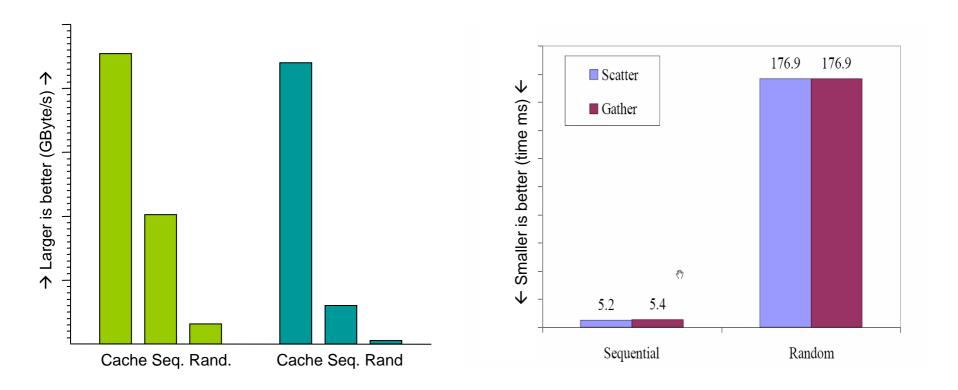
Example: Bandwidth in a CPU-GPU system



CPU in cache approx. GPU streaming GPU connection to main memory (PCIe) can be a significant bottleneck.

Example: Data locality and performance

GPU memory access speed: Cached, sequential and random (left diagram: only gather)



Co-processor evaluation

Evaluation strategy

- Perform experiments before attempting co-processor integration
- Try to select relevant tests
- Do not focus on microbenchmarks alone
- Compute-bound codes on the CPU can be memory-bound on coprocessors

Key tests for us

- Performance of matrix-vector multiplication typically a good estimate of overall performance
- FE solvers are prone to suffer from reduced accuracy
- Poisson equation as representative for scalar elliptic PDEs

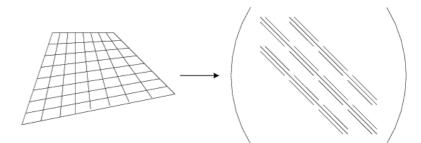
Test 1 - Microbenchmarks

Model problem

- Poisson on unitsquare
- Generalised tensorproduct mesh
- Conforming bilinear elements (Q₁)
- Band-structured matrix with 9 bands

Benchmark results

- Matrix-vector multiplication on Geforce 8800 GTX GPU
- Arithmetic intensity: 17N flops, 19N loads/stores (extremely bandwidth-limited)
- Sustained 18 GFLOP/s (5% peak)
- Sustained 65-70 GByte/s (>80% peak)
- So far: quite promising



Test 2 - Accuracy

Test scenario

- Laplacian of analytic test function as RHS to Poisson equation
- Multigrid solver, first in double then in single precision
- Expect L₂ error reduction by factor of 4 per refinement step

	DOUBLE	REDUCTION	SINGLE	REDUCTION
3^2	5.208e-3		5.208e-3	
5^2	1.440e-3	3.62	1.440e-3	3.62
9^2	3.869e-4	3.72	3.869e-4	3.72
17^2	1.015e-4	3.81	1.015e-4	3.81
33^2	2.607e-5	3.89	2.611e-5	3.89
65^2	6.612e-6	3.94	6.464e-6	4.04
129^2	1.666e-6	3.97	1.656e-6	3.90
257^2	4.181e-7	3.98	5.927e-7	2.79
513^2	1.047e-7	3.99	2.803e-5	0.02
1025^2	2.620e-8	4.00	7.708e-5	0.36

• Not promising at all, advanced techniques required

Outline

- Introduction
- Starting point: FEAST Finite Element Analysis and Solution Tools
- Co-processor integration
- Exemplary results
- Summary and conclusions

FEAST

• FEAST – Finite Element Analysis and Solution Tools

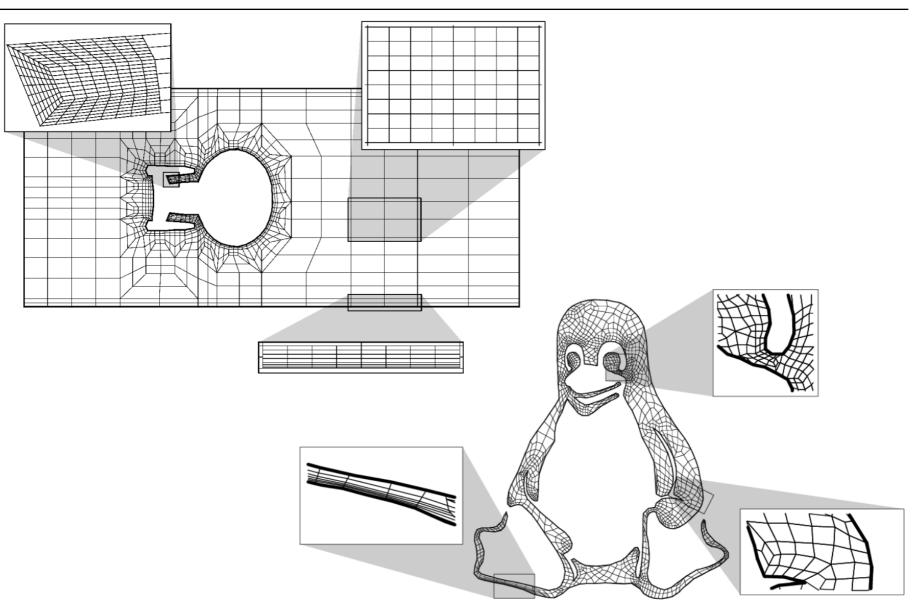
- Under development at TU Dortmund in Stefan Turek's group
- http://www.feast.tu-dortmund.de

Core features

- Separation of unstructured and structured data for optimised linear algebra components
- Finite Element discretisations
- Parallel generalised domain decomposition multigrid solvers
- Scalar and vector-valued problems
- applications in CFD and CSM

ARCS 2008

FEAST grids



Data structures

- Cover domain by unstructured collection of subdomains
 - Resolve complex geometries, boundary layers in fluid dynamics, etc.
- Refine each subdomain independently and discretise using FEs
 - Generalised tensorproduct fashion
 - Isotropic and anisotropic refinement combined with r/h/rh adaptivity

Performance

- Clear separation of globally unstructured and locally structured parts
- Nonzero pattern of local FE matrices known a priori
- Exploit spatial and temporal locality for tuned LA building blocks (Sparse Banded BLAS)

Parallel multigrid solvers

Contradictory properties

- Numerical vs. computational efficiency
- Weak and strong scalability vs. numerical scalability

Parallel multigrid

- Strong recursive coupling optimal in serial codes
- Usually relaxed to block-Jacobi due to high comm requirements
- Degrades convergence rates in the presence of local anisotropies

Generalised DD/MG approach (ScaRC)

- Global MG, block-smoothed by local MGs
- Hide anisotropies locally
- Good scalability by design
- Global operations realised via special local BCs and syncronisation across subdomain boundaries (no overlap!)

Vector-valued problems

Guiding idea

 Tune linear algebra and solver implementation once per architecture instead of over and over again per application

Block-structured systems

- Equation-wise ordering of the unknowns
- A_{11} and A_{22} correspond to scalar elliptic operators

Examples

- Elasticity with compressible material
- Stokes
- Elasticity with (nearly) incompressible material

$$\begin{pmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{12}^{\mathsf{T}} & \mathbf{A}_{22} \end{pmatrix} \begin{pmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \end{pmatrix} = \mathbf{f} \quad \begin{pmatrix} \mathbf{A}_{11} & \mathbf{0} & \mathbf{B}_1 \\ \mathbf{0} & \mathbf{A}_{22} & \mathbf{B}_2 \\ \mathbf{B}_1^{\mathsf{T}} & \mathbf{B}_2^{\mathsf{T}} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{p} \end{pmatrix} = \mathbf{f} \quad \begin{pmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} & \mathbf{B}_1 \\ \mathbf{A}_{12}^{\mathsf{T}} & \mathbf{A}_{22} & \mathbf{B}_2 \\ \mathbf{B}_1^{\mathsf{T}} & \mathbf{B}_2^{\mathsf{T}} & \mathbf{C}_c \end{pmatrix} \begin{pmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \\ \mathbf{p} \end{pmatrix} = \mathbf{f}$$

 $\begin{pmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{12}^{\mathsf{T}} & \mathbf{A}_{22} \end{pmatrix} \begin{pmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \end{pmatrix} = \begin{pmatrix} \mathbf{f}_1 \\ \mathbf{f}_2 \end{pmatrix}$

Vector-valued problems

Solution approach

Illustrative example: Richardson iteration with block-Jacobi preconditioning

$$\begin{pmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{12}^{\mathsf{T}} & \mathbf{A}_{22} \end{pmatrix} \begin{pmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \end{pmatrix} = \begin{pmatrix} \mathbf{f}_1 \\ \mathbf{f}_2 \end{pmatrix}$$

$$\mathbf{u}^{k+1} = \mathbf{u}^k + \widetilde{\mathbf{A}}^{-1}(\mathbf{f} - \mathbf{A}\mathbf{u}^k)$$

$$\widetilde{\mathbf{A}}^{-1} = \begin{pmatrix} \mathbf{A}_{11}^{-1} & \mathbf{0} \\ 0 & \mathbf{A}_{22}^{-1} \end{pmatrix}$$

Real solvers

- Block-preconditioning with Gauss-Seidel, SOR etc.
- Krylov-subspace methods, multigrid
- Implemented as sequences of operations on individual blocks

Outline

- Introduction
- Starting point: FEAST Finite Element Analysis and Solution Tools
- Co-processor integration
- Exemplary results
- Summary and conclusions

- First step: Identify accelerable parts of the solver
- Global BiCGStab
 - Preconditioned by
- Global MG
 - Smoothed by
- Local MGs per subdomain

- First step: Identify accelerable parts of the solver
- Global BiCGStab
 - Preconditioned by
- Global MG
 - Smoothed by
- Local MGs per subdomain

Realised as a series of local operations on each subdomain.

- First step: Identify accelerable parts of the solver
- Global BiCGStab
 - Preconditioned by
- Global MG
 - Smoothed by
- Local MGs per subdomain

Realised as a series of local operations on each subdomain.

Typically one operation (defect calculation, grid transfers etc.) directly followed by neighbour communication (MPI).

23

ARCS 2008

Solver example

- First step: Identify accelerable parts of the solver
- Global BiCGStab
 - Preconditioned by
- Global MG
 - Smoothed by
- Local MGs per subdomain

Realised as a series of local operations on each subdomain.

Typically one operation (defect calculation, grid transfers etc.) directly followed by neighbour communication (MPI).

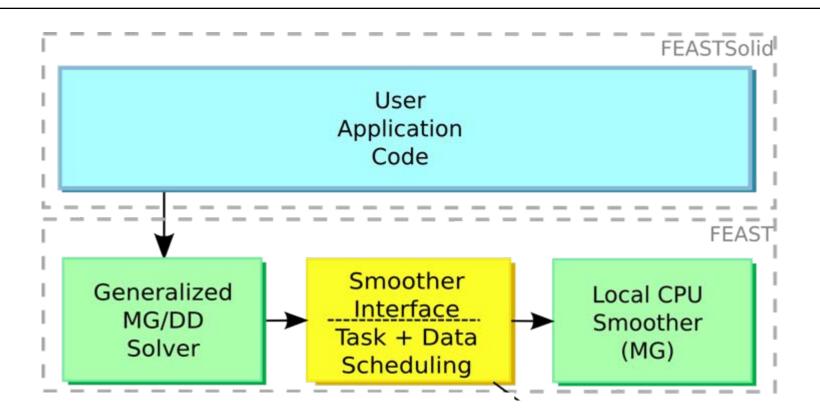
Poor acceleration potential due to PCIe bottleneck.

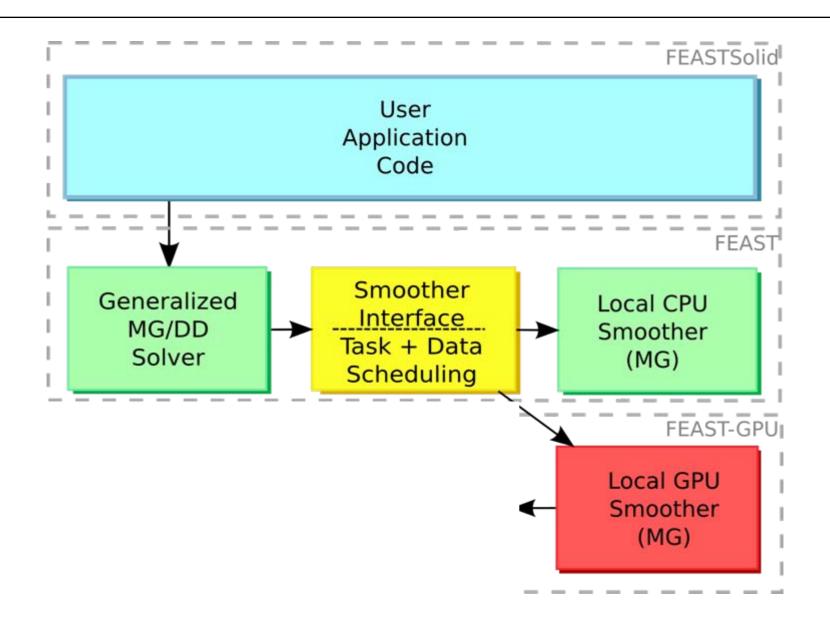
 Global BiCGStab Preconditioned by 	Realised as a series of local operations on each subdomain.
•	
Global MG	Typically one operation (defect
 Smoothed by 	calculation, grid transfers etc.)
ç	directly followed by neighbour
Local MGs per subdomain	communication (MPI).
1-2 full MG cycles with up to 1e6	Poor acceleration potential due to
unknowns.	PCIe bottleneck.

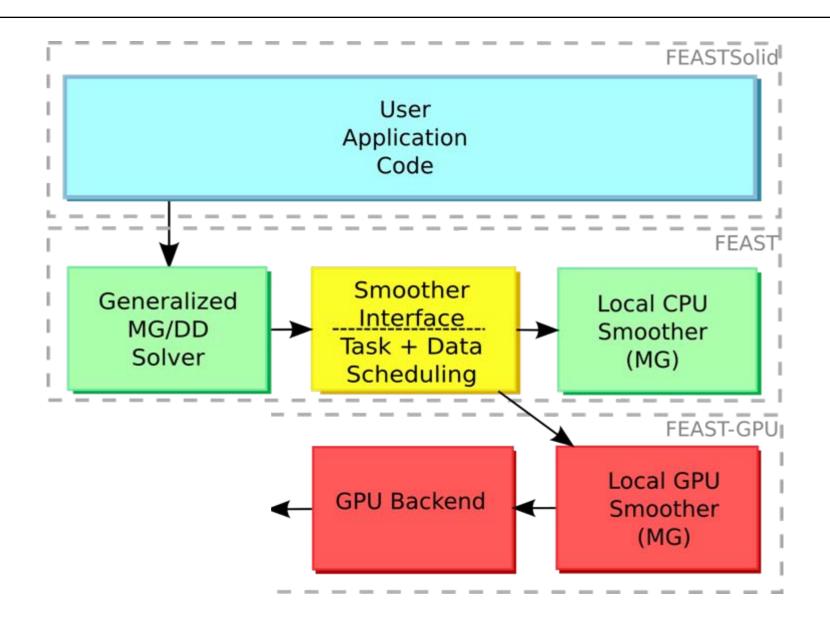
 Global BiCGStab Preconditioned by 	Realised as a series of local operations on each subdomain.
 Global MG Smoothed by Local MGs per subdomain 	Typically one operation (defect calculation, grid transfers etc.) directly followed by neighbour communication (MPI).
1-2 full MG cycles with up to 1e6 unknowns.	Poor acceleration potential due to PCIe bottleneck.
Good spatial locality. Enough work for fine-grained parallelism.	

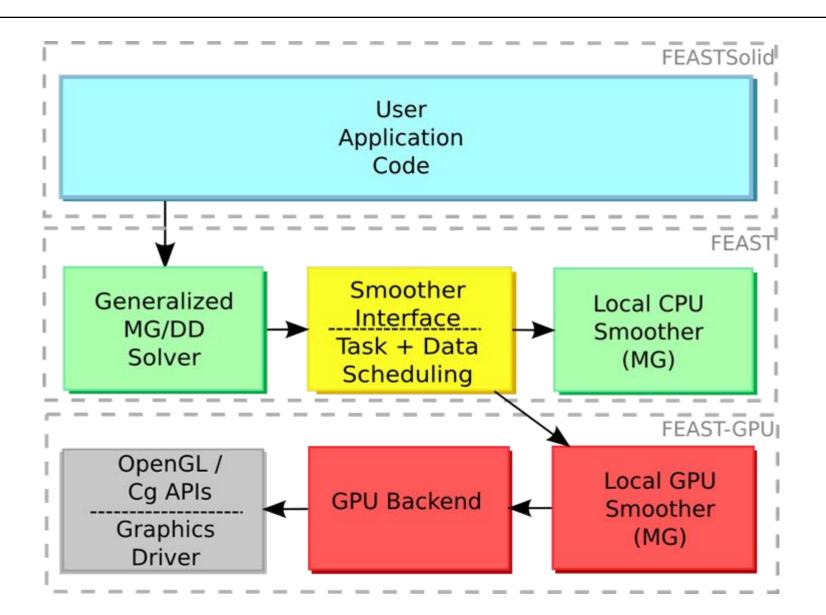
 Global BiCGStab Preconditioned by 	Realised as a series of local operations on each subdomain.
 Global MG Smoothed by Local MGs per subdomain 	Typically one operation (defect calculation, grid transfers etc.) directly followed by neighbour communication (MPI).
1-2 full MG cycles with up to 1e6	Poor acceleration potential due to
unknowns.	PCIe bottleneck.
Good spatial locality.	Good acceleration potential.
Enough work for fine-grained parallelism.	

 Global BiCGStab Preconditioned by 	Realised as a series of local operations on each subdomain.
 Global MG Smoothed by Local MGs per subdomain 	Typically one operation (defect calculation, grid transfers etc.) directly followed by neighbour communication (MPI).
1-2 full MG cycles with up to 1e6 unknowns.	Poor acceleration potential due to PCIe bottleneck.
Good spatial locality.	Good acceleration potential.
Enough work for fine-grained parallelism.	Only accelerate scalar solvers.









Integration summary

Isolate suitable parts

- Balance acceleration potential and acceleration effort

• Diverge code paths as late as possible

- Local MG solver
- Same interface for several co-processors
- Important benefit of this minimally invasive approach: No changes to application code
 - Co-processor code can be developed and tuned on a single node
 - Entire MPI communication infrastructure remains unchanged
 - But: prone to suffer from Amdahl's Law (discussed later)

Integration challenges

• The usual perils and pitfalls in parallel computing

- Heterogeneity complicates load balancing
- Heterogeneity complicates assigning jobs to specific resources
- Don't want to leave the CPU idle while the co-processor computes

• GPU-specific issues

- Building GPU clusters (density, power supplies, cooling)
- Maintenance slightly increased
- Our experience: MTBF and MTBM not affected (for professional-level cards)

Integration challenges

• Data transfers to and from device

- Model: huge L3 cache with prefetching
- Automatic prefetching: Pass control over all matrix data in a preprocessing stage
- Manual prefetching: Complicated as older GPUs (pre-CUDA) don't support async. transfers

• Precision vs. accuracy

- Double precision needed, but only at crucial stages of the computation
- Mixed precision iterative refinement approach
- Outer solver: high precision
- Inner solver: low precision
- Accuracy not affected (see results in a minute)

Paper: Göddeke et al., Using GPUs to improve multigrid solver performance on a cluster, accepted for publication in "Computational Science and Engineering", 2007

Outline

- Introduction
- Starting point: FEAST Finite Element Analysis and Solution Tools
- Co-processor integration
- Exemplary results
- Summary and conclusions

Linearised Elasticity

Computational Solid Mechanics Application FEASTsolid

- Fundamental model problem: elastic, compressible material
- Small deformations, static loading process
- Hooke's material law
- Lamé equation

$$-2\mu \operatorname{div} \boldsymbol{\varepsilon}(\boldsymbol{u}) - \lambda \operatorname{grad} \operatorname{div} \boldsymbol{u} = \boldsymbol{f}, \qquad \boldsymbol{x} \in \Omega$$
$$\boldsymbol{u} = \boldsymbol{g}, \qquad \boldsymbol{x} \in \Gamma_{\mathrm{D}}$$
$$\boldsymbol{\sigma}(\boldsymbol{u}) \cdot \boldsymbol{n} = \boldsymbol{t}, \qquad \boldsymbol{x} \in \Gamma_{\mathrm{N}}$$

Separate displacement ordering

$$-\begin{pmatrix} (2\mu+\lambda)\partial_{xx}+\mu\partial_{yy} & (\mu+\lambda)\partial_{xy} \\ (\mu+\lambda)\partial_{yx} & \mu\partial_{xx}+(2\mu+\lambda)\partial_{yy} \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} f_1 \\ f_2 \end{pmatrix}$$

Discretisation and solver details

Discretisation of reordered Lamé equation

block-structured system

$$\begin{pmatrix} \mathbf{K}_{11} & \mathbf{K}_{12} \\ \mathbf{K}_{21} & \mathbf{K}_{22} \end{pmatrix} \begin{pmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \end{pmatrix} = \begin{pmatrix} \mathbf{f}_1 \\ \mathbf{f}_2 \end{pmatrix}$$

• Coupling of K_{11} , K_{21} , K_{22}

- Block Gauß-Seidel smoothing of global multigrid solver
- $\mathbf{K}_{11} \mathbf{u}_1 = \mathbf{f}_1$ and $\mathbf{K}_{22} \mathbf{u}_2 = \mathbf{f}_2$ correspond to scalar elliptic equations and solvers for them can be accelerated

Solver specialisation

- Global BiCGStab (vector-valued) preconditioned by
- Global multigrid (vector-valued) block-GS-smoothed by
- Local multigrids (scalar) per subdomain

Test goals

Accuracy

- Evaluate impact of reduced precision
- Analytic reference solution
- Global anisotropies to worsen condition numbers

Scalability

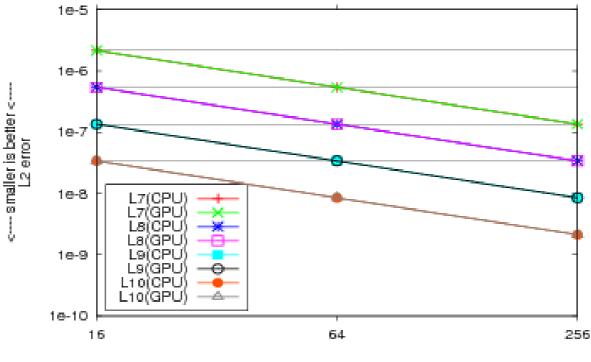
- Here: only weak scalability

Speedup

- Exemplarily for some test scenarios
- Detailed analysis and understanding of speedup components

Accuracy

• L₂ error against analytically known reference solution



number of subdomains

• Same results for CPU and GPU

expected error reduction independent of refinement and subdomain distribution

ARCS 2008

Ill-conditioned systems

Test case: Cantilever beam

 Global anisotropy and ratio of fixed Dirichlet and free Neumann BCs proportional to # of processors

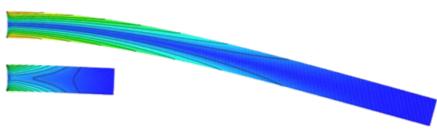
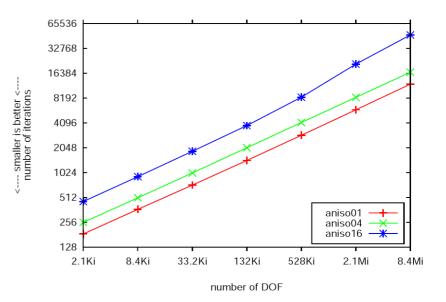


Illustration of ill-conditioning

- Plain Conjugate gradient solver
- Anisotropies of 1:1, 1:4 and 1:16
- Plot: Number of iterations for increasing problem size, logscale
- Aniso16 does not even exhibit doubling of iterations any more



CPU-GPU comparison

aniso04	Iterations		Volume		y-Displacement	
refinement L	CPU	GPU	CPU	GPU	CPU	GPU
8	4	4	1.6087641E-3	1.6087641E-3	-2.8083499E-3	-2.8083499E-3
9	4	4	1.6087641E-3	1.6087641E-3	-2.8083628E-3	-2.8083628E-3
10	4.5	4.5	1.6087641 E-3	1.6087641 E-3	-2.8083667E-3	-2.8083667E-3
aniso16						
8	6	6	6.7176398E-3	6.7176398E-3	-6.6216232E-2	-6.6216232E-2
9	6	5.5	6.7176427E-3	6.7176427E-3	-6.621655 1E-2	-6.621655 2E-2
10	5.5	5.5	6.7176516E-3	6.7176516E-3	-6.621750 1E-2	-6.621750 2E-2

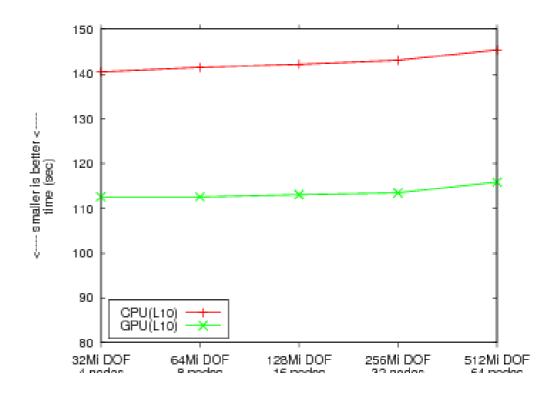
• Same solution for GPU and CPU

- Volume of deformed body
- Displacement of reference point at tip of the beam
- Same number of iterations until convergence

Weak scalability

Good scalability

- original and accelerated CSM solver
- Infiniband, Xeon EM64T,
 3.4GHz, outdated
 Quadro 1400 GPU

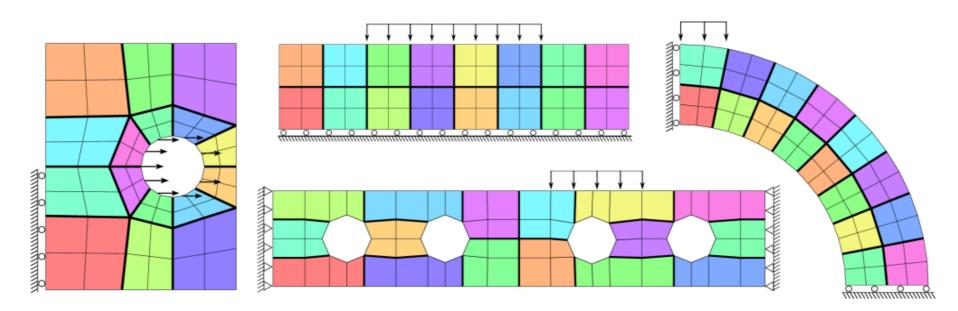


More results

 Poisson problem for 1.3 billion unknowns in less than 50 seconds on 160 outdated GPUs (Quadro 1400)

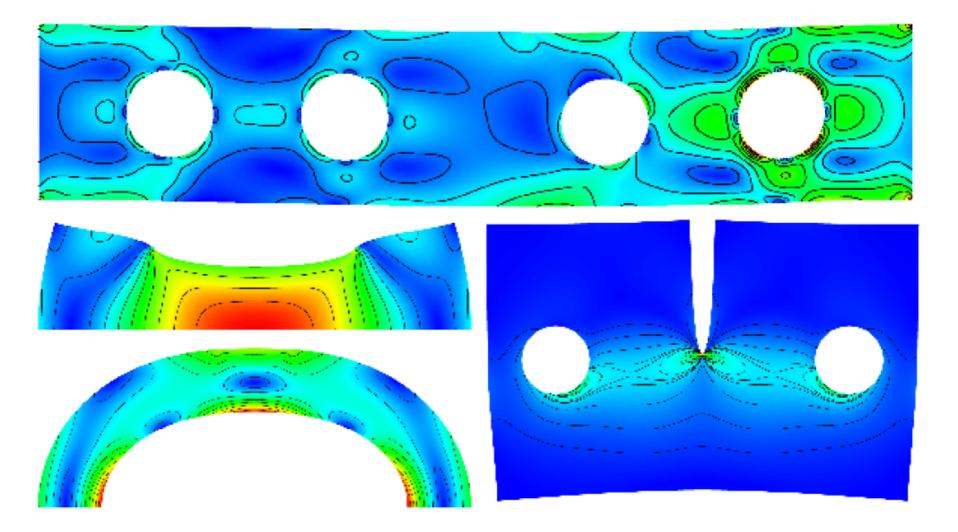
Paper: Göddeke et al., Exploring weak scalability for FEM calculations on a GPU-enhanced cluster, Parallel Computing 33(10-11), 685-699, 2007

Test configurations

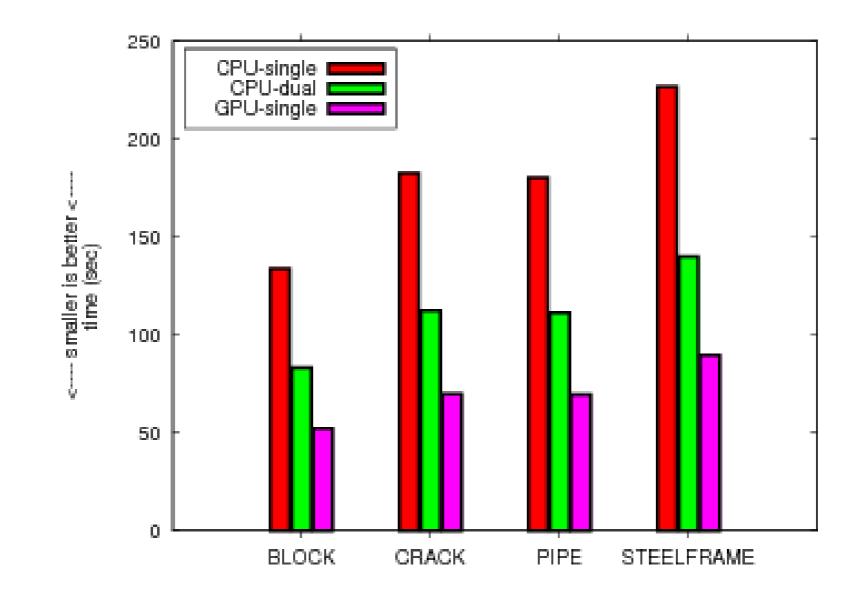


Test system with 16 nodes: dualcore Santa Rosa Opteron CPU, Quadro 5600 GPU, Infiniband

Displacements and von Mises stresses



Speedup



Speedup analysis

- Speedups in 'time to solution' for one GPU
 - 2.6x vs. singlecore, 1.6x vs. dualcore

Amdahl's Law is lurking

- Profiling: Local speedup of 9x and 5.5x by the GPU
- Observation: 2/3 of the entire solver can be accelerated, so the theoretical upper bound for the speedup is 3x (2.6x is quite good!)
- For dualcores, we expect 2.2x but see only 1.6x
- Explanation: Overlapping communication / memory access and computation are giving the dualcore an 'unfair advantage'

Avenue for future work

- Exploit available resources within the node better
- Three-way parallelism in our system: coarse-grained (MPI) medium-grained (resources within the node) - fine-grained (compute cores in the GPU)

Outline

- Introduction
- Starting point: FEAST Finite Element Analysis and Solution Tools
- Co-processor integration
- Exemplary results
- Summary and conclusions

Summary and conclusions

- Identify accelerable parts of established code
 - Balance acceleration potential and acceleration effort
- Minimally invasive integration without changes to application code
 - Instead, hardware acceleration available under the same interface
 - User gets acceleration for free, just a change in a parameter file

Good speedups

- Limited by Amdahl's Law
- Future work needs to address 3-way parallelism coarse-grained (MPI between nodes) medium-grained (resources within the node) fine-grained (compute cores in the GPU)s

- Hilmar Wobker, Stefan Turek and the FEAST group
 TU Dortmund
- Robert Strzodka, Max Planck Institut Informatik Saarbrücken
- Patrick McCormick, Jamaludin Mohd-Yusof Los Alamos National Labs