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Motivation and Introduction

Hardware isn’t our friend any more

Paradigm shift towards parallelism and heterogeneity

In a single chip: Multicores, GPUs, . . .
In a workstation, cluster node, . . .
In a big cluster, supercomputer, . . .

Data movement cost gets prohibitively expensive

Technical reason: Power wall + memory wall + ILP wall = brick wall

Challenges in numerical HPC

Existing codes don’t run faster automatically any more

Compilers can’t solve these problems, libraries are limited

Traditional numerics is often contrary to these hardware trends

We (the numerics people) have to take action



Representative Example

FeatFlow-benchmark 1993–2008

Set of Navier-Stokes solvers based on FEM-multigrid

Sequential, reasonably fast machines (data courtesy J. Hron)
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Good: 80x faster in 16 years without changes to source code

But: 1 000x increase of peak performance in the same time

Important: automatical speedup of conventional codes stagnates



Our Approach: Hardware-Oriented Numerics

Most important aspects of hardware paradigm shift

Memory wall: moving data gets prohibitively expensive

Different levels of parallelism

Conflicting situations

Existing methods no longer hardware-compatible

Neither want less numerical efficiency, nor less hardware efficiency

Challenge: new algorithmic way of thinking

Balance these conflicting goals

Consider short-term hardware details in actual implementations,
but long-term hardware trends in the design of numerical schemes!



Talk Outline

High-level take-away messages of this talk

Things numerical analysts might want to know about hardware

Thinking explicitly of data movement and in parallel is mandatory

Unfortunately, there are many levels of parallism, each with its own
communication characteristics

Parallelism is (often) natural, we ‘just’ have to rediscover it

Expressing parallelism in codes is a different story I won’t talk about

Examples in my niche: Linear solvers for sparse systems

Mixed precision iterative refinement techniques

FEM-multigrid (geometric) for structured and unstructured grids

Extracting fine-grained parallelism from inherently sequential ops

Scale-out to (GPU-accelerated) clusters



Introduction

The Memory Wall Problem

GPU Computing



The Memory Wall Problem

Worst-case example: Vector addition

Compute c = a + b for large N in double precision

Arithmetic intensity: N flops for 3N memory operations

My machine: 12 GFLOP/s and 10 GB/s peak

Consequences, back-of-an-envelope calculation

To run at 12 GFLOP/s, we need 3/1 · 8 · 109 = 240 GB/s

In other words, maximum performance is 1/24 of what we could do

This is not too far away from real-life

SpMV reads all matrix entries once without reuse

Data reuse only in coefficient vector

Irregular access patterns and additional pressure (indirection vector)



The Memory Wall Problem

Moving data is almost prohibitively expensive

Affects all levels of the memory hierarchy

Between cluster nodes (Infiniband)
From main memory to CPU
From CPU to GPU (PCIe)
Within chips (cache hierarchies)

Multicores make this worse

Number of memory controllers does not scale with number of cores

It can sometimes make sense to leave cores idle

On-chip resources can be shared (common last-level cache)

Data locality is the only solution

Maximise data reuse (manually or via choice of data structures)

Maximise coherent access patterns for block-transfers and avoid
jumping through memory



GPUs: Myth, Marketing and Reality

Raw marketing numbers

> 2 TFLOP/s peak floating point performance

Lots of papers claim > 100× speedup

Looking more closely

Single or double precision floating point (same precision on both
devices)?

Sequential CPU code vs. parallel GPU implementation?

‘Standard operations’ or many low-precision graphics constructs?

Reality

GPUs are undoubtedly fast, but so are CPUs

Quite often: CPU codes significantly less carefully tuned

Anything between 5–30x speedup is realistic (and worth the effort)



GPUs and the Memory Wall Problem



GPU Architecture

GPUs are parallel wide-SIMD architectures

General idea: Maximise throughput of many similar tasks rather
than latency of individual tasks

Note: CUDA-speak, but OpenCL essentially the same

Independent multiprocessors, each with several ALUs

One instruction scheduler per multiprocessor (SIMD)

Shared memory and registers (16–48 kB per MP)

Caches: 16 kB texture cache per 2–3 MPs, recently also 16–48 kB
L1-cache per MP

Hardware schedules threads to multiprocessors

Threads may diverge at the cost of reduced throughput
(SIMT-architecture)

Restrictive rules for addressing memory from neighbouring threads

Recently: global L2-cache



GPU Programming Model

Kernel = blocks of threads

Kernels are executed in blocks of threads

Blocks are virtualised multiprocessors

Hardware schedules which threads from which blocks are executed

Threads in a block are executed in warps of size 32

Hardware switches instantaneously to new warp in case of a stall
(memory access etc.)

Threads within each block may cooperate via shared memory

Blocks cannot cooperate (implicit synchronisation at kernel scope)

Kernels are launched asynchroneously

Recently: Up to four smaller kernels active simultaneously for better
ressource optimisation

Shared memory and register file can be a resource bottleneck (limits
the amount of simultaneously resident blocks)



GPU Programming Model

CPU-GPU transfers

Blocking and non-blocking transfers (of independent data)

Streaming computations: Read A back, work on B and copy input
data for C simultaneously

GPU is a co-processor

CPU orchestrates computations on the GPU

Example: iterative solver

CPU launches all kernels for one iteration
CPU blocks at last kernel that computes norm of residual
CPU performs convergence check

Try to minimise CPU-GPU synchronisation

GPUs and multicores: Use one orchestrating CPU core per GPU and
use the remaining cores for CPU computations



Example #1:

Mixed Precision
Iterative Refinement

Combatting the memory wall problem



Motivation

Switching from double to single precision (DP→SP)

2x effective memory bandwidth, 2x effective cache size

At least 2x compute speed (often 4–12x)

Problem: Condition number

For all problems in this talk: cond2(A) ∼ h−2
min

Theory for linear system Ax = b

cond2(A) ∼ 10s;
‖A + δA‖

‖A‖
,
‖b + δb‖

‖b‖
∼ 10−k(k > s) ⇒

‖x + δx‖

‖x‖
∼ 10s−k

In our setting

Truncation error in 7–8th digit increased by s digits



Numerical Example

Poisson problem on unit square

Simple yet fundamental

cond2(A) ≈ 105 for L = 10 (1M bilinear FE, regular grid)

Condition number usually much higher: anisotropies in grid and
operator

Data+Comp. in DP Data in SP, Compute in DP Data+Comp. in SP
Level L2 Error Red. L2 Error Red. L2 Error Red.

5 1.1102363E-3 4.00 1.1102371E-3 4.00 1.1111655E-3 4.00
6 2.7752805E-4 4.00 2.7756739E-4 4.00 2.8704684E-4 3.87
7 6.9380072E-5 4.00 6.9419428E-5 4.00 1.2881795E-4 2.23
8 1.7344901E-5 4.00 1.7384278E-5 3.99 4.2133101E-4 0.31
9 4.3362353E-6 4.00 4.3757082E-6 3.97 2.1034461E-3 0.20
10 1.0841285E-6 4.00 1.1239630E-6 3.89 8.8208778E-3 0.24

⇒ Single precision insufficient for moderate problem sizes already



Mixed Precision Iterative Refinement

Iterative refinement

Established algorithm to provably guarantee accuracy of computed
results (within given precision)

High precision: d = b − Ax (cheap)
Low precision: c = A

−1
d (expensive)

High precision: x = x + c (cheap) and iterate (expensive?)

Convergence to high precision accuracy if A ‘not too ill-conditioned’

Theory: Number of iterations ≈ f(log(cond2(A)), log(εhigh/εlow))

New idea (Hardware-oriented numerics)

Use this algorithm to improve time to solution and thus efficiency of
linear system solves

Goal: Result accuracy of high precision with speed of low precision
floating point format



Iterative Refinement for Large Sparse Systems

Refinement procedure not immediately applicable

‘Exact’ solution using ‘sparse LU’ techniques too expensive

Convergence of iterative methods not guaranteed in single precision

Solution

Interpretation as a preconditioned mixed precision defect correction
iteration

x
(k+1)
DP = x

(k)
DP + C

−1
SP (bDP − ADPx

(k)
DP)

Preconditioner CSP in single precision:
‘Gain digit(s)’ or 1-3 MG cycles instead of exact solution

Results (MG and Krylov for Poisson problem)

Speedup at least 1.7x (often more) without loss in accuracy

Asymptotic optimal speedup is 2x (bandwidth limited)



Example #2:

Grid- and Matrix Structures

Flexibility ↔ Performance



Grid- and Matrix Structures

General sparce matrices (on unstructured grids)

CSR (and variants): general data structure for arbitrary grids

Maximum flexibility, but during SpMV

Indirect, irregular memory accesses
Index overhead reduces already low arithm. intensity further

Performance depends on nonzero pattern (numbering of the grid
points)

Structured matrices

Example: structured grids, suitable numbering ⇒ band matrices

Important: no stencils, fully variable coefficients

direct regular memory accesses (fast), mesh-independent
performance

Structure exploitation in the design of MG components (later)



Approach in FEAST

Combination of respective advantages

Global macro-mesh: unstructured, flexible

local micro-meshes: structured (logical TP-structure), fast

Important: structured 6= cartesian meshes!

Reduce numerical linear algebra to sequences of operations on
structured data (maximise locality)

Developed for larger clusters (later), but generally useful

UU

“window” for
matrix-vector
multiplication,
per macro

hierarchically
refined subdomain
(= “macro”),
rowwise numbered

unstructured mesh
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Example

Poisson on unstructured domain
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1 Thread
4 Threads

GPU
MPI (4x)

Nehalem vs. GT200, ≈ 2M bilinear FE, MG-JAC solver

Unstructured formats highly numbering-dependent

Multicore 2–3x over singlecore, GPU 8–12x over multicore

Banded format (here: 8 ‘blocks’) 2–3x faster than best unstructured
layout and predictably on par with multicore



Example

Details: Unstructured grid multigrid

Strategy: Reduce everything to SpMV

Smoothing: Currently pursuing SPAI-like approaches

Grid transfers

chose the standard Lagrange bases for two consecutively refined Qk

finite element spaces V2h and Vh

function u2h ∈ V2h can be interpolated in order to prolongate it

uh :=

m∑

i=1

xi · ϕ
(i)
h , xi := u2h(ξ

(i)
h )

for the basis functions of V2h and u2h =
Pn

j=1 yj · ϕ
(j)
2h with

coefficient vector y, we can write the prolongation as

uh :=
m∑

i=1

xi · ϕ
(i)
h , x := Ph

2h · y



Example #3:

Parallelising Inherently
Sequential Operations

Multigrid with strong smoothers
Lots of parallelism available in inherently

sequential operations



Motivation: Why Strong Smoothers?

Test case: anisotropic diffusion in generalised Poisson problem

−div (G grad u) = f on unit square (one FEAST patch)

G = I: standard Poisson problem, G 6= I: arbitrarily challenging

Example: G introduces anisotropic diffusion along some vector field
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Only multigrid with a strong smoother is competitive



Gauß-Seidel Smoother

Disclaimer: Not necessarily a good smoother, but a good didactical example.

Sequential algorithm

Forward elimination, sequential dependencies between matrix rows

Illustrative: coupling to the left and bottom

1st idea: classical wavefront-parallelisation (exact)

Pro: always works to resolve explicit dependencies

Con: irregular parallelism and access patterns, implementable?



Gauß-Seidel Smoother

2nd idea: decouple dependencies via multicolouring (inexact)

Jacobi (red) – coupling to left (green) – coupling to bottom (blue) –
coupling to left and bottom (yellow)

Analysis

Parallel efficiency: 4 sweeps with ≈ N/4 parallel work each

Regular data access, but checkerboard pattern challenging for
SIMD/GPUs due to strided access

Numerical efficiency: sequential coupling only in last sweep



Gauß-Seidel Smoother

3rd idea: multicolouring = renumbering

After decoupling: ‘standard’ update (left+bottom) is suboptimal

Does not include all already available results

Recoupling: Jacobi (red) – coupling to left and right (green) – top
and bottom (blue) – all 8 neighbours (yellow)

More computations that standard decoupling

Experiments: convergence rates of sequential variant recovered (in
absence of preferred direction)



Tridiagonal Smoother (Line Relaxation)

Starting point

Good for ‘line-wise’ anisotropies

‘Alternating Direction Implicit (ADI)’
technique alternates rows and columns

CPU implementation: Thomas-Algorithm
(inherently sequential)

Observations

One independent tridiagonal system per mesh row

⇒ top-level parallelisation across mesh rows

Implicit coupling: wavefront and colouring techniques not applicable



Tridiagonal Smoother (Line Relaxation)

Cyclic reduction for tridiagonal systems

Exact, stable (w/o pivoting) and cost-efficient

Problem: classical formulation parallelises computation but not
memory accesses on GPUs (bank conflicts in shared memory)

Developed a better formulation, 2-4x faster

Index nightmare, general idea: recursive padding between odd and
even indices on all levels



Smoother Parallelisation: Combined GS and TRIDI

Starting point

CPU implementation: shift previous row to
RHS and solve remaining tridiagonal system
with Thomas-Algorithm

Combined with ADI, this is the best general
smoother (we know) for this matrix structure

Observations and implementation

Difference to tridiagonal solvers: mesh rows depend sequentially on
each other

Use colouring (#c ≥ 2) to decouple the dependencies between rows
(more colours = more similar to sequential variant)



Evaluation: Total Efficiency on CPU and GPU

Test problem: generalised Poisson with anisotropic diffusion

Total efficiency: time per unknown per digit (µs)

Mixed precision iterative refinement multigrid solver
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Speedup GPU vs. CPU
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Summary: smoother parallelisation

Factor 10-30 (dep. on precision and smoother selection) speedup
over already highly tuned CPU implementation

Same functionality on CPU and GPU

Balancing of numerical and parallel efficiency (hardware-oriented
numerics)



Example #4:

Scalable Multigrid Solvers on
Heterogeneous Clusters

Robust coarse-grained parallel ScaRC solvers
GPU acceleration of CSM and CFD solvers



Coarse-Grained Parallel Multigrid

Goals

Parallel efficiency: strong and weak scalability

Numerical scalability, i.e. convergence rates independent of N

Robust for different partitionings, anisotropies, etc.

Most important challenge

Minimising communication between cluster nodes

Concepts for strong smoothers so far not applicable (shared memory)
due to high communication cost and synchronisation overhead

Insufficient parallel work on coarse levels

Our approach: Scalable Recursive Clustering (ScaRC)

Under development at TU Dortmund



ScaRC: Concepts

ScaRC for scalar systems

Hybrid multilevel domain decomposition method

Minimal overlap by extended Dirichlet BCs

Inspired by parallel MG (‘best of both worlds’)

Multiplicative between levels, global coarse grid problem (MG-like)
Additive horizontally: block-Jacobi / Schwarz smoother (DD-like)

Schwarz smoother encapsulates local irregularities

Robust and fast multigrid (‘gain a digit’), strong smoothers
Maximum exploitation of local structure
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matrix-vector
multiplication,
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global BiCGStab

preconditioned by

global multilevel (V 1+1)

additively smoothed by

for all Ωi: local multigrid

coarse grid solver: UMFPACK



ScaRC for Multivariate Problems

Block-structured systems

Guiding idea: tune scalar case once per architecture instead of over
and over again per application

Blocks correspond to scalar subequations, coupling via special
preconditioners

Block-wise treatment enables multivariate ScaRC solvers

Examples (2D case)

Linearised elasticity with compressible material (2x2 blocks)

Saddle point problems: Stokes (3x3 with zero blocks), elasticity with
(nearly) incompressible material, Navier-Stokes with stabilisation
(3x3 blocks)
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A11 and A22 correspond to scalar (elliptic) operators
⇒ Tuned linear algebra and tuned solvers



Minimally Invasive GPU Integration

Concept: locality

GPUs as accelerators of the most time-consuming component

CPUs: outer MLDD solver

No changes to applications!

global BiCGStab

preconditioned by

global multilevel (V 1+1)

additively smoothed by

for all Ωi: local multigrid

coarse grid solver: UMFPACK



Example: Linearised Elasticity

„

A11 A12

A21 A22

« „

u1

u2

«

= f

 

(2µ + λ)∂xx + µ∂yy (µ + λ)∂xy

(µ + λ)∂yx µ∂xx + (2µ + λ)∂yy

!

global multivariate BiCGStab
block-preconditioned by

Global multivariate multilevel (V 1+1)
additively smoothed (block GS) by

for all Ωi: solve A11c1 = d1

by
local scalar multigrid

update RHS: d2 = d2 − A21c1

for all Ωi: solve A22c2 = d2

by
local scalar multigrid

coarse grid solver: UMFPACK



Speedup Linearised Elasticity
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USC cluster in Los Alamos, 16 dualcore nodes (Opteron Santa Rosa,
Quadro FX5600)

Problem size 128 M DOF

Dualcore 1.6x faster than singlecore (memory wall)

GPU 2.6x faster than singlecore, 1.6x than dualcore



Speedup Analysis

Theoretical model of expected speedup

Integration of GPUs increases resources

Correct model: strong scaling within each node

Acceleration potential of the elasticity solver: Racc = 2/3
(remaining time in MPI and the outer solver)

Smax = 1
1−Racc

Smodel = 1
(1−Racc)+(Racc/Slocal)

This example

Accelerable fraction Racc 66%
Local speedup Slocal 9x
Modeled speedup Smodel 2.5x
Measured speedup Stotal 2.6x
Upper bound Smax 3x
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Weak Scalability

Simultaneous doubling of problem size and resources

Left: Poisson, 160 dual Xeon / FX1400 nodes, max. 1.3 B DOF

Right: Linearised elasticity, 64 nodes, max. 0.5 B DOF
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Results

No loss of weak scalability despite local acceleration

1.3 billion unknowns (no stencil!) on 160 GPUs in less than 50 s



Stationary Laminar Flow (Navier-Stokes)
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fixed point iteration
assemble linearised subproblems and solve with

global BiCGStab (reduce initial residual by 1 digit)
Block-Schurcomplement preconditioner
1) approx. solve for velocities with

global MG (V 1+0), additively smoothed by

for all Ωi: solve for u1 with
local MG

for all Ωi: solve for u2 with
local MG

2) update RHS: d3 = −d3 + B
T(c1, c2)

T

3) scale c3 = (ML
p)−1

d3



Stationary Laminar Flow (Navier-Stokes)

Solver configuration

Driven cavity: Jacobi smoother sufficient

Channel flow: ADI-TRIDI smoother required

Speedup analysis

Racc Slocal Stotal

L9 L10 L9 L10 L9 L10
DC Re250 52% 62% 9.1x 24.5x 1.63x 2.71x
Channel flow 48% – 12.5x – 1.76x –

Shift away from domination by linear solver (fraction of FE
assembly and linear solver of total time, max. problem size)

DC Re250 Channel
CPU GPU CPU GPU
12:88 31:67 38:59 68:28



Summary and Conclusions



Summary

Hardware

Paradigm shift: Heterogeneity, parallelism and specialisation

Locality and parallelism on many levels

In one GPU (fine-granular)
In a compute node between heterogeneous resources
(medium-granular)
In big clusters between compute nodes (coarse-granular)

Hardware-oriented numerics

Design new numerical methods ‘matching’ the hardware

Only way to achieve future-proof continuous scaling

Four examples and approaches
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