
Mixed-Precision GPU-Multigrid Solvers
with Strong Smoothers

and Applications in CFD and CSM

Dominik Göddeke

Institut für Angewandte Mathematik (LS3)
TU Dortmund

dominik.goeddeke@math.tu-dortmund.de

SIMTECH 2011
International Conference on Simulation Technology

University of Stuttgart, June 16 2011



Motivation

Hardware isn’t our friend any more

Paradigm shift towards parallelism and heterogeneity

In a single chip: Multicores, GPUs, . . .
In a workstation, cluster node, . . .
In a big cluster, supercomputer, . . .

Data movement cost gets prohibitively expensive

Technical reason: Power wall + memory wall + ILP wall = brick wall

Challenges in numerical HPC

Existing codes don’t run faster automatically any more

Compilers can’t solve these problems, libraries are limited

Traditional numerics is often contrary to these hardware trends

We (the numerics people) have to take action



Hardware-oriented numerics

Conflicting situations

Existing methods no longer hardware-compatible

Neither want less numerical efficiency, nor less hardware efficiency

Challenge: New algorithmic way of thinking

Balance these conflicting goals

Consider short-term hardware details in actual implementations,
but long-term hardware trends in the design of numerical schemes

Locality, locality, locality

Commmunication-avoiding (-delaying) algorithms between all
flavours of parallelism

Multilevel methods, hardware-aware preconditioning



Grid and Matrix Structures

Flexibility ↔ Performance



Grid and matrix structures

General sparse matrices (unstructured grids)

CSR (and variants): General data structure for arbitrary grids

Maximum flexibility, but during SpMV

Indirect, irregular memory accesses
Index overhead reduces already low arithm. intensity further

Performance depends on nonzero pattern (grid numbering)

Structured sparse matrices

Example: Structured grids, suitable numbering ⇒ band matrices

Important: No stencils, fully variable coefficients

Direct regular memory accesses, fast independent of mesh

Exploitation in the design of strong MG components



Example: Poisson on unstructured mesh

 0

 5

 10

 15

 20

 25

 30

 35

 40

2LVL CM XYZ HIER BAND

<
--

--
 s

m
al

le
r 

is
 b

et
te

r 
<

--
--

lin
ea

r 
so

lv
er

 (
se

c)

1 Thread
4 Threads

GPU
MPI (4x)

Nehalem vs. GT200, ≈ 2M bilinear FE, MG-JAC solver

Unstructured formats highly numbering-dependent

Multicore 2–3x over singlecore, GPU 8–12x over multicore

Banded format (here: 8 ‘blocks’) 2–3x faster than best unstructured
layout and predictably on par with multicore



Discretisation and Solver
Structures in FEAST

Scalable, Locality-preserving
Parallel Multilevel Solvers



Approach in FEAST

Combination of structured and unstructured advantages

Global macro-mesh: Unstructured, flexible, complex domains

Local micro-meshes: Structured (logical TP-structure), fast

Important: Structured 6= simple meshes!

UU

“window” for
matrix-vector
multiplication,
per macro

hierarchically
refined subdomain
(= “macro”),
rowwise numbered

unstructured mesh

UD
UL

DU
DDDL

LU
LDLL

I-1

I

I+1

I-M-1
I-M

I-M+1
I+M-1

I+M

I+M+1

Ω
i

Solver approach ScaRC exploits data layout

Parallel efficiency: Strong and weak scalability

Numerical scalability: Convergence rates independent of problem
size and partitioning (multigrid!)

Robustness: Mesh and operator anisotropies (strong smoothers!)



ScaRC: Concepts

ScaRC for scalar systems

Hybrid multilevel domain decomposition method

Minimal overlap by extended Dirichlet BCs

Inspired by parallel MG (‘best of both worlds’)

Multiplicative between levels, global coarse grid problem (MG-like)
Additive horizontally: block-Jacobi / Schwarz smoother (DD-like)

Schwarz smoother encapsulates local irregularities

Robust and fast multigrid (‘gain a digit’), strong smoothers
Maximum exploitation of local structure

UU

“window” for
matrix-vector
multiplication,
per macro

hierarchically
refined subdomain
(= “macro”),
rowwise numbered

unstructured mesh

UD
UL

DU
DDDL

LU
LDLL

I-1

I

I+1

I-M-1
I-M

I-M+1
I+M-1

I+M

I+M+1

Ω
i

global BiCGStab

preconditioned by

global multilevel (V 1+1)

additively smoothed by

for all Ωi: local multigrid

coarse grid solver: UMFPACK



ScaRC for multivariate problems

Block-structured systems

Guiding idea: Tune scalar case once per architecture instead of over
and over again per application

Blocks correspond to scalar subequations, coupling via special
preconditioners

Block-wise treatment enables multivariate ScaRC solvers

(

A11 A12

A21 A22

)(

u1

u2

)

= f ,





A11 0 B1

0 A22 B2

BT
1 BT

2 0









v1

v2

p



 = f ,





A11 A12 B1

A21 A22 B2

BT
1 BT

2 CC









v1

v2

p



 = f

A11 and A22 correspond to scalar (elliptic) operators
⇒ Tuned linear algebra and tuned solvers



Minimal invasive accelerator integration

Bandwidth distribution in a hybrid CPU/GPU node



Minimally invasive accelerator integration

Guiding concept: locality

Accelerators: Most time-consuming inner component

CPUs: Outer MLDD solver (only hardware capable of MPI anyway)

Block-structured approach inside MPI rank allows double-buffering
and PCIe communication overlap

Employ mixed precision approach

global BiCGStab

preconditioned by

global multilevel (V 1+1)

additively smoothed by

for all Ωi: local multigrid

coarse grid solver: UMFPACK



Minimally invasive accelerator integration

Benefits and challenges

Balance acceleration potential and integration effort

Accelerate many different applications built on top of one central FE
and solver toolkit

Diverge code paths as late as possible

Develop on a single GPU and scale out later

Retain all functionality

Do not sacrifice accuracy

No changes to application code!

Challenges

Heterogeneous task assignment to maximise throughput

Overlapping CPU and GPU computations with transfers



Strong Smoothers

Parallelising Inherently
Sequential Operations



Motivation: Why strong smoothers?

Test case: Generalised Poisson problem with anisotropic diffusion

−∇ · (G ∇u) = f on unit square (one FEAST patch)

G = I: standard Poisson problem, G 6= I: arbitrarily challenging

Example: G introduces anisotropic diffusion along some vector field

 0.01

 0.1

 1

 10

 100

332

L=5
652

L=6
1292

L=7
2572

L=8
5132

L=9
10252

L=10

<
--

--
 s

m
al

le
r 

is
 b

et
te

r 
<

--
--

T
im

e 
pe

r 
di

gi
t p

er
 D

O
F

 (
lo

g1
0)

CPU, double precision

BICGSTAB(JAC)
MG(JAC)

BICGSTAB(ADITRIGS)
MG(ADITRIGS)

Only multigrid with a strong smoother is competitive



Gauß-Seidel smoother

Disclaimer: Not necessarily a good smoother, but a good didactical example.

Sequential algorithm

Forward elimination, sequential dependencies between matrix rows

Illustrative: Coupling to the left and bottom

1st idea: Classical wavefront-parallelisation (exact)

Pro: Always works to resolve explicit dependencies

Con: Irregular parallelism and access patterns, implementable?



Gauß-Seidel smoother

2nd idea: Decouple dependencies via multicolouring (inexact)

Jacobi (red) – coupling to left (green) – coupling to bottom (blue) –
coupling to left and bottom (yellow)

Analysis

Parallel efficiency: 4 sweeps with ≈ N/4 parallel work each

Regular data access, but checkerboard pattern challenging for
SIMD/GPUs due to strided access

Numerical efficiency: Sequential coupling only in last sweep



Gauß-Seidel smoother

3rd idea: Multicolouring = renumbering

After decoupling: ‘Standard’ update (left+bottom) is suboptimal

Does not include all already available results

Recoupling: Jacobi (red) – coupling to left and right (green) – top
and bottom (blue) – all 8 neighbours (yellow)

More computations that standard decoupling

Experiments: Convergence rates of sequential variant recovered (in
absence of preferred direction)



Tridiagonal smoother (line relaxation)

Starting point

Good for ‘line-wise’ anisotropies

‘Alternating Direction Implicit (ADI)’
technique alternates rows and columns

CPU implementation: Thomas-Algorithm
(inherently sequential)

Observations

One independent tridiagonal system per mesh row

⇒ top-level parallelisation across mesh rows

Implicit coupling: Wavefront and colouring techniques not applicable



Tridiagonal smoother (line relaxation)

Cyclic reduction for tridiagonal systems

Exact, stable (w/o pivoting) and cost-efficient

Problem: Classical formulation parallelises computation but not
memory accesses on GPUs (bank conflicts in shared memory)

Developed a better formulation, 2-4x faster

Index challenge, general idea: Recursive padding between odd and
even indices on all levels



Combined GS and TRIDI

Starting point

CPU implementation: Shift previous row to
RHS and solve remaining tridiagonal system
with Thomas-Algorithm

Combined with ADI, this is the best general
smoother (we know) for this matrix structure

Observations and implementation

Difference to tridiagonal solvers: Mesh rows depend sequentially on
each other

Use colouring (#c ≥ 2) to decouple the dependencies between rows
(more colours = more similar to sequential variant)



Evaluation: Total efficiency on CPU and GPU

Test problem: Generalised Poisson with anisotropic diffusion

Total efficiency: Time per unknown per digit (µs)

Mixed precision iterative refinement multigrid solver

Intel Westmere vs. NVIDIA Fermi

 0.1

 1

 10

33
L=5

65
L=6

129
L=7

257
L=8

513
L=9

1025
L=10

--
--

>
 la

rg
er

 is
 b

et
te

r 
--

--
>

T
ot

al
 r

un
tim

e 
ef

fic
ie

nc
y 

(lo
g1

0)

Problem size

GSROW(1.0),CPU
ADITRIDI(0.8),CPU

ADITRIGS(1.0),CPU

 0.1

 1

 10

33
L=5

65
L=6

129
L=7

257
L=8

513
L=9

1025
L=10

--
--

>
 la

rg
er

 is
 b

et
te

r 
--

--
>

T
ot

al
 r

un
tim

e 
ef

fic
ie

nc
y 

(lo
g1

0)

Problem size

MC-GSROW(1.0),GPU
ADITRIDI(0.8),GPU

MC-ADITRIGS(1.0),GPU



Speedup GPU vs. CPU

 0.01

 0.1

 1

 10

33
L=5

65
L=6

129
L=7

257
L=8

513
L=9

1025
L=10

--
--

>
 la

rg
er

 is
 b

et
te

r 
--

--
>

S
pe

ed
up

 (
lo

g1
0)

Problem size

GSROW
ADITRIDI

ADITRIGS

Summary: Smoother parallelisation

Factor 10-30 (dep. on precision and smoother selection) speedup
over already highly tuned CPU implementation

Same functionality on CPU and GPU

Balancing of numerical and parallel efficiency (hardware-oriented
numerics)



Cluster Results



Linearised elasticity

„

A11 A12

A21 A22

«„

u1

u2

«

= f

 

(2µ + λ)∂xx + µ∂yy (µ + λ)∂xy

(µ + λ)∂yx µ∂xx + (2µ + λ)∂yy

!

global multivariate BiCGStab
block-preconditioned by

Global multivariate multilevel (V 1+1)
additively smoothed (block GS) by

for all Ωi: solve A11c1 = d1

by
local scalar multigrid

update RHS: d2 = d2 − A21c1

for all Ωi: solve A22c2 = d2

by
local scalar multigrid

coarse grid solver: UMFPACK



Speedup

 0

 50

 100

 150

 200

 250

 300

BLOCK PIPE CRACK FRAME

<
--

--
 s

m
al

le
r 

is
 b

et
te

r 
<

--
--

lin
ea

r 
so

lv
er

 (
se

c)

Singlecore
Dualcore

GPU

USC cluster in Los Alamos, 16 dualcore nodes (Opteron Santa Rosa,
Quadro FX5600)

Problem size 128 M DOF

Dualcore 1.6x faster than singlecore (memory wall)

GPU 2.6x faster than singlecore, 1.6x than dualcore



Speedup analysis

Theoretical model of expected speedup

Integration of GPUs increases resources

Correct model: Strong scaling within each node

Acceleration potential of the elasticity solver: Racc = 2/3
(remaining time in MPI and the outer solver)

Smax = 1
1−Racc

Smodel = 1
(1−Racc)+(Racc/Slocal)

This example

Accelerable fraction Racc 66%
Local speedup Slocal 9x
Modeled speedup Smodel 2.5x
Measured speedup Stotal 2.6x
Upper bound Smax 3x

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

1 5 10 15 20 25 30 35

--
--

>
 la

rg
er

 is
 b

et
te

r 
--

--
>

S
m

od
el

Slocal

B=0.900
B=0.750
B=0.666



Weak scalability

Simultaneous doubling of problem size and resources

Left: Poisson, 160 dual Xeon / FX1400 nodes, max. 1.3 B DOF

Right: Linearised elasticity, 64 nodes, max. 0.5 B DOF

 10

 20

 30

 40

 50

 60

 70

 80

64
M

N
=

8

12
8M

N
=

16

25
6M

N
=

32

51
2M

N
=

64

10
24

M
N

=
12

8

<
--

--
 s

m
al

le
r 

is
 b

et
te

r 
<

--
--

lin
ea

r 
so

lv
er

 (
se

c)

2 CPUs
GPU

 80

 90

 100

 110

 120

 130

 140

 150

 160

32
M

N
=

4

64
M

N
=

8

12
8M

N
=

16

25
6M

N
=

32

51
2M

N
=

64

<
--

--
 s

m
al

le
r 

is
 b

et
te

r 
<

--
--

lin
ea

r 
so

lv
er

(s
ec

)

2 CPUs
GPU

Results

No loss of weak scalability despite local acceleration

1.3 billion unknowns (no stencil!) on 160 GPUs in less than 50 s



Stationary laminar flow (Navier-Stokes)

0

@

A11 A12 B1

A21 A22 B2

BT
1

BT
2

C

1

A

0

@

u1

u2

p

1

A =

0

@

f1
f2
g

1

A

fixed point iteration
assemble linearised subproblems and solve with

global BiCGStab (reduce initial residual by 1 digit)
Block-Schurcomplement preconditioner
1) approx. solve for velocities with

global MG (V 1+0), additively smoothed by

for all Ωi: solve for u1 with
local MG

for all Ωi: solve for u2 with
local MG

2) update RHS: d3 = −d3 + B
T(c1, c2)

T

3) scale c3 = (ML
p)−1

d3



Stationary laminar flow (Navier-Stokes)

Solver configuration

Driven cavity: Jacobi smoother sufficient

Channel flow: ADI-TRIDI smoother required

Speedup analysis

Racc Slocal Stotal

L9 L10 L9 L10 L9 L10
DC Re250 52% 62% 9.1x 24.5x 1.63x 2.71x
Channel flow 48% – 12.5x – 1.76x –

Shift away from domination by linear solver

Fraction of FE assembly and linear solver of total time, max.
problem size

DC Re250 Channel
CPU GPU CPU GPU
12:88 31:67 38:59 68:28



Summary



Summary

ScaRC solver scheme

Globally-unstructured-locally-structured

Tight co-design of discretisation (grid and finite elements) with
multilevel solver

Beneficial on CPUs and GPUs

Numerically and computationally future-proof (some odd ends still
to be resolved)

GPU computing

Parallelising strong recursive smoothers

Minimally invasive acceleration with legacy codes

Significant speedups

On a single device: one order of magnitude

On the application level: Reduced due to Amdahl’s Law



Acknowledgements

Collaborative work with

FEAST group (TU Dortmund): Ch. Becker, S.H.M. Buijssen, M.
Geveler, D. Göddeke, M. Köster, D. Ribbrock, Th. Rohkämper, S.
Turek, H. Wobker, P. Zajac

Robert Strzodka (Max Planck Institut Informatik)

Jamaludin Mohd-Yusof, Patrick McCormick (Los Alamos National
Laboratory)

Supported by

DFG: TU 102/22-1, TU 102/22-2

BMBF: HPC Software für skalierbare Parallelrechner: SKALB
project 01IH08003D

http://www.mathematik.tu-dortmund.de/~goeddeke

http://www.mathematik.tu-dortmund.de/~goeddeke

	Motivation
	Grid and Matrix Structures
	Discretisation and Solver Structures in FEAST
	Strong Smoothers: Parallelising Inherently Sequential Operations
	Cluster Results
	Summary

