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The Big Picture

Paradigm shift in hardware: parallelism and heterogeneity

In a single chip: multicores → manycores (GPUs), . . .

In a workstation, cluster node: NUMA, accelerators, . . .

In a big cluster: NUMA, different node types . . .

An inevitable development...

Memory wall: data movement cost gets prohibitively expensive

Memory wall: bandwidth ∼ number of sockets, not number of cores

Power wall: cooling? atomic power plant next to each big machine?

ILP wall: maximum resource utilisation?

Memory wall + power wall + ILP wall = brick wall

Observation

Already status quo for HPC systems, even without accelerators



GPUs: Myth, Marketing and Reality

Raw marketing numbers

> 2 TFLOP/s peak floating point performance

Lots of papers claim > 100× speedup

Looking more closely

Single or double precision? same both devices?

Sequential CPU code vs. parallel GPU implementation?

‘Standard operations’ or many low-precision graphics constructs?

Reality

GPUs are undoubtedly fast, but so are CPUs

Quite often: CPU codes significantly less carefully tuned

Anything between 5–30x speedup is realistic (and worth the effort)



GPUs: Myth, Marketing and Reality

Raw marketing numbers

> 100× performance/$ and performance/Watt

Looking more closely

Strongly depending on the specific application

CPU vs. GPU or plain vs. enhanced cluster node?

GPUs have their own memory, hard to quantify

How idle are CPU cores when GPUs compute?

Reality

No hard numbers available for a wide range of ‘typical’ applications

Generally better than conventional (commodity based) clusters

Dedicated systems (BlueGene, NEC etc.) unclear



GPUs and the HPC Mainstream

Petascale era

Three of the four fastest TOP500 systems contain GPUs

Small-scale installations (64-128 GPUs) quite prevalent

Available in every workstation (develop locally, scale out later)

Exascale era

Next factor 1000 will stem from strong scaling in each node

GPU-type hardware is one out of two identified avenues (→ IESP)

Use GPUs now

Prototypes for exascale hardware

Prototype for programming model (much more important)

Exascale hardware will (?) scale down to the workstation level



GPU Hardware

and

GPU Programming



GPUs and the Memory Wall Problem



CPU Architecture

CPUs are general purpose architectures

Optimised for latency of an individual task

Several cores, each with lots of hardwired functionality

Branch prediction, context stacks, ...

SSE units and generic FPU → only 1–3% of the die area do the

actual math!

Cache hierarchies

Amount to approx. 50% of the die area

Currently three levels

Small private and large shared caches

Fewer memory controllers than cores

Fast direct link (QPI) between CPUs in the same node



GPU Architecture

GPUs are optimised for throughput of many similar tasks

Note: NVIDIA speak of ‘CUDA cores’ is pure marketing

Several cores (currently around 14)

One instruction unit

48 ALUs execute the same instruction in each cycle → wide-SIMD

Global hardware scheduler assigns ‘blocks of threads’ to cores
(32–1024 threads per block)

Blocks are virtualised cores

Blocks from different ‘contexts’ can be scheduled



GPU Architecture

Memory subsystem

6–10 partitions/controllers, round-robin assignment

Small shared cache (768 kB currently), tiny L1 cache per core

Strict rules for memory access patterns of neighbouring threads

But: 48 kB ‘scratchpad memory’ per core

Can be used as a user-controlled cache

Common use case: Load data into this memory, compute, write out

Most important difference to CPUs

Stalls in one block (due to memory accesses) → scheduler switches
to another block without context overhead

Memory latency is completely hidden and bandwidth fully saturated

All transfers are bulk transfers (granularity 16 threads)



GPU Architecture

Control flow

Branch divergence: serialisation inside block (granularity 32 threads)

Threads within each block may cooperate via shared memory

Blocks cannot cooperate (implicit synchronisation at kernel scope)

Kernels are launched asynchroneously

Recently: Up to four smaller kernels active simultaneously

GPU is a co-processor

CPU orchestrates computations on the GPU, GPU can work
independently until all queued-up work has been finished

Blocking and non-blocking transfers (of independent data)

Streaming computations: Read A back, work on B and copy input
data for C simultaneously

Try to minimise CPU-GPU synchronisation and data transfers



GPU Architecture Summary

GPUs are not

Vector architectures (but: wide-SIMD with independence)

Fully task-parallel (although slowly getting there, yet performance
stems from data parallelism)

Easy to program efficiently (getting something running is easy
though)

GPUs are particularly bad at

Pointer chasing through memory (serialisation of memory accesses)

Codes with lots of fine-granular branches

Codes with lots of synchronisation and huge sequential portions

Lots of research going on

Rule of thumb: ‘structured’ cases pretty much solved, irregular and
seemly inherently sequential ones are challenging



GPU Programming Environments

Ready-to-use environments

Academia and industry are pushing things

Matlab, Mathematica, Photoshop, Ansys, Paraview, ...

Ready-to-use libraries

BLAS, LAPACK, FFT, SpMV, ...

Compiler support

PGI 11.x: PGI accelerator compiler: OpenMP-like code
instrumentation

Some PGAS-like approaches here and there



GPU Programming Environments

CUDA and OpenCL

CUDA: vendor lock-in, but much more mature, larger toolkit
ecosystem, better support

OpenCL: in its infancies, designed as an API to build APIs, but: not
limited to GPUs

Pragmatic suggestion: CUDA now, switch to CL eventually (kernels
are converted by smart copy & paste)

Several academic environments for hybrid programming

HMPP, StarPU, Quark, ...

Rule of thumb

There is none, depends on the particular application how much
manual work is necessary



Some Examples
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Geophysics: Seismic Wave Propagation

Porting of a complex MPI application entirely to GPU clusters

Seismic wave propagation at the scale of the Earth

Unstructured hexahedral mesh, high-order spectral element
discretisation

Bull cluster with 192 GPUs



Geophysics: Seismic Wave Propagation

Highlights

SEM-assembly on unstructured mesh

Full overlap of async. MPI with CPU-GPU communication

Perfect weak scaling

12–20 × faster
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Numerics for PDEs

Accelerate portions of complex toolkit

FEAST: Finite Element Analysis and Solution Tools

Toolbox for large-scale simulations

GPU acceleration of parts of the linear solver

Example applications: linearised elasticity and stationary laminar flow



Numerics for PDEs

Theoretical model of expected speedup

Integration of GPUs increases resources

Correct model: strong scaling within each node

Acceleration potential of the elasticity solver: Racc = 2/3
(remaining time in MPI and the outer solver)

Smax =
1

1−Racc
Smodel =

1
(1−Racc)+(Racc/Slocal)

This example (Amdahl’s
Law)

Accelerable fraction Racc 66%
Local speedup Slocal 9x
Modeled speedup Smodel 2.5x
Measured speedup Stotal 2.6x
Upper bound Smax 3x
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Summary

GPUs are becoming mainstream HPC

But lots of open questions and research opportunities

Challenge 1: ‘unstructured, irregular’ computations

Challenge 2: Using both CPUs and GPUs efficiently

Further questions?

I’m happy to discuss things

Any application domains I omitted?

Some particular software package that I didn’t mention?


	Motivation and Introduction
	GPU Hardware and GPU Programming
	Some Examples

