GPUs in HPC – Introduction and Overview

Dominik Göddeke

Institut für Angewandte Mathematik (LS3) TU Dortmund

dominik.goeddeke@math.tu-dortmund.de http://www.mathematik.tu-dortmund.de/~goeddeke

27. Nutzertreffen Compute Service TU Dortmund, 26. Mai 2011

fakultät für

Paradigm shift in hardware: parallelism and heterogeneity

- In a single chip: multicores \rightarrow manycores (GPUs), ...
- In a workstation, cluster node: NUMA, accelerators, ...
- In a big cluster: NUMA, different node types ...

An inevitable development...

- Memory wall: data movement cost gets prohibitively expensive
- \blacksquare Memory wall: bandwidth \sim number of sockets, not number of cores
- Power wall: cooling? atomic power plant next to each big machine?
- ILP wall: maximum resource utilisation?
- Memory wall + power wall + ILP wall = brick wall

Observation

Already status quo for HPC systems, even without accelerators

Raw marketing numbers

- $\blacksquare>2~{\rm TFLOP/s}$ peak floating point performance
- Lots of papers claim $> 100 \times$ speedup

Looking more closely

- Single or double precision? same both devices?
- Sequential CPU code vs. parallel GPU implementation?
- Standard operations' or many low-precision graphics constructs?

Reality

- GPUs are undoubtedly fast, but so are CPUs
- Quite often: CPU codes significantly less carefully tuned
- Anything between 5–30x speedup is realistic (and worth the effort)

Raw marketing numbers

 $\blacksquare>100\times$ performance/\$ and performance/Watt

Looking more closely

- Strongly depending on the specific application
- CPU vs. GPU or plain vs. enhanced cluster node?
- GPUs have their own memory, hard to quantify
- How idle are CPU cores when GPUs compute?

Reality

- No hard numbers available for a wide range of 'typical' applications
- Generally better than conventional (commodity based) clusters
- Dedicated systems (BlueGene, NEC etc.) unclear

Petascale era

- Three of the four fastest TOP500 systems contain GPUs
- Small-scale installations (64-128 GPUs) quite prevalent
- Available in every workstation (develop locally, scale out later)

Exascale era

- Next factor 1000 will stem from strong scaling in each node
- GPU-type hardware is *one* out of two identified avenues (\rightarrow IESP)

Use GPUs now

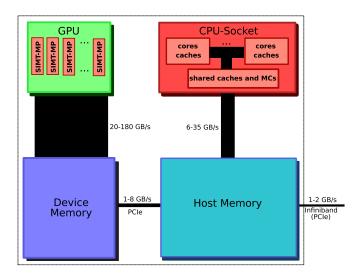
- Prototypes for exascale hardware
- Prototype for programming model (*much* more important)
- Exascale hardware will (?) scale down to the workstation level

GPU Hardware

and

GPU Programming

GPUs and the Memory Wall Problem



CPUs are general purpose architectures

- Optimised for latency of an individual task
- Several cores, each with lots of hardwired functionality
 - Branch prediction, context stacks, ...
 - = SSE units and generic FPU \rightarrow only 1–3% of the die area do the actual math!
- Cache hierarchies
 - Amount to approx. 50% of the die area
 - Currently three levels
 - Small private and large shared caches
- Fewer memory controllers than cores
- Fast direct link (QPI) between CPUs in the same node

GPUs are optimised for throughput of many similar tasks

- Note: NVIDIA speak of 'CUDA cores' is pure marketing
- Several cores (currently around 14)
 - One instruction unit
 - \blacksquare 48 ALUs execute the same instruction in each cycle \rightarrow wide-SIMD
- Global hardware scheduler assigns 'blocks of threads' to cores (32–1024 threads per block)
- Blocks are virtualised cores
- Blocks from different 'contexts' can be scheduled

Memory subsystem

- 6–10 partitions/controllers, round-robin assignment
- Small shared cache (768 kB currently), tiny L1 cache per core
- Strict rules for memory access patterns of neighbouring threads
- But: 48 kB 'scratchpad memory' per core
 - Can be used as a user-controlled cache
 - Common use case: Load data into this memory, compute, write out

Most important difference to CPUs

- \blacksquare Stalls in one block (due to memory accesses) \rightarrow scheduler switches to another block without context overhead
- Memory latency is completely hidden and bandwidth fully saturated
- All transfers are bulk transfers (granularity 16 threads)

Control flow

- Branch divergence: serialisation inside block (granularity 32 threads)
- Threads within each block may cooperate via shared memory
- Blocks cannot cooperate (implicit synchronisation at kernel scope)
- Kernels are launched asynchroneously
- Recently: Up to four smaller kernels active simultaneously

GPU is a co-processor

- CPU orchestrates computations on the GPU, GPU can work independently until all queued-up work has been finished
- Blocking and non-blocking transfers (of independent data)
- Streaming computations: Read A back, work on B and copy input data for C simultaneously
- Try to minimise CPU-GPU synchronisation and data transfers

GPUs are not

- Vector architectures (but: wide-SIMD with independence)
- Fully task-parallel (although slowly getting there, yet performance stems from data parallelism)
- Easy to program efficiently (getting something running is easy though)

GPUs are particularly bad at

- Pointer chasing through memory (serialisation of memory accesses)
- Codes with lots of fine-granular branches
- Codes with lots of synchronisation and huge sequential portions

Lots of research going on

 Rule of thumb: 'structured' cases pretty much solved, irregular and seemly inherently sequential ones are challenging

Ready-to-use environments

- Academia and industry are pushing things
- Matlab, Mathematica, Photoshop, Ansys, Paraview, ...

Ready-to-use libraries

BLAS, LAPACK, FFT, SpMV, ...

Compiler support

- PGI 11.x: PGI accelerator compiler: OpenMP-like code instrumentation
- Some PGAS-like approaches here and there

CUDA and OpenCL

- CUDA: vendor lock-in, but *much* more mature, larger toolkit ecosystem, better support
- OpenCL: in its infancies, designed as an API to build APIs, but: not limited to GPUs
- Pragmatic suggestion: CUDA now, switch to CL eventually (kernels are converted by smart copy & paste)

Several academic environments for hybrid programming

HMPP, StarPU, Quark, ...

Rule of thumb

There is none, depends on the particular application how much manual work is necessary

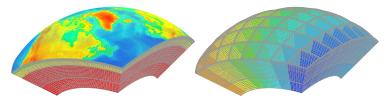
Some Examples

Joint work with a bunch of people over the past few years

- FEAST group at TU Dortmund: C. Becker, S. Buijssen, H. Wobker, S. Turek, M. Geveler, D. Ribbrock, P. Zajac, T. Rohkämper
- Robert Strzodka (Max Planck Institut Informatik)
- Pat McCormick and Jamal Mohd-Yusof (Los Alamos)
- Dimitri Komatitsch, Gordon Erlebacher and David Michea (Pau, Florida State and BGRM)

Porting of a complex MPI application entirely to GPU clusters

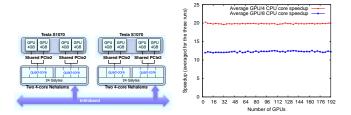
- Seismic wave propagation at the scale of the Earth
- Unstructured hexahedral mesh, high-order spectral element discretisation
- Bull cluster with 192 GPUs



Geophysics: Seismic Wave Propagation

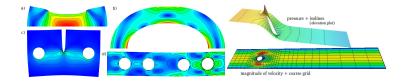
Highlights

- SEM-assembly on unstructured mesh
- Full overlap of async. MPI with CPU-GPU communication
- Perfect weak scaling
- 12–20 × faster



Accelerate portions of complex toolkit

- FEAST: Finite Element Analysis and Solution Tools
- Toolbox for large-scale simulations
- GPU acceleration of parts of the linear solver
- Example applications: linearised elasticity and stationary laminar flow



Numerics for PDEs

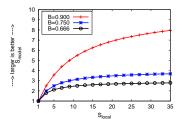
Theoretical model of expected speedup

- Integration of GPUs increases resources
- Correct model: strong scaling within each node
- Acceleration potential of the elasticity solver: $R_{\rm acc}=2/3$ (remaining time in MPI and the outer solver)

$$S_{\max} = \frac{1}{1 - R_{\rm acc}} \qquad \qquad S_{\rm model} = \frac{1}{(1 - R_{\rm acc}) + (R_{\rm acc}/S_{\rm local})}$$

This example (Amdahl's Law)

Accelerable fraction R_{acc}	66%
Local speedup S_{local}	9x
Modeled speedup S_{model}	2.5x
Measured speedup S_{total}	2.6x
Upper bound S_{\max}	3x



GPUs are becoming mainstream HPC

- But lots of open questions and research opportunities
- Challenge 1: 'unstructured, irregular' computations
- Challenge 2: Using both CPUs and GPUs efficiently

Further questions?

- I'm happy to discuss things
- Any application domains I omitted?
- Some particular software package that I didn't mention?