
Mixed-Precision GPU-Multigrid Solvers with
Strong Smoothers

Dominik Göddeke

Institut für Angewandte Mathematik (LS3)
TU Dortmund

dominik.goeddeke@math.tu-dortmund.de

ILAS 2011
Mini-Symposium: Parallel Computing in Numerical Linear Algebra

Braunschweig, August 24, 2011



The Big Picture

Hardware evolution

Memory wall: Data movement cost prohibitively expensive

Power wall: Nuclear power plant for each machine (in the cloud)?

ILP wall: ‘Automagic’ maximum resource utilisation?

Memory wall + power wall + ILP wall = brick wall

Inevitable paradigm shift: Parallelism and heterogeneity

In a single chip: singlecore → multicore, manycore, . . .

In a workstation (cluster node): NUMA, CPUs and GPUs, . . .

In a big cluster: different nodes, communication characteristics, . . .

This is our problem as mathematicians

Affects standard workstations and even laptops

Compilers and (most often) libraries don’t hide these issues from us



Consequences for Numerics

Parallelism is inevitable

Impossible to exploit ever increasing peak performance

Sequential codes even run slower on newer hardware (!)

Challenges

Technical: Compilers can’t solve these problems, libraries are limited

Numerical: Traditional methods often contrary to hardware trends

Goal: Redesign existing numerical schemes (and invent new ones) to
work well in the fine-grained parallel setting

GPUs (‘manycore’) are forerunners of this development

10 000s of simultaneously active threads

Promises of significant speedups

Focus of this talk: iterative solvers for sparse systems



GPUs and the Memory Wall Problem



Mixed Precision
Iterative Refinement

Combatting the memory wall problem



Motivation

Switching from double to single precision (DP→SP)

2x effective memory bandwidth, 2x effective cache size

At least 2x compute speed (often 4–12x)

Problem: Condition number

For all problems in this talk: cond2(A) ∼ h−2
min

Theory for linear system Ax = b

cond2(A) ∼ 10s;
‖A+ δA‖

‖A‖
,
‖b+ δb‖

‖b‖
∼ 10−k(k > s) ⇒

‖x+ δx‖

‖x‖
∼ 10s−k

In our setting

Truncation error in 7–8th digit increased by s digits



Numerical Example

Poisson problem on unit square

Simple yet fundamental

cond2(A) ≈ 105 for L = 10 (1M bilinear FE, regular grid)

Condition number usually much higher: anisotropies in grid and
operator

Data+Comp. in DP Data in SP, Compute in DP Data+Comp. in SP
Level L2 Error Red. L2 Error Red. L2 Error Red.

5 1.1102363E-3 4.00 1.1102371E-3 4.00 1.1111655E-3 4.00
6 2.7752805E-4 4.00 2.7756739E-4 4.00 2.8704684E-4 3.87
7 6.9380072E-5 4.00 6.9419428E-5 4.00 1.2881795E-4 2.23
8 1.7344901E-5 4.00 1.7384278E-5 3.99 4.2133101E-4 0.31
9 4.3362353E-6 4.00 4.3757082E-6 3.97 2.1034461E-3 0.20
10 1.0841285E-6 4.00 1.1239630E-6 3.89 8.8208778E-3 0.24

⇒ Single precision insufficient for moderate problem sizes already



Mixed Precision Iterative Refinement

Iterative refinement

Established algorithm to provably guarantee accuracy of computed
results (within given precision)

High precision: d = b−Ax (cheap)
Low precision: c = A

−1
d (expensive)

High precision: x = x+ c (cheap) and iterate (expensive?)

Convergence to high precision accuracy if A ‘not too ill-conditioned’

Theory: Number of iterations linear in log(cond2(A)) and
log(εhigh/εlow)

New idea (hardware-oriented numerics)

Use this algorithm to improve time to solution and thus efficiency of
linear system solvers

Goal: Result accuracy of high precision with speed of low precision
floating point format



Iterative Refinement for Large Sparse Systems

Refinement procedure not immediately applicable

‘Exact’ solution using ‘sparse LU’ techniques too expensive

Convergence of iterative methods not guaranteed in single precision

Solution

Interpretation as a preconditioned mixed precision defect correction
iteration

x
(k+1)
DP = x

(k)
DP +C

−1
SP (bDP −ADPx

(k)
DP)

Preconditioner CSP in single precision:
‘Gain digit(s)’ or 1-3 MG cycles instead of exact solution

Results (MG and Krylov for Poisson problem)

Speedup at least 1.7x (often more) without loss in accuracy

Asymptotic optimal speedup is 2x (bandwidth limited)



Grid- and Matrix Structures

Flexibility ↔ Performance



Grid- and Matrix Structures

General sparce matrices (on unstructured grids)

CSR (and variants): general data structure for arbitrary grids

Maximum flexibility, but during SpMV

Indirect, irregular memory accesses
Index overhead reduces already low arithm. intensity further

Performance depends on nonzero pattern (mesh numbering)

Structured matrices

Example: structured grids, suitable numbering ⇒ band matrices

Important: no stencils, fully variable coefficients

direct regular memory accesses (fast), mesh-independent
performance

Structure exploitation in the design of MG components (later)



Approach in FEAST

Combination of respective advantages

Global macro-mesh: unstructured, flexible

local micro-meshes: structured (logical TP-structure), fast

Important: structured 6= cartesian meshes!

Reduce numerical linear algebra to sequences of operations on
structured data (maximise locality)

Developed for larger clusters, but generally useful

UU

“window” for
matrix-vector
multiplication,
per macro

hierarchically
refined subdomain
(= “macro”),
rowwise numbered

unstructured mesh

UD
UL

DU
DDDL

LU
LDLL

I-1

I

I+1

I-M-1
I-M

I-M+1
I+M-1

I+M

I+M+1

Ω
i



Example

Poisson on unstructured domain

 0

 5

 10

 15

 20

 25

 30

 35

 40

2LVL CM XYZ HIER BAND

<
--

--
 s

m
al

le
r 

is
 b

et
te

r 
<

--
--

lin
ea

r 
so

lv
er

 (
se

c)

1 Thread
4 Threads

GPU
MPI (4x)

Nehalem vs. GT200, ≈ 2M bilinear FE, MG-JAC solver

Unstructured formats highly numbering-dependent

Multicore 2–3x over singlecore, GPU 8–12x over multicore

Banded format (here: 8 ‘blocks’) 2–3x faster than best unstructured
layout and predictably on par with multicore



Parallelising Inherently
Sequential Operations

Multigrid with strong smoothers
Lots of parallelism available in inherently

sequential operations



Motivation: Why Strong Smoothers?

Test case: anisotropic diffusion in generalised Poisson problem

−div (G grad u) = f on unit square (one FEAST patch)

G = I: standard Poisson problem, G 6= I: arbitrarily challenging

Example: G introduces anisotropic diffusion along some vector field

 0.01

 0.1

 1

 10

 100

332

L=5
652

L=6
1292

L=7
2572

L=8
5132

L=9
10252

L=10

<
--

--
 s

m
al

le
r 

is
 b

et
te

r 
<

--
--

T
im

e 
pe

r 
di

gi
t p

er
 D

O
F

 (
lo

g1
0)

CPU, double precision

BICGSTAB(JAC)
MG(JAC)

BICGSTAB(ADITRIGS)
MG(ADITRIGS)

Only multigrid with a strong smoother is competitive



Gauß-Seidel Smoother

Disclaimer: Not necessarily a good smoother, but a good didactical example.

Sequential algorithm

Forward elimination, sequential dependencies between matrix rows

Illustrative: coupling to the left and bottom

1st idea: classical wavefront-parallelisation (exact)

Pro: always works to resolve explicit dependencies

Con: irregular parallelism and access patterns, implementable?



Gauß-Seidel Smoother

2nd idea: decouple dependencies via multicolouring (inexact)

Jacobi (red) – coupling to left (green) – coupling to bottom (blue) –
coupling to left and bottom (yellow)

Analysis

Parallel efficiency: 4 sweeps with ≈ N/4 parallel work each

Regular data access, but checkerboard pattern challenging for
SIMD/GPUs due to strided access

Numerical efficiency: sequential coupling only in last sweep



Gauß-Seidel Smoother

3rd idea: multicolouring = renumbering

After decoupling: ‘standard’ update (left+bottom) is suboptimal

Does not include all already available results

Recoupling: Jacobi (red) – coupling to left and right (green) – top
and bottom (blue) – all 8 neighbours (yellow)

More computations that standard decoupling

Experiments: convergence rates of sequential variant recovered (in
absence of preferred direction)



Tridiagonal Smoother (Line Relaxation)

Starting point

Good for ‘line-wise’ anisotropies

‘Alternating Direction Implicit (ADI)’
technique alternates rows and columns

CPU implementation: Thomas-Algorithm
(inherently sequential)

Observations

One independent tridiagonal system per mesh row

⇒ top-level parallelisation across mesh rows

Implicit coupling: wavefront and colouring techniques not applicable



Tridiagonal Smoother (Line Relaxation)

Cyclic reduction for tridiagonal systems

Exact, stable (w/o pivoting) and cost-efficient

Problem: classical formulation parallelises computation but not
memory accesses on GPUs (bank conflicts in shared memory)

Developed a better formulation, 2-4x faster

Index nightmare, general idea: recursive padding between odd and
even indices on all levels



Smoother Parallelisation: Combined GS and TRIDI

Starting point

CPU implementation: shift previous row to
RHS and solve remaining tridiagonal system
with Thomas-Algorithm

Combined with ADI, this is the best general
smoother (we know) for this matrix structure

Observations and implementation

Difference to tridiagonal solvers: mesh rows depend sequentially on
each other

Use colouring (#c ≥ 2) to decouple the dependencies between rows
(more colours = more similar to sequential variant)



Evaluation: Total Efficiency on CPU and GPU

Test problem: generalised Poisson with anisotropic diffusion

Total efficiency: time per unknown per digit (µs)

Mixed precision iterative refinement multigrid solver

 0.01

 0.1

 1

 10

332

L=5
652

L=6
1292

L=7
2572

L=8
5132

L=9
10252

L=10

<
--

--
 s

m
al

le
r 

is
 b

et
te

r 
<

--
--

T
im

e 
pe

r 
di

gi
t p

er
 D

O
F

 (
lo

g1
0)

CPU

GS
ADITRIDI

ADITRIGS

 0.01

 0.1

 1

 10

332

L=5
652

L=6
1292

L=7
2572

L=8
5132

L=9
10252

L=10

<
--

--
 s

m
al

le
r 

is
 b

et
te

r 
<

--
--

T
im

e 
pe

r 
di

gi
t p

er
 D

O
F

 (
lo

g1
0)

GPU

GS(4C)
GS(FULL)
ADITRIDI

ADITRIGS(2C)



Speedup GPU vs. CPU

 0.1

 1

 10

332

L=5
652

L=6
1292

L=7
2572

L=8
5132

L=9
10252

L=10

--
--

>
 la

rg
er

 is
 b

et
te

r 
--

--
>

S
pe

ed
up

 G
P

U
 (

lo
g1

0)

Problem size

GS(FULL)
ADITRIDI

ADITRIGS(2C)

Summary: smoother parallelisation

Factor 10-30 (dep. on precision and smoother selection) speedup
over already highly tuned CPU implementation

Same functionality on CPU and GPU

Balancing of numerical and parallel efficiency (hardware-oriented
numerics)



Extension to Heterogeneous
Clusters



FEAST on Heterogeneous Clusters



Summary and Conclusions



Summary

Hardware

Paradigm shift: Heterogeneity, parallelism and specialisation

Locality and parallelism on many levels

In one GPU (fine-granular)
In a compute node between heterogeneous resources
(medium-granular)
In big clusters between compute nodes (coarse-granular)

Hardware-oriented numerics

Design new numerical methods ‘matching’ the hardware

Only way to achieve future-proof continuous scaling



Acknowledgements

Collaborative work with

FEAST group (TU Dortmund): Ch. Becker, S.H.M. Buijssen, M.
Geveler, D. Göddeke, M. Köster, D. Ribbrock, Th. Rohkämper, S.
Turek, H. Wobker, P. Zajac

Robert Strzodka (Max Planck Institut Informatik)

Jamaludin Mohd-Yusof, Patrick McCormick (Los Alamos National
Laboratory)

Supported by

DFG: TU 102/22-1, TU 102/22-2

BMBF: HPC Software für skalierbare Parallelrechner: SKALB
project 01IH08003D

http://www.mathematik.tu-dortmund.de/~goeddeke

http://www.mathematik.tu-dortmund.de/~goeddeke

	Motivation and Introduction
	Mixed Precision Iterative Refinement
	Motivation
	Numerical Example
	Mixed Precision Iterative Refinement
	Iterative Refinement for Large Sparse Systems

	Grid- and Matrix Structures
	Grid- and Matrix Structures
	Approach in FEAST
	Example

	Parallelising Inherently Sequential Operations
	Motivation: Why Strong Smoothers?
	Gauß-Seidel Smoother
	Tridiagonal Smoother (Line Relaxation)
	Combined GS and TRIDI
	Evaluation: Total Efficiency on CPU and GPU
	Speedup GPU vs. CPU

	Extension to Heterogeneous Clusters
	FEAST on Heterogeneous Clusters

	Summary and Conclusions
	Summary
	Acknowledgements


