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Hardware (r)evolution

Parallelism, specialisation and heterogeneity

Frequency scaling is over, we now scale `cores' and SIMD

Even CPU-only systems are heterogeneous

CPUs and accelerators in the same system

Visible on all architectural levels

Fine-grained: SSE/AVX, SIMT within chips
Medium-grained: GPUs, CPUs, NUMA within a node
Coarse-grained: MPI between heterogeneous nodes

This paradigm shift is here to stay

Power is the root cause of this

Driven by move towards peta- and exascale, but: a�ects all `levels'
of scienti�c computing



Consequences . . .

A hardware problem suddenly becomes a software problem

Existing codes no longer run faster automatically

Swapping an underlying library doesn't help

Neither does relying on auto-parallelisation and vectorisation by
general-purpose high-level compilers

We discuss topics that DOLPHIN (recall Garth's talk) outsources

A hardware problem suddenly becomes a methodological problem

Existing textbook numerical schemes are often designed for
sequential or coarse-grained parallel execution

Unit cost for �ops and data movement



Con�icting goals

Good numerical performance

Same convergence and properties as sequential code

Methodological scalability (weak and strong)

Good hardware performance

Extract a decent fraction of peak (whatever the peak is)

Parallel scalability (weak and strong)

Portability and man-power

Re-usable software components

Hide hardware and implementation details from application people

Performance portability of implementations



Our approach: hardware-oriented numerics

Challenge: new algorithmic way of thinking

Balance these con�icting goals

Goal: scalable, arbitrarily parallelisable, locality maximising, robust,
h-independent, O(N), adaptive, high-order . . . schemes

Important: more than `good implementation'

Consider short-term hardware details in actual implementations, but
long-term hardware trends in the design of numerical schemes!

Two options

Production codes: tune once for many runs, re-implementation may
be justi�ed

Research code bases: (re-) design to facilitate a good compromise
between the above goals



Talk outline

Hardware evolution

Brief, high-level overview of challenges

GPUs vs. CPUs

Case study 1

Seismic wave propagation modeling on large GPU clusters

Spectral element method

Case study 2

Co-design of grid, matrix and solver structures

ScaRC: FEM-multilevel solvers for large, sparse systems

Partial acceleration by GPUs

Outlook: energy e�ciency

Case study on an ARM (`smartphone-powered') cluster



Hardware evolution



An impenetrable brick wall in electrical engineering

Power wall

Small scale: power is proportional to voltage cubed

Large scale: nuclear power plant next door?

Memory wall

Gap between data movement (latency and bandwidth) and peak
compute rates widens exponentially

A�ects all levels of the memory hierarchy

ILP wall

Compilers and complex OoO execution circuits cannot extract
enough independent instructions to keep deep pipelines fully busy



The power wall problem

Short digression into electrical engineering

Power is proportional to voltage2× frequency

Frequency is proportional to voltage (at same process size)

Similarly bad: power also proportional to temperature

A simple back-of-the-envelope calculation

cores V freq perf power power e�.
∼ f ∼ V 3 perf/power

singlecore 1 1 1 1 1 1
faster singlecore 1 1.5 1.5 1.5 3.3 0.45

dualcore 2 0.75 0.75 1.5 0.8 1.88

A-ha!

50% more performance with 20% less power



The power wall is a money wall

Power requirement of HPC installations

Current 1�20 PFLOP/s installations require O(10)MW per year

Rule of thumb: 1MW/a = 1MEUR/a

20MW considered an upper bound for future power envelopes

Our machine in Dortmund

440 dual socket nodes, 50TFLOP/s

Deployed in 2009 (#249 in the TOP500) for roughly 1MEUR

Annual electricity bill incl. A/C: 280KEUR

This year, the accumulated running cost exceeds its initial
deployment cost

Administration won't pay for a follow-up machine



The memory wall problem

Illustrative example: vector addition

Compute c = a + b for large N in double precision

Arithmetic intensity: N �ops for 3N values to/from memory

GFLOP/s are meaningless for this

Dual Intel Westmere server (2011): 200GFLOP/s and 36GB/s peak

Vector addition at 200GFLOP/s needs 600Gdoubles, i.e., 4.8 TB/s

Worse: maximum performance is less than one percent of what the
chip could do

More generally

Data movement becomes prohibitively expensive

A�ects all levels of the memory hierarchy, moving data over
networks takes O(1e4�1e6) longer than computing

Moving data also burns more Joules



The ILP wall (and more on-chip bottlenecks)

Hardware and compiler ILP run out of steam

Lots of complex circuits to make a single instruction stream run fast

Branch prediction, prefetchers, caches, OoO execution, . . .
Lots of legacy features for backward ABI compatibility in x86

Conventional CPUs are not very power-e�cient

Only 1% of the die area actually does compute!

Enter GPUs

Designed to maximise the throughput of many data elements

OpenCL is not performance-portable

NVIDIA CUDA: co-design of hardware and programming model

The `beauty' of CUDA

Allows much less `implementational corner-cutting'
Forces us to think about performance already during algorithm design



From CPUs to GPUs

CPU-style cores

Image courtesy Kayvonf Fatahalian



From CPUs to GPUs

Skimming down

Image courtesy Kayvonf Fatahalian



From CPUs to GPUs

Scaling out

Image courtesy Kayvonf Fatahalian



From CPUs to GPUs

Amortise instruction cost: SIMD processing

Image courtesy Kayvonf Fatahalian



Real GPU design: NVIDIA Kepler

Execution contexts
(256 kB)

Shared memory, L1 cache
(16+48 kB or 48+16 kB or 32+32 kB)

Fetch/
Decode

Fetch/
Decode

Fetch/
Decode

Fetch/
Decode

Figure shows a single core of this design

Not shown: 32 SFUs exclusively for transcendentals, DP units

32 threads (one warp) share an instruction stream

Each of the four schedulers can issue two instructions per cycle



Real GPU design: NVIDIA Kepler

Execution contexts
(256 kB)

Shared memory, L1 cache
(16+48 kB or 48+16 kB or 32+32 kB)

Fetch/
Decode

Fetch/
Decode

Fetch/
Decode

Fetch/
Decode

Programming abstraction: block = virtualised core

Up to 32 warps can synchronise and share data in one block

Threads from di�erent blocks only synchronise at kernel scope

Up to 16 blocks with together up to 64 warps simultaneously, if one
stalls, another one is swapped in overhead-free



GPUs and the memory wall problem



GPUs: myth, marketing and reality

Raw marketing numbers

> 3 TFLOP/s peak single precision �oating point performance

Lots of papers claim > 100× speedup

Looking more closely

Single or double precision �oating point (same precision on both)?

Sequential CPU code vs. parallel GPU implementation?

`Standard operations' or many low-precision graphics constructs?

Di�erent levels of performance tuning?

Reality

GPUs are undoubtedly fast, but so are CPUs (I am a GPU person!)

GPUs tolerate much less `implementational corner cutting', force us
to think about performance while we code

Tuning for GPUs almost always yields ideas to improve CPU code



Case study 1

Seismic wave propagation
modeling



Introduction and challenges

Topography and sedimentary basins

Densely populated areas are often located in sedimentary basins

Surrounding mountains re�ect seismic energy back and amplify it
(think rigid Dirichlet boundary conditions)

Seismic shaking thus much more pronounced in basins



Introduction and challenges

Spatially varying resolution

Local site e�ects and topography

Discontinuities between heterogeneous sedimentary layers and faults
in the Earth

High seismic frequencies need to be captured

High-order methods and �nely-resolved discretisation in space and
time required



Starting point: waves in elastic anisotropic solids

Unknown displacement �eld

u(x, t), x = (x1, x2, x3) in some domain Ω, (x, t) 7→ R3

Recall: displacement u, velocity ∂tu, acceleration ∂
2
t u

Constitutive law for elastic solids: σ = E : ε

A : B tensor contraction

Stress tensor σ

Elasticity tensor E = E(x) (`the Earth') with 21 independent
components in 3D, comprises anisotropies, i.e., di�erent material
properties in di�erent directions (think slate)

Strain tensor ε = 1
2

(
∇u+ (∇u)T

)
: Hooke's law, linear relation

between strain and gradient of displacement � or a suitable
generalisation of Hooke's law for inelastic media



Starting point: waves in elastic anisotropic solids

Strong form of the wave equation as IVP

ρ∂2
t u = ∇ · σ + f in Ω× T

σ · n = t̄ on ΓN

u = g on ΓD

u|t=0 = u0 ∀x ∈ Ω
∂tu|t=0 = u1 ∀x ∈ Ω

Density ρ, acceleration ∂2
t u, source terms f

Body forces (inner forces) div(σ) caused by the displacement

On Neumann boundaries, external stresses t̄ in normal direction

Homogeneous Neumann boundaries: free surface condition

Fixed load on Dirichlet boundaries

Suitable initial conditions



More complex models

Layer model of the Earth

Crust, mantle and inner core can be modeled as such solids, magma
in the mantle is su�ciently `solid'

Elasticity tensor models discontinuities only within a solid layer

Outer core is liquid, oceans on top of the crust cannot be neglected

Interfaces

Fluids: outer core is compressible, oceans are incompressible

Suitable interface conditions, re�ections, refractions, free surface

Can be made arbitrarily complex

Coriolis force, self-gravitation, PML conditions if less than the full
Earth is modeled, sources, attenuation, . . .



Discretisation with the spectral element method

Discretisation trade-o�s

(Pseudo-) spectral methods

Pro: accuracy and exponential approximation order
Con: parallelisation, boundary conditions

Finite element methods

Geometric �exibility (topographic details, faults and fractures,
internal discontinuities and material transitions, . . . ), boundary
conditions (parallelisation)
Possibly ill-conditioned systems, high-order expensive (wide supports)

SEM as a hybrid approach

Essentially based on high-order interpolation to represent �elds per
element of a classical unstructured curvilinear FEM mesh

Good compromise between con�icting goals

Can be interpreted as a continuous Galerkin method



Cubed sphere unstructured mesh



SEM for the seismic wave equation

Discretise the weak form

Same as in �nite element methods

Base everything on Lagrange polynomials

Use triple tensor products of degree-two Lagrange polynomials as
shape functions for each curvilinear element

Represent physical �elds by interpolation based on triple tensor
products of Lagrange basis polynomials

Degree 4�10, 4 is a good compromise between accuracy and speed
Use Gauÿ-Lobatto-Legendre control points (rather than just Gauÿ or
Lagrange points), GLL points are the roots of (1− x2)l′k(x), so
closely related to degree-k Lagrange polynomials lk(x)
Degree+1 GLL points per spatial dimension per element (so 125 for
degree 4 in 3D)



SEM for the seismic wave equation

Clever trick

Use GLL points also as cubature points for quadrature

GLL Lagrange interpolation combined with GLL quadrature yields
strictly diagonal mass matrix

Important consequence: algorithm signi�cantly simpli�ed

Explicit time stepping schemes become feasible

In this talk: second order centred �nite di�erence Newmark time
integration

Solving of linear systems becomes trivial

Drawback: timestep depends on mesh spacing



Solution algorithm

Problem to be solved in algebraic notation

Mü + Ku = f for waves in simple solids

Mass matrix M, sti�ness matrix K

Displacement vector u, sources f , velocity v = u̇, acceleration a = ü

Three steps per timestep

Update second half-step of velocity u̇ + ∆t
2 ü and global

displacement u + ∆tu̇ + ∆t
2 ü

Compute new Ku and M (the tricky bit, called `SEM assembly') to
obtain intermediate acceleration

Compute new acceleration M−1ü, and velocity for next
half-timestep u̇ + ∆t

2 ü (cannot be merged into steps 2 and 1
because of data dependencies)



Implementation

All open source

SPECFEM3D, http://www.geodynamics.org

Steps 1 and 3 are trivial

AXPY-like updates on globally numbered data

Step 2 is most demanding step in the algorithm

Measurements indicate around 90% of the total runtime

Employ `assembly by elements' technique on CPUs and GPUs

First stage: all-local computations

DOF mapping, Jacobians, quadrature, . . . ⇒ per-element acc.

Second stage: scatter local acceleration vector into global matrix

Some care required to avoid race conditions for shared data



GPU implementation

One CUDA kernel for entire step 2

One CUDA block per element, 125/128 threads to useful work

A `bit' painful to alleviate register and shared memory pressure

Deville-like unrolled matrix matrix multiplication for the 5x5
cutplanes of the 5x5x5 tensor product GLL/DOF set

Uncoalesced memory accesses for global data (unstructured mesh)

Atomic memory updates or colouring during accumulation

Atomics are trivial to implement,
but still slow on K20

Use greedy colouring instead



Mapping to GPU clusters with MPI

Overlap computation with communication (non-blocking MPI)

PCIe to/from GPU adds additional latency bottleneck

Higher surface-to-volume ratio required

Pack send bu�ers on GPU, unpack on host prior to MPI_Isend()

and vice versa on the receiving side



Testbed

Titane: Bull Novascale R422 E1 GPU cluster

Installed at CCRT/CEA/GENCI, Bruyères-le-Châtel, France

48 dual-Nehalem quad-Tesla nodes

24 GBytes

quad-core quad-core

GPU
4GB

GPU 
4GB

GPU
4GB

GPU
4GB

GPU
4GB

GPU
4GB

GPU 
4GB

GPU
4GB

24 GBytes

quad-core quad-core

Infiniband

Shared PCIe2

Two 4-core Nehalems Two 4-core Nehalems

Tesla S1070 Tesla S1070

Shared PCIe2 Shared PCIe2 Shared PCIe2

CPU reference code is heavily optimised

Cooperation with Barcelona Supercomputing Center

Extensive cache optimisation using ParaVer



Numerical validation

Single vs. double precision

Single precision is su�cient for this problem class

So use single precision on CPU and GPU for a fair comparison

Same results between single and double except minimal (but
unavoidable) �oating point noise

Application to a real earthquake

Bolivia 1994, Mw = 8.2

Lead to a static o�set (permanent
displacement) several 100 km wide

Reference data from BANJO sensor
array and quasi-analytical solution
computed via summation of normal
modes from sensor data



Numerical validation
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CPU weak and strong scaling
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GPU weak scaling
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GPU performance breakdown
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Summary

Speedup by GPUs

13�21 times faster than highly tuned MPI-only code

Depending on how many cores a single GPU is compared to

Full costly re-implementation

Four weeks to get the single-element code decently tuned

By two GPU experts � tuning means getting indices right

Four weeks to get MPI-GPU overlap in place and to do the runs

Techniques can be used in any FEM code

Coloured or atomic assembly, and overlapping

See JCP paper by Dimitri Komatitsch, Gordon Erlebacher, DG,
David Michéa, 2011



FEAST and ScaRC

FEM-Multigrid for large
systems



Introduction

Hardware-oriented numerics

FEM-multigrid for sparse systems

Multigrid is the only algorithmically scalable sparse iterative solver

Lots and lots of trade-o�s between hardware, parallel, numerical
e�ciency, scalability, portability, . . .

Examples in this section

Smoother/preconditioner parallelisation

Grid- and matrix structures, performance vs. �exibility

ScaRC solvers

Minimally invasive GPU integration

Some (oldish) results



Smoother parallelisation

Key numerical ingredient

Good smoothers and preconditioners are essential for good
convergence rates

Focus for the next minutes: elementary (single-grid) smoothers

Di�erent scopes

Block preconditioning on the MPI level (later in this talk)

Good general smoothers in a shared memory setting

Typically based on strong recursive coupling
Challenging to parallelise for the GPU

Important building blocks in FEAST: strong smoothers on
generalised tensor product grids

Lexicographical numbering ⇒ banded matrix (variable coe�cients)



Gauÿ-Seidel smoother

Disclaimer: Not necessarily a good smoother, but a good didactical example.

Sequential algorithm

Forward elimination, sequential dependencies between matrix rows

Illustrative: coupling to the left and bottom

1st idea: classical wavefront-parallelisation (exact)

Pro: always works to resolve explicit dependencies

Con: irregular parallelism and access patterns, implementable?



Gauÿ-Seidel smoother

Better idea: multicolouring (inexact)

Always use all already available results

Jacobi (red) � coupling to left and right (green) � top and bottom
(blue) � all 8 neighbours (yellow)

Parallel e�ciency: 4 sweeps with ≈ N/4 parallel work each

Regular data access, but checkerboard pattern challenging for
SIMD/GPUs due to strided access

Numerical e�ciency: di�erent coupling than sequentially



Tridiagonal smoother (line relaxation)

Starting point

Good for `line-wise' anisotropies

`Alternating Direction Implicit (ADI)'
technique alternates rows and columns

CPU implementation: Thomas algorithm
(inherently sequential)

Observations

One independent tridiagonal system per mesh row

Top-level parallelisation across mesh rows trivial

Implicit coupling: wavefront and colouring techniques not applicable



Tridiagonal smoother (line relaxation)

Cyclic reduction for tridiagonal systems

Combine odd equations linearly from even ones

Exact, stable (w/o pivoting) and cost-e�cient

Problem: classical formulation parallelises computation but not
memory accesses on GPUs (bank con�icts in shared memory)

Developed a better formulation, 2-4x faster

Index nightmare, general idea: recursive padding between odd and
even indices on all levels



Combined GS and TRIDI

Starting point

CPU implementation: shift previous row to
RHS and solve remaining tridiagonal system
with Thomas algorithm

Combined with ADI, this is the best general
smoother (we know) for this matrix structure

Observations and implementation

Di�erence to tridiagonal solvers: mesh rows depend sequentially on
each other

Use colouring (#c ≥ 2) to decouple the dependencies between rows
(more colours = more similar to sequential variant)



Evaluation: total e�ciency on CPU and GPU

Test problem: generalised Poisson with anisotropic di�usion

Total e�ciency: (time per unknown per digit (µs))−1

Mixed precision iterative re�nement multigrid solver

Core2Duo vs. GTX280 (older results)
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Speedup GPU vs. CPU
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Grid- and matrix structures

General sparse matrices (on unstructured grids)

CSR (and variants): general data structure for arbitrary grids

Maximum �exibility, but during SpMV

Indirect, irregular memory accesses
Index overhead reduces already low arithm. intensity further

Performance depends on nonzero pattern (DOF numbering)

Structured matrices

Example: structured grids, suitable numbering ⇒ band matrices

Important: no stencils, fully variable coe�cients

Direct regular memory accesses (fast), mesh-independent
performance

Structure exploitation in the design of MG components



Approach in FEAST

Combination of respective advantages

Global macro-mesh: unstructured, �exible

Local micro-meshes: structured (logical TP-structure), fast

Important: structured 6= cartesian meshes (r-adaptivity)

Reduce numerical linear algebra to sequences of operations on
structured data (maximise locality)

Developed for larger clusters (later), but generally useful:
cache-friendly, locality-maximising

UU
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Examples

Test problem

−∆u = 1, Q1 FEM, cyclinder�ow grid

Inhomogeneous Dirichlet boundary conditions

Multigrid solver

Big fat parameter space

ELLR-T vs. FEAST matrix format

ELLR-T with two di�erent sortings (random and lexicographic)

Jacobi vs. strong smoother (unstructured SPAI or ADI-TRIGS)

Westmere Corei7-X980 vs. Fermi C2070



Results on cylinder grid

bad numb.+simple smoother
bad numb.+strong smoother

good numb.+simple smoother
good numb+strong smoother
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Coarse-grained parallel multigrid

Goals

Parallel e�ciency: strong and weak scalability

Numerical scalability, i.e. convergence rates independent of N

Robust for di�erent partitionings, anisotropies, etc.

Most important challenge

Minimising communication between cluster nodes

Concepts for strong smoothers so far not applicable (shared memory)
due to high communication cost and synchronisation overhead

Insu�cient parallel work on coarse levels

Our approach: Scalable Recursive Clustering (ScaRC)

Under development in our group



ScaRC: concepts

ScaRC for scalar systems

Hybrid multilevel domain decomposition method

Minimal overlap by extended Dirichlet BCs

Inspired by parallel MG (`best of both worlds')

Multiplicative between levels, global coarse grid problem (MG-like)
Additive horizontally: block-Jacobi / Schwarz smoother (DD-like)

Schwarz smoother encapsulates local irregularities

Robust and fast multigrid (`gain a digit'), strong smoothers
Maximum exploitation of local structure

UU

“window” for
matrix-vector
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refined subdomain
(= “macro”),
rowwise numbered
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global BiCGStab

preconditioned by

global multilevel (V 1+1)

additively smoothed by

for all Ωi: local multigrid

coarse grid solver: UMFPACK



ScaRC for multivariate problems

Block-structured systems

Guiding idea: tune scalar case once per architecture instead of over
and over again per application

Blocks correspond to scalar subequations, coupling via special
preconditioners

Block-wise treatment enables multivariate ScaRC solvers

Examples (2D case)

Linearised elasticity with compressible material (2x2 blocks)

Saddle point problems: Stokes (3x3 with zero blocks), elasticity with
(nearly) incompressible material, Navier-Stokes with stabilisation
(3x3 blocks)

(
A11 A12
A21 A22

)(
u1
u2

)
= f,

A11 0 B1
0 A22 B2

BT
1 BT

2 0

v1
v2
p

 = f,

A11 A12 B1
A21 A22 B2
BT

1 BT
2 CC

v1
v2
p

 = f

A11 and A22 correspond to scalar (elliptic) operators
⇒ Tuned linear algebra and tuned solvers



Minimally invasive GPU integration

Naive straight-forward approach

GPUs as accelerators of the most time-consuming component

CPUs: outer MLDD solver, no changes to applications

Wouldn't do it this way any more today, yet still instructive

global BiCGStab

preconditioned by

global multilevel (V 1+1)

additively smoothed by

for all Ωi: local multigrid

coarse grid solver: UMFPACK



Example: linearised elasticity

(
A11 A12

A21 A22

)(
u1

u2

)
= f

(
(2µ+ λ)∂xx + µ∂yy (µ+ λ)∂xy

(µ+ λ)∂yx µ∂xx + (2µ+ λ)∂yy

)

global multivariate BiCGStab
block-preconditioned by
Global multivariate multilevel (V 1+1)
additively smoothed (block GS) by

for all Ωi: solve A11c1 = d1

by
local scalar multigrid

update RHS: d2 = d2 − A21c1

for all Ωi: solve A22c2 = d2

by
local scalar multigrid

coarse grid solver: UMFPACK



Speedup linearised elasticity
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USC cluster in Los Alamos, 16 dualcore nodes (Opteron Santa Rosa,
Quadro FX5600)

Problem size 128M DOF

Dualcore 1.6x faster than singlecore (memory wall)

GPU 2.6x faster than singlecore, 1.6x than dualcore



Speedup analysis

Theoretical model of expected speedup

Integration of GPUs increases resources

Correct model: strong scaling within each node

Acceleration potential of the elasticity solver: Racc = 2/3
(remaining time in MPI and the outer solver)

Smax = 1
1−Racc

Smodel = 1
(1−Racc)+(Racc/Slocal)

This example

Accelerable fraction Racc 66%
Local speedup Slocal 9x
Modeled speedup Smodel 2.5x
Measured speedup Stotal 2.6x
Upper bound Smax 3x
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Weak scalability

Simultaneous doubling of problem size and resources

Warning: ancient pre-CUDA results (dual 1c-Xeon / FX1400 nodes)

Left: Poisson, 160 nodes, max. 1.3 B DOF

Right: linearised elasticity, 64 nodes, max. 0.5 B DOF

No loss of weak scalability despite local acceleration
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Energy e�ciency

Case study on an ARM cluster



Motivation

Importance of energy e�ciency

At exascale, everything is measured by its energy e�ciency

30× improvement in �ops/Watt required over current BG/Q,
50× over commodity clusters just to stay in the reasonable power
envelope of 20MW

Even at reasonable scales, running cost of a machine matters most

Promising `new' processor architecture

Low-power processor designs stemming from embedded systems now
capable enough for HPC: dedicated FPUs, multicores, vector
registers, reasonably-sized pipelines . . .

Tremendous market volume, probably couple hundred GFLOP/s in
the smartphones and tablets in this room

Almost all these chips contain IP by ARM Ltd., e.g. Apple A4/A5,
ARM Cortex-A series, Samsung, . . .



What is `energy e�ciency'?

In fact, a tricky question for application people

Flops/Watt not meaningful at application level (Linpack anyone)

Slower units more energy-e�cient even if it takes longer?

Many more units to reach same speed still more energy-e�cient?

Time-to-solution and energy-to-solution!

Weak and strong scaling equally critical

Weak: need many more units because of much lower memory/node

Strong: need many more units to compensate for slower per-node
execution

Application-speci�c sweet spots, how much slower can we a�ord to
be if it cuts our electricity bill in half?



Prototype cluster: tibidabo @ BSC

Machine details

96 dual-core NVIDIA Tegra-2 SoCs based on ARM Cortex-A9

Hosted in SECO Q7 carrier boards (nodes, essentially developer kits)

1 GB memory per dualcore, diskless (network FS), 1 GbE MPI

Measured 5.7�7.5W per node depending on load

2W for the ARM alone, plus other SoC components, USB, GbE,
blinking LEDs

Porting e�ort

Standard Linux OS with GNU compiler and debugger toolchain

Main limitation: instruction issue rate ⇒ sophisticated
cache-blocking strategies counterproductive, bookkeeping and index
overhead for deeper nested loops

Serial codes only reach half of the memory bandwidth per node!



Scalability: FEAST
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Power-performance analysis: FEAST

 0

 2

 4

 6

 8

 10

 12

 14

 16

6 12 24 48 96 192

S
p

e
e

d
u

p
 o

f 
x
8

6
 o

v
e

r 
T

ib
id

a
b

o

Number of processes on Tibidabo

Configuration 1
Configuration 2
Configuration 3
Configuration 4

 0

 1

 2

 3

 4

 5

6 12 24 48 96 192

Im
p

ro
v
e

m
e

n
t 

o
f 

T
ib

id
a

b
o

 o
v
e

r 
x
8

6

Number of processes on Tibidabo

Configuration 1
Configuration 2
Configuration 3
Configuration 4

Speedup x86 over ARM (left), improvement energy-to-solution ARM
over x86 (right)

Always more bene�cial to use the ARM cluster

As long as ≥ 2 x86 nodes are necessary, slowdown only 2�4
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(1) same partitioning (6 x86 cores/node), (2) re-partition for 8 cores/node,

(3) as few x86 cores/node as possible, (4) twice of that



Scalability: SPECFEM3D_GLOBE
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Power-performance analysis: SPECFEM3D_GLOBE
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Summary



Summary

Hardware-oriented numerics

Parallelism, heterogeneity and memory wall on all scales of scienti�c
computing, from chips to big machines

Without incorporating knowledge on the way hardware evolves into
the design of numerical methods, only fractions of peak performance
can be achieved and codes might become slower over time

Energy e�ciency

Will become the ultimate quality criterion

Using many low-power resources necessitates perfect weak and
strong scaling even for moderate-size problems
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