
Energy e�ciency aspects of high performance
computing for PDEs

Dominik Göddeke (and the FEAST group)

Institut für Angewandte Mathematik (LS3)
TU Dortmund

dominik.goeddeke@math.tu-dortmund.de

High Performance Computing in Science and Engineering
Hotel Solá¬, Czech Republic, May 29, 2013

Hardware (r)evolution

Parallelism, specialisation and heterogeneity

Frequency scaling is over, we now scale `cores' and SIMD width

Visible on all architectural levels

Fine-grained: SSE/AVX, GPU `threads'
Medium-grained: GPUs, MICs, CPUs, NUMA within a node
Coarse-grained: MPI between heterogeneous nodes

Even CPU-only systems are heterogeneous

These are fun days for programmers

This paradigm shift is here to stay

Power is the root cause of this

Goal of this talk: try to explain why, and present a fun experiment
with novel architectures

Talk outline

Hardware background and some politics

Why is the hardware becoming so exciting / ugly / painful to
program / . . . ?

The `money wall problem' in HPC

Two applications

Hardware-oriented �nite element multilevel solvers

Seismic wave propagation modeling with spectral elements

Scienti�c computing on low-power architectures

`Energy-to-solution' on an ARM (`smartphone') cluster vs. x86

Hardware background

(and some politics)

Energy consumption of big machines

Distribution between various components (source: DOE)

40�60%: processors and memories

10%: interconnect and storage

Remainder (up to 50%!): infrastructure, i.e. lighting, cooling, PSU
waste, backup power supplies, . . .

Three principal attack vectors towards better energy e�ciency

More energy-e�cient nodes

Much wider �ne-grained parallelism
Low-power architectures not (initially) designed for HPC
Implication: reduced cooling cost, e.g. passive instead of active
heatsinks

More e�cient cooling: improved air�ow, hot-water cooling, . . .

`Recycling' of dissipated heat

Energy consumption of big machines

Current technology

Top500 #1 (Green500 #3): Xeon + Kepler

18.6 PFLOP @ 8.2MW: 2.14GFLOP/W

Green500 #1: Xeon + Xeon Phi

112TFLOP @ 44.9 kW: 2.5 GFLOP/W

Extrapolation to exascale

Top500 machine: 54·8.2=443MW

Green500 machine: 400MW

Consequences

Consensus: power envelope of ≈ 20MW `feasible'

Need up to 50 times more energy e�cient technology

Where will this factor come from?

High-level view

Short digression into electrical engineering

Power is proportional to voltage2×frequency
Frequency is proportional to voltage (at same process size)

Similarly bad: power also proportional to temperature

A simple back-of-the-envelope calculation

cores V freq perf power power e�.
∼ f ∼ V 3 perf/power

singlecore 1 1 1 1 1 1
faster singlecore 1 1.5 1.5 1.5 3.3 0.45

dualcore 2 0.75 0.75 1.5 0.8 1.88

A-ha!

50% more performance with 20% less power

That's why everything has shifted to multi- and manycore

Low-level view: Dally's example

A typical yet hypothetical contemporary processor

64-bit FPU: 50 pJ for a multiply-add operation, 0.1mm2 of die area

Moving one DP word through a channel of length 1 mm: 25 pJ

Chip with 4000 FPUs (area 20 mm2): 500 pJ to move one DP word
across the chip, e.g., from a pin to an FPU

Moving the same data o�-chip: 1 nJ

Moving data is expensive in terms of energy

Factor of 20 for this FPU (60 for two inputs and one output)

My personal explanation why Xeon Phi doesn't scale in hardware

Same holds even more for instructions

Solution: SIMD, amortise instruction cost (fetch, decode, operand
decode, . . .) over several data items

The slide I usually get beaten up for

Ignoring SIMD in computations

Conventional CPUs: 2�8× penalty (128�256 bit SSE/AVX registers,
i.e. 2 doubles to 8 �oats per instruction)

GPUs: 16�64× penalty (32 32 bit values in NVIDIA warps, 64 32 bit
values in AMD wavefronts)

Xeon Phi: 8�16× penalty (512 bit registers)

Memory accesses are parallel in hardware since i386 (1985!)

Cache line granularity of 64 byte on current CPUs

Access one �oat (4 byte) in a memory segment of 64 byte
64 byte transferred
Never use the other 15 �oats: 1/16 of peak memory performance

NVIDIA GPUs: Cache lines of 32 byte and 128 byte

Plus: computation is much faster than memory access

The `money wall' problem

A simple rule of thumb

1MW/a = 1MEUR/a

Depends on your deal with the local energy company

Real numbers: our machine in Dortmund

Deployed in 2009 (#249 in the TOP500) for roughly 1MEUR

440 dual-quadcore nodes, 50TFLOP/s, designed for capacity

Roughly 85% average load per year

Annual electricity bill 220KEUR (plus 60KEUR for A/C)

Accumulated running cost now exceeds initial acquisition cost

Who covers these costs?

Funding agencies surely don't

FEAST and ScaRC

FEM-multigrid for large
systems

Grid- and matrix structures

General sparse matrices (on unstructured grids)

CSR (and variants): general data structure for arbitrary grids

Maximum �exibility, but during SpMV

Indirect, irregular memory accesses
Index overhead reduces already low arithm. intensity further

Performance depends on nonzero pattern (DOF numbering)

Structured matrices

Example: structured grids, suitable numbering ⇒ band matrices

Important: no stencils, fully variable coe�cients

Direct regular memory accesses (fast), mesh-independent
performance

Structure exploitation in the design of MG components

Approach in FEAST

Combination of respective advantages

Global macro-mesh: unstructured, �exible

Local micro-meshes: structured (logical TP-structure), fast

Important: structured 6= cartesian meshes (r-adaptivity)

Reduce numerical linear algebra to sequences of operations on
structured data (maximise locality)

Developed for larger clusters (later), but generally useful:
cache-friendly, locality-maximising

UU

“window” for
matrix-vector
multiplication,
per macro

hierarchically
refined subdomain
(= “macro”),
rowwise numbered

unstructured mesh

UD
UL

DU
DDDL

LU
LDLL

I-1

I

I+1

I-M-1
I-M

I-M+1
I+M-1

I+M

I+M+1

Ω
i

A simple benchmark

Test problem

−∆u = 1, Q1 FEM, cylinder�ow grid

Inhomogeneous Dirichlet boundary conditions

Multigrid solver

Large parameter space

ELLR-T vs. FEAST matrix format

ELLR-T with two di�erent sortings (random and lexicographic)

Jacobi vs. strong smoother (unstructured SPAI or ADI-TRIGS)

Westmere Corei7-X980 vs. Fermi C2070

Incremental improvements by hardware-oriented numerics

bad numb.+simple smoother
bad numb.+strong smoother

good numb.+simple smoother
good numb+strong smoother

0.10

1.00

10.00

100.00

GPU+str.

GPU+unstr.

CPU+str.

CPU+unstr.

better numbering

stronger smoothing (simple or strong)

be
tte

r b
an

dw
id

th

ex
pl

oi
ta

tio
n

m
or

e
st

ru
ct

ur
ed

2 - 3 1.7 - 2.5

2
- 4

4
- 7

 50

1.7 - 2.7

Largest to smallest contribution: GPU, structured, smoother,
numbering

Parallelisation: Gauÿ-Seidel smoother

Disclaimer: Not necessarily a good smoother, but a good didactical example.

Sequential algorithm

Forward elimination, sequential dependencies between matrix rows

Illustrative: coupling to the left and bottom

1st idea: wavefronts / pipelining (exact)

Pro: always works to resolve explicit dependencies

Con: irregular parallelism and access patterns, implementable?

Gauÿ-Seidel smoother

Better idea: multicolouring (inexact)

Always use all already available results

Jacobi (red) � coupling to left and right (green) � top and bottom
(blue) � all 8 neighbours (yellow)

Parallel e�ciency: 4 sweeps with ≈ N/4 parallel work each

Regular data access, but checkerboard pattern challenging for
SIMD/GPUs due to strided access (can be solved)

Numerical e�ciency: no longer naturally numbered

ScaRC: coarse-grained parallel multigrid

ScaRC for scalar systems

Hybrid multilevel domain decomposition method

Minimal overlap by extended Dirichlet BCs

Inspired by parallel MG (`best of both worlds')

Multiplicative between levels, global coarse grid problem (MG-like)
Additive horizontally: block-Jacobi / Schwarz smoother (DD-like)

Schwarz smoother encapsulates local irregularities

Robust and fast multigrid (`gain a digit'), strong smoothers
Maximum exploitation of local structure

UU

“window” for
matrix-vector
multiplication,
per macro

hierarchically
refined subdomain
(= “macro”),
rowwise numbered

unstructured mesh

UD
UL

DU
DDDL

LU
LDLL

I-1

I

I+1

I-M-1
I-M

I-M+1
I+M-1

I+M

I+M+1

Ω
i

global BiCGStab

preconditioned by

global multilevel (V 1+1)

additively smoothed by

for all Ωi: local multigrid

coarse grid solver: UMFPACK

Large-scale seismic wave
propagation modeling

Waves in elastic anisotropic solids

Strong form of the wave equation as IVP

ρ∂2
t u = ∇ · σ + f in Ω× T

σ · n = t̄ on ΓN

u = g on ΓD

u|t=0 = u0 ∀x ∈ Ω
∂tu|t=0 = u1 ∀x ∈ Ω

Density ρ, acceleration ∂2
t u, source terms f

Constitutive law to relate strains and stresses σ

Body forces (inner forces) div(σ) caused by the displacement

Can be made arbitrarily complex

Solids and liquids (outer core, oceans), strongly heterogeneous

Coriolis force, self-gravitation, PML conditions (chunks of the Earth)

Spectral element method

Discretisation trade-o�s

(Pseudo-) spectral methods

Pro: accuracy and exponential approximation order
Con: parallelisation, boundary conditions

Finite element methods

Geometric �exibility (topographic details, faults and fractures,
internal discontinuities and material transitions, . . .), boundary
conditions (parallelisation)
Possibly ill-conditioned systems, high-order expensive (wide supports)

SEM as a hybrid approach

Essentially based on high-order interpolation to represent �elds per
element of a classical unstructured curvilinear FEM mesh

Good compromise between con�icting goals

Can be interpreted as a continuous Galerkin method

Cubed sphere unstructured mesh

SEM for the seismic wave equation

Discretise the weak form

Same as in �nite element methods

Base everything on Lagrange polynomials

Shape functions for each curvilinear element (order 2)

Interpolation of physical �elds inside each element (order 4�10)

Gauÿ-Lobatto-Legendre control and cubature points

Combination yields strictly diagonal mass matrix
Explicit time stepping feasible, trivial `solving' of linear systems
Drawback: timestep depends on mesh spacing

SEM for the seismic wave equation

Problem to be solved in algebraic notation

Mü + Ku = f for waves in simple solids

Mass matrix M, sti�ness matrix K

Displacement vector u, sources f , velocity v = u̇, acceleration a = ü

Three phases in each second-order Newmark timestep

Update second half-step of velocity u̇ + ∆t
2 ü and global

displacement u + ∆tu̇ + ∆t
2 ü

Compute new Ku and M (the tricky bit, called `SEM assembly') to
obtain intermediate acceleration

Compute new acceleration M−1ü, and velocity for next
half-timestep u̇ + ∆t

2 ü (cannot be merged into steps 2 and 1
because of data dependencies)

Implementation and pro�ling

Steps 1 and 3 are trivial

Simple operations on globally numbered data

Memory-bound on almost all architectures

Step 2 is tricky

Typically, around 90% of the total runtime

Employ `assembly by elements' technique on CPUs and GPUs

Parallelism via colouring or atomics, depends on hardware

Standard non-blocking MPI

On GPUs: some basic tricks to hide additional CPU-GPU transfers

Well-balanced on GPUs, compute-bound everywhere else

Energy e�ciency

Case study on an ARM cluster

Promising `new' processor architecture

Smartphones and tablets

Tremendous market volume

Probably a couple hundred GFLOP/s in this room

Powerful enough for HD video decoding, mobile gaming, . . .

Under the hood

Low-power processor designs stemming from embedded systems now
capable enough for HPC: dedicated FPUs, multicores, vector
registers, reasonably-sized pipelines . . .

Almost all these chips contain IP by ARM Ltd., e.g. Apple A4/A5,
ARM Cortex-A series, Samsung, . . .

Batteries matter, so very energy-e�cient

Can we use these chips to solve real problems?

What is `energy e�ciency'?

In fact, a tricky question for application people

Flops/Watt not meaningful at application level

Slower units more energy-e�cient even if it takes longer?

Many more units to reach same speed still more energy-e�cient?

Time-to-solution and energy-to-solution!

Weak and strong scaling equally critical

Weak: need many more units because of much lower memory/node

Strong: need many more units to compensate for slower per-node
execution

Application-speci�c sweet spots, how much slower can we a�ord to
be if it cuts our electricity bill in half?

Prototype cluster: tibidabo @ BSC

Machine details

96 dual-core NVIDIA Tegra-2 SoCs based on ARM Cortex-A9

Hosted in SECO Q7 carrier boards (nodes, essentially developer kits)

1 GB memory per dualcore, diskless (network FS), 1 GbE MPI

Measured 5.7�7.5W per node depending under load

2W for the ARM alone (0.5W for the dualcore CPU), plus other
board components, USB, GbE, blinking LEDs (0.5W!!!)

Porting e�ort

Standard Linux OS with GNU compiler and debugger toolchain

Main limitation: instruction issue rate ⇒ sophisticated
cache-blocking strategies counterproductive, bookkeeping and index
overhead for deeper nested loops

Serial codes only reach half of the memory bandwidth per node!

Scalability: FEAST

 0

 10

 20

 30

 40

 50

 60

 70

6 12 24 48 96 192

T
im

e
 (

s
)

Number of processes

Assembly
Solver

Solver (normalised)

 2

 4

 8

 16

 32

 64

6 12 24 48 96 192

T
im

e
 (

s
)

Number of processes

Assembly (series 1)
Solver (series 1)

Assembly (series 2)
Solver (series 2)

Weak (left) and strong (right) scaling

Weak scaling as expected (bump is a granularity e�ect from 4 to 5
solver iterations)

Strong scaling quite ok (gigE and a multilevel method)

Power-performance analysis: FEAST

 0

 2

 4

 6

 8

 10

 12

 14

 16

6 12 24 48 96 192

S
p

e
e

d
u

p
 o

f
x
8

6
 o

v
e

r
T

ib
id

a
b

o

Number of processes on Tibidabo

Configuration 1
Configuration 2
Configuration 3
Configuration 4

 0

 1

 2

 3

 4

 5

6 12 24 48 96 192

Im
p

ro
v
e

m
e

n
t

o
f

T
ib

id
a

b
o

 o
v
e

r
x
8

6

Number of processes on Tibidabo

Configuration 1
Configuration 2
Configuration 3
Configuration 4

Speedup x86 over ARM (left), improvement energy-to-solution ARM
over x86 (right)

Always more bene�cial to use the ARM cluster

As long as ≥ 2 x86 nodes are necessary, slowdown only 2�4

reference system: 32 2-way 4-core Nehalem system, 24GB per node
(1) same load per core and partitioning (6 x86 cores/node), (2) re-partition for 8

cores/node, (3) as few x86 nodes as possible, (4) twice of that

Scalability: SPECFEM3D_GLOBE

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

4 8 12 24 48 96 192

A
v
e

ra
g

e
 t

im
e

 p
e

r
ti
m

e
 s

te
p

 (
s
)

Number of processes

Solver

 0.0625

 0.125

 0.25

 0.5

 1

 2

 4

 8

4 6 8 12 16 24 3236 48 6472 96 144192

A
v
e

ra
g

e
 t

im
e

 p
e

r
ti
m

e
 s

te
p

 (
s
)

Number of processes

Series 1
Series 2

Weak (left) and strong (right) scaling

Both perfect (explicit in time, compute-bound, non-blocking MPI)

Power-performance analysis: SPECFEM3D_GLOBE

 0

 5

 10

 15

 20

 25

6 8 12 24 48 96 192

S
p

e
e

d
u

p
 o

f
x
8

6
 o

v
e

r
T

ib
id

a
b

o

Number of processes on Tibidabo

Configuration 1
Configuration 3
Configuration 4

 0

 0.5

 1

 1.5

 2

 2.5

 3

6 8 12 24 48 96 192

Im
p

ro
v
e

m
e

n
t

o
f

T
ib

id
a

b
o

 o
v
e

r
x
8

6

Number of processes on Tibidabo

Configuration 1
Configuration 3
Configuration 4

Speedup x86 over ARM (left), improvement energy-to-solution ARM
over x86 (right)

Not always more bene�cial to use the ARM cluster due to many
small dense matrix matrix multiplications

Summary

Summary

Power is the root cause of current and mid-term hardware evolution

Energy e�ciency will become the ultimate quality criterion

Energy e�ciency is quite hard to de�ne exactly

Weak and strong scaling essential even for moderate-size problems
to compensate for slower execution

Low-power architectures not always a win in terms of
`energy-to-solution'

Acknowledgments

Collaborative work with

M. Geveler, D. Ribbrock (TU Dortmund)

D. Komatitsch (CNRS Marseille)

A. Ramirez, N. Rajovic, N. Puzovic (Barcelona Supercomputing
Center)

Papers, links, tutorials and other stu�. . .

http://www.mathematik.tu-dortmund.de/~goeddeke

Funding

DFG Priority Program 1648: `Software for Exascale Computing'

NVIDIA Teaching Center Program

http://www.mathematik.tu-dortmund.de/~goeddeke

More acknowledgments

[Shamelessly stolen from David Keyes]

	Introduction
	Hardware background and some politics
	Energy consumption of big machines
	Electrical engineering background
	Ignoring SIMD hurts
	The money wall problem

	FEAST and ScaRC
	Grid- and matrix structures
	A simple benchmark
	Coarse-grained parallel multigrid

	Wave propagation modeling
	The model
	Spectral element method
	Implementation

	Energy efficiency
	Promising new processor architecture
	Prototype cluster
	Power-performance analysis

	Summary

