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Abstract

We examine novel fault tolerance schemes for data loss in multigrid solvers which
essentially combine ideas of checkpoint-restart with algorithm-based fault toler-
ance. To improve efficiency compared to conventional global checkpointing, we
exploit the inherent data compression of the multigrid hierarchy, and relax the
synchronicity requirement through a local failure local recovery approach. We
experimentally identify the root cause of convergence degradation in the pres-
ence of data loss using smoothness considerations. Our resulting schemes form
a family of techniques, that can be tailored to the expected error probability of
(future) large-scale machines. A performance model gives further insight into
the benefits and applicability of our techniques.

Keywords: fault tolerance, resilience, multigrid, checkpoint-restart, robust
iterative solvers, high-performance computing

1. Introduction

1.1. Parallel multigrid methods

Multigrid methods (MG, [1, 2]) are one of the most favourable approaches for
the iterative solution of elliptic or quasi-elliptic discretised PDEs (partial differ-
ential equations). In combination with implicit time-stepping for instationary
problems, and Newton-type methods for treating nonlinearities, hierarchical
multigrid techniques are the only class of solvers with the potential to deliver
asymptotically optimal and hence algorithmically scalable convergence. Multi-
grid approaches can solve the resulting sparse, but typically huge linear systems
of equations in a number of iterations that is independent of the mesh width –
and hence the problem size – of the underlying discretisation. Application do-
mains in which the solution of such linear systems dominates the simulation time
include but are certainly not limited to fluid dynamics (e.g., Pressure-Poisson
problems arising in solution schemes for the Navier-Stokes equations), elasticity
(e.g., linear and nonlinear Lamé equations), and electrostatics and capacitance
tomography (e.g., potential calculations using generalised Poisson equations).
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When combined with the finite element method (FEM) for the discretisation,
the various components of multigrid methods can be tailored beneficially to the
problem at hand, e.g., to satisfy the smoothing property even for strongly aniso-
tropic meshes or operators, or to provably meet a best-approximation criterion
for the coarse-grid correction.

For large-scale problems, FE-MG methods are typically realised in a data-
parallel fashion: The computational domain is partitioned into patches (sub-
domains), yielding coarse-grained parallelism. With the exception of certain
smoothers and the coarse grid solver, all operations like residual calculations
or transfers of relevant quantities between coarse and fine grids, are entirely
local, or involve communication of patch surface data with neighbouring patches
only. For the coarse grid problem – and more generally for the entire coarsen-
ing process in the preprocessing stage of algebraic multigrid methods – tech-
niques like replicated solves, or leaving an increasing amount of processors idle,
are often used to avoid quasi-serialisation and unfavourable communication-to-
computation ratios [3]. These techniques are however not applicable to some of
the most powerful and robust smoothers, e.g., implicit approaches based on in-
complete factorisations. They entail their favourable numerical properties from
their recursive nature or strong degree of global coupling, resulting in serial data
dependencies, computationally inefficient execution, and poor scalability. To al-
leviate this issue, most parallel multigrid methods replace the global smoother
with an additive or multiplicative Schwarz approach [4], which limits strong
coupling and irregular computations to within patches. This is justified, since
the bulk of computations are typically performed in the smoother stage. How-
ever, the resulting block-Jacobi or block-Gauß-Seidel characteristics may lead
to convergence degradation for hard problems, e.g., in the presence of strong
anisotropies in the mesh and/or the operators.

In our ScaRC framework (scalable recursive clustering) [5], a generalisation
of geometric multigrid and multilevel domain decomposition, we try to balance
these contradicting goals as much as possible, and apply a number of additional
techniques to improve efficiency: We cover the domain with an unstructured
coarse mesh, and refine each patch in a structured way. Several patches are
combined into an MPI rank, and the structure of the patches is exploited in
the design of specifically tailored multigrid components, incorporating PDE-
and problem knowledge as well as architectural considerations, e.g., for GPUs
or to increase locality [6]. The block-smoother can recursively cluster several
neighbouring patches into one ‘virtual’ patch, and by applying a few cycles of a
(semi-) local multigrid method recursively as a smoother of the global multilevel
scheme, efficiency and especially numerical scalability are significantly improved.
The globally-unstructured locally-structured mesh and solver structure thus
constitutes a good compromise between parallel and numerical scalability, fast
convergence, and hardware exploitation. The ScaRC approach is also highly
beneficial for the fault-tolerant schemes we present in this paper.

1.2. Hardware development and reliable computing

Researchers are becoming increasingly aware that future computing systems
may become very unreliable, at least compared to current standards. In fact,
this issue has been identified as one of the main obstacles on the road to exascale
computing [7–9]. On the one hand, the vast number of components in present
and future computing systems implies a strong increase in fault probability. On
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the other hand, the continuing shrinking of photolithography resolution leads
to greater vulnerability to leakage current and other interferences like radiation,
resulting in the flipping of bits that may (silently) corrupt calculation outcomes
and (intermediate and solution) data in various memories.

In view of the power wall problem and the implied tight power envelopes,
hardware developers are even actively debating a trade-off between the de-
mand for higher performance through more processing units, and a reduction of
hardware-based error correction mechanisms like ECC (error-correcting-codes)
protection of memory and data paths [10], which increases vulnerability and
thus fault probability.

It can be expected that these issues will not be limited to future (exascale)
leadership-class machines with up to billion-way parallelism and beyond: Simil-
arly to the era of homogeneous clusters (and the ‘flat MPI’ programming model)
that rapidly approaches its end, systems at any reasonable scale might be based
on essentially the same technology, and suffering from a similar degree of unre-
liability.

Following established taxonomy by Elliott et al. and Snir et al. [11, 12],
throughout this paper we distinguish between faults, i.e., the abnormal oper-
ation of some component, and failures, i.e., the (resulting) computation of a
wrong answer or none at all; and also between hard (program termination) and
soft faults. Examples range from the flipping of a bit in some circuit (a rather
small-scale component) up to the loss of an entire cluster node.

In summary, unreliability is likely to become the norm rather than the excep-
tion: On future systems, the mean time between failure (MTBF) might eventu-
ally decrease to a point where any simulation run will be affected by some kind
of irregular behaviour. Consequently, a certain degree of fault-tolerance will be
an obligatory ingredient of any simulation code.

1.3. Paper contribution

In our work, we pursue a ‘bottom-up’ approach towards fault-tolerant solv-
ers: We argue that not only the software in general, but rather the numerical
schemes themselves must ensure reliability and robustness. Especially in the
solution of PDE problems, more efficient resilience mechanisms can be construc-
ted by explicitly incorporating properties of the PDE and the solution mechan-
ism at hand to detect and mitigate or correct faults. Classical checkpoint-restart
techniques should be considered the ‘ultima ratio’, and only be used if the nu-
merical scheme alone is not capable of preventing a fault becoming a failure.

We are certainly not the first to argue along these lines, cf. for instance sev-
eral recent reports [7–9]. In this paper, we describe and experimentally analyse
novel techniques towards this goal, focusing mostly on multigrid algorithms and
their hierarchical properties. Despite their importance, multigrid methods have
received fewer attention in contrast to Krylov subspace schemes [9]. In addi-
tion, we believe that the novel techniques we develop can be extended to other
hierarchical solution methods, such as multiscale modelling, upscaling etc.

In contrast to the recent surge of techniques on silent data corruption in
sparse linear solvers, we more generally investigate the case that in the course
of the iterative solve, some portions of the global solution are lost, and this loss
needs to be recovered from.

After presenting and discussing some necessary background and related work
in Section 2, we specify our evaluation procedure and our fault injection model
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in Sections 3.1 and 3.2. In particular, we describe how we can model and
analyse the large-scale situation numerically based on appropriately scaled-down
experiments, using essential properties of multigrid. We then make two main
contributions in this paper, all derived from numerical experiments rather than
rigorous numerical analysis:

For a representative set of model problems, we analyse the impact of data
loss in the multigrid algorithm in the remainder of Section 3. Here, we identify
aspects of convergence degradation for the prototypical set of PDEs we examine,
and highlight that multigrid is indeed robust in case of infrequent faults: We
demonstrate convergence even when substantial portions of the current iterate
are lost. Using the terminology of Sao and Vuduc [13], these results indicate
that geometric multigrid schemes are inherently ‘self-stabilising’ with respect to
transient faults for elliptic (model) problems.

We then devise a novel fault-tolerant scheme for multigrid in Section 4,
by realising that the grid and function space hierarchies can be interpreted
as a ‘lossy compression’ which however still fulfils a best-approximation prop-
erty. Our proposed scheme incorporates and extends ideas of full multigrid [14]
into a combined ‘local failure local recovery’ [15] and ‘algorithm-based fault-
tolerance’ [16] approach. While still relying on the existence of global, albeit
potentially asynchronous and outdated checkpoints, our approach improves ef-
ficiency, as these checkpoints can be exponentially smaller in size, and recovery
proceeds purely local. Numerical experiments demonstrate the feasibility and
the advantages of our approach.

In Section 5 we discuss how the promising numerical behaviour of our tech-
niques can be transferred to practical implementations. Here, we exemplarily
limit ourselves to the case that ‘data loss’ corresponds to the loss of a compute
node, which without loss of generality corresponds to the loss of an MPI rank.
To assess the overhead of our approach and compare it with more classical,
problem-oblivious fault-tolerance techniques, we construct an analytical model
in Section 5.2 and examine various tradeoffs.

We conclude with an outlook on ongoing and future work in Section 6.

2. Background and related work

The transition towards exascale (extreme scale) computing has resulted in
a host of research efforts, spanning hardware and circuits, systems, middle-
ware, implementation, (numerical) methods and algorithms, and applications.
Recently, a number of excellent surveys have been published [7–9, 12]. There
is a strong consensus that future machines will be much more unreliable than
current ones, and thus fault-tolerance has been identified as one of the main
research avenues.

Traditionally, fault-tolerance has been achieved with global checkpoint-restart
(CPR) schemes that incorporate globally consistent checkpoints of essential
state. However, these methods are known not to scale well [7–9], which may
eventually render them prohibitively expensive. Consequently, the so-called
local failure local recovery paradigm seems more appropriate [15], and is sub-
ject to active research. Our proposed scheme falls into this category. Extensions
like checkpointing the full state to the memory of neighbouring nodes are also
not optimal, given the expected trend of decreasing memory per core [9].
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As an alternative, redundancy combined with majority voting (e.g., triple
modular redundancy, TMR) has received increasing interest: Elliott et al. and
Fiala et al. argue that for sufficiently large fault probability, TMR can poten-
tially be more energy- and runtime-efficient than traditional synchronous CPR
despite the increased resource demands [17, 18]. In view of the power wall prob-
lem, redundancy does not seem to be the most practicable approach however,
because of the at least tripled resource requirements. As a remedy, partial re-
dundancy combined with classical checkpointing is investigated, see for instance
Elliott et al. [17]. Ni et al. and Fiala et al. have implemented these techniques
on top of MPI to facilitate automatic fault-tolerance [18, 19].

To alleviate the drawbacks of the global synchronicity and consistency of
checkpoints, so-called send- or channel-deterministic algorithms allow asyn-
chronous checkpointing combined with message logging, resulting in a scalable
CPR scheme [20] that also allows local recovery. Many PDE solvers fall into
this category. Similar research efforts are underway, for instance uncoordinated
checkpoint protocols [21, 22]. Multi-level checkpointing combined with efficient
on-the-fly data compression is yet another attempt to alleviate the scalability
issues of classical CPR [23].

Another avenue can be loosely classified as algorithm-based fault-tolerance
(ABFT). This term dates back to early work by Huang and Abraham [16], who
employ checksums to detect and eventually correct failures directly in dense
matrix-vector multiplications, quite similar to software-based error-correcting-
codes (ECC). See Bosilca et al. [24] for an updated study at scale on contem-
porary machines.

Given this wide variety of resilience techniques, we argue that there is no
‘one-size-fits-all’ ‘black-box’ solution to the resilience challenge, at least as soon
as runtime efficiency and robustness are the dominant (relevant) criteria. This
is especially true for PDE problems. Many efforts have been undertaken to
improve the resilience of linear solvers for sparse problems. The majority of
this work however focuses on Krylov subspace solvers like GMRES, due to their
black-box character [11, 13, 15, 25–29]. Also, most papers address ABFT tech-
niques for so-called silent data corruption, i.e., undetected and uncorrected bit-
flips. From a numerics point of view, most of these approaches are based on
the theory of inner-outer iterations and self-preconditioning combined with flex-
ible formulations of the underlying solvers. The selective reliability mechanism
by Hoemmen and Heroux [30] often is the underlying machine model in this
context. Multigrid methods have received much less attention. Mishra and
Banerjee [31] discuss error detection, and Jimack and Walkley [32] present a
good overview on the theoretical background of resilient and in particular asyn-
chronous multigrid solvers. Huber et al. [33] examine an approach of locally
repairing lost patches in extreme-scale multigrid solvers, which is quite similar
to ours. Their research was undertaken concurrently to ours, and confirms our
results: We may rely on the h-independent convergence of multigrid for a more
detailed analysis, and can expect quantitatively similar behaviour at scale. Ex-
ploiting numerical invariants like orthogonality, positivity or monotonicity to
construct fault detection mechanisms is another active field of research.

Realistic numbers on the frequency of hard faults are reported in a number of
studies: For instance, Jaguar (Oak Ridge National Labs, TOP500 # 1 in Novem-
ber 2009) exhibits a mean time between failure of 52 hours [18]. Schroeder et al.
and Sridharan and Liberty [34, 35] examine fault rates for individual compon-
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ents of the heterogeneous Google server farms. For soft faults, reliable numbers
are not generally available. It is however well-known that silicon ageing increases
the rate of ECC corrections after an initial fault at the same bank [18]. The
ECC mechanism is probably the most well-known example of fault detection
and correction implemented in hardware. However, ECC does not protect all
data, memory paths, and certainly not the ALUs, so that a bitflip during an
arithmetic operation may corrupt the result, see Elliott et al. [36] for an in-
structive example. Due to the von Neumann architectural paradigm, program
code and data are both subject to faults and data corruption. But, since the
size (in Bytes) of the executable code is almost always only a tiny fraction of
the program specific data, we may with little practical impact concentrate on
faults in the program specific data and assume the program code to be error-
free. In analogy of the proposed ‘selective reliability’ mechanism by Hoemmen
and Heroux [30] and Bridges et al. [25], we may assume that program code and
control flow instructions are stored in and executed by a more reliable, albeit
slower and more expensive part of the machine.

Finally, Elliott et al. [11] and Li et al. [37] argue that spontaneous bitflips
in DRAM are almost always corrected by ECC if available, and that the uncor-
rected case is surprisingly rare. Li et al. in particular state that over-protection
must be avoided [37]. This last work in particular bridges the gap between
hardware-based and algorithm-based fault-tolerance.

3. Impact of data loss in multigrid solvers

3.1. Test problems

We consider the Poisson problem as the classical prototype of elliptic PDEs.
As outlined in the introduction, this fundamental model problem is at the core
of many application domains and numerical schemes. For an open, bounded
domain Ω ⊂ R2 with boundary Γ := ∂Ω, we want to solve the Dirichlet boundary
value problem

−∆u = f in Ω

u = g on Γ
(1)

for suitable u, f : Ω \ Γ → R and g : Γ → R. As in this paper we are
primarily interested in the numerical behaviour, we may restrict ourselves to
the unit square, Ω = [0, 1]2. We start with a coarse grid of 16 quadrilateral
mesh cells, and use seven successive uniform refinement steps to define the
mesh hierarchy. On each of these refinement levels, the PDE is discretised
with conforming biquadratic Q2 finite elements, resulting in a fine-grid problem
of 1 050 625 unknowns, and 263 169, 525 312, 262 144 vertices, edges and cells,
respectively. The unknowns are enumerated in a recursive two-level fashion. We
prescribe

uexact(x, y) := sin(nπx) sin(kπy)

as the expected solution on Ω̄, and accordingly define the right hand side f of (1)
as the analytical evaluation of −∆uexact at the quadrature points, multiplied by
the test function and integrated over the elements. In order to quantify errors we
use the L2 norm, i.e., the finite element integration of the difference functional
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between computed and exact analytical solution. Residuals are measured in the
Euclidean 2-norm, scaled so that the initial norm before the start of the solver
is exactly one.

Since the core concept of multigrid is the efficient elimination of error fre-
quencies, we consider the smooth case n = 1 and k = 3, and the oscillatory case
n = 10 and k = 30. These settings are representative of those encountered in
‘real problems’, and this approach enables us to argue about the root cause of
the convergence behaviour we experimentally observe in the presence of injec-
ted faults. The fine-grid resolution is chosen so that all frequencies comprising
the exact solution can be accurately resolved, i.e., the discretisation error does
not dominate the error due to data loss, which we are primarily interested in.
Figure 1 depicts the fine-grid solution of both test problems.

To facilitate wide applicability of our experiments, we employ a standard
multigrid solver configuration. We do not expect our results to be fundament-
ally different for other configurations, as long as our error injection model (see
Section 3.2) is applicable. The solver executes V-cycles until the relative residual
norm has been reduced by nine digits. We employ two pre- and postsmooth-
ing steps, respectively, with a Jacobi smoother that is damped by ω = 0.8.
Restriction and prolongation are realised by biquadratic finite element interpol-
ation, matching the ansatz space, to ensure the best-approximation property.
All coarse grid problems are solved to machine accuracy to avoid side effects,
using BiCGStab. In all tests, the initial guess is zero.

3.2. Fault injection model and emulation of large-scale computations

We emulate the fully parallel case in our numerical experiments with a serial
implementation that scales down all relevant parameters. This is justified, be-
cause (parallel) multigrid solvers exhibit convergence rates independent of the
mesh and patch width (h and H independence, [4]). This holds at least for
our (currently) uniform setting and for Schwarz smoothers, see the sketch of
our FEAST/ScaRC solvers in Section 1.1 and the references therein. Thus, the
amount of lost data at scale (e.g., one entire compute node) can be realised
in our serial prototype implementation by faulting a small connected patch, of
the same relative size. In particular, the convergence behaviour is numerically
identical.

Figure 1: Illustration of our fault injection model, exemplarily for zeroing out some com-
ponents in the converged fine grid solution of the smooth (left) and oscillatory (right) test
problems. In this figure, the patch location and size, and the scaling of the y-axis, have been
chosen to improve clarity.

Following standard practice in the growing field of numerical resilience re-
search, we assume that ‘data’ such as the discretised operators (on all refinement
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levels) and the right hand side (on the fine grid) are never lost. Since these data
are constant during a linear solve, conventional checkpoint-recovery techniques
can be used with little overhead: There is no need to periodically checkpoint
matrices and the right hand side, and the recovery can be performed fully locally.

In the multigrid setting, auxiliary arrays are only needed to store restricted
residuals and prolongated corrections, mostly on coarser levels. We assume
that the coarsest-grid problem in any given cycle is solved exactly and without
faults. Thus, we can exploit the ellipticity and argue that any small-area loss
in any of the auxiliary arrays is propagated to a (slightly) larger data loss in
the solution once we again reach the fine grid in the course of single multigrid
cycle. The actual size depends on the hierarchy level at which the fault occurs.
Consequently, we consider only the case of fault injection into the fine-grid
solution, but vary the amount of affected degrees of freedom.

To this end, we randomly choose a vertex of the fine grid, and consider
a small layer of elements around this vertex. For all degrees of freedom in
this rectangular patch, we invalidate all components of the fine-grid solution.
Figure 1 illustrates such an injection into a small patch of the converged fine
grid solution around the centre of the domain, exemplarily for zeroing the lost
components.

In practice, this procedure obviously requires knowledge about which patch
is lost. We return to this topic in Section 5.

3.3. Experimental convergence analysis of single faults

To analyse convergence in the presence of faults, we configure the multigrid
solver as described above, and emulate a fault by zeroing 169 (i.e., 0.02 %)
degrees of freedom of the fine grid iterate at the end of selected multigrid cycles.
For these experiments, we select the centre of the domain as the source of the
fault, which constitutes the ‘worst case’, cf. Figure 1. In our experiments, we
found that the smoothness of the test problem has the largest influence, and to
a much lesser extent, the size of the fault injection (0.02 to 10 % of the domain)
and the type and location of the fault injection (zeros, pseudo-random values in
the interval [−‖u‖max, ‖u‖max], sign flips, and bitflips excluding the high-order
exponent bits). Due to space constraints, we only vary the smoothness of the
problem, and keep the fault location and size fixed in this experiment.
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Figure 2: Multigrid convergence in the scaled residual norm (y-axis) for the smooth (left) and
oscillatory (right) test problem. Faults are injected at the end of different cycles. We first
compute the residual and its norm for convergence control, then inject the fault, and then
compute the residual norm again. Only the latter norm is depicted in the plots. For example,
the green (‘x glyphs’) curve corresponds to a fault injection after the second cycle.
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Figure 2 depicts the convergence of the multigrid solver, for the smooth and
the oscillatory test problem, respectively. Each plot corresponds to injecting
the described fault into the current fine-grid iterate after different cycles. The
green (‘x glyphs’, labelled as ‘injection step 2’) plot for instance corresponds to
the case that initially, the solver is permitted to iterate through two cycles in a
fault-free fashion. Then, a residual norm is computed for convergence control,
followed by the fault injection, and another residual norm computation. Only
the latter residual norm is shown in the plots, and hence, the corresponding
fault-free residual norm after the cycle can best be derived from the completely
fault-free (red, ‘plus glyphs’) plot.

We first note that all solvers iterate to convergence, and for these experi-
ments, the number of multigrid cycles slightly less than doubles in the worst
case. The later we inject a fault, the longer it takes to reach convergence. Using
the terminology of Sao and Vuduc [13], these results indicate that geometric
multigrid schemes are inherently ‘self-stabilising’ for elliptic (model) problems
with respect to transient, single soft faults. This is an advantage of multigrid
methods in contrast to general Krylov subspace schemes such as the conjugate
gradient method, where faults in the search directions, and hence the iteratively
constructed basis, may lead to divergence, or convergence to the wrong solution.
See below for a more theoretical argument.

However, we observe strong jumps in the residual norms, which ultimately
cause delayed convergence. Note that these jumps are in our taxonomy the
failures caused by the fault. Also, it is remarkable that the jumps all reach
the same plateau, independent of the cycle after which the fault is injected.
This behaviour is qualitatively identical for both the smooth and the oscillatory
test problems, the differences are only quantitative. For the smooth case, the
residual norm reaches values that are several orders of magnitude larger than
the initial norm.

We briefly comment on some exemplary quantitative differences we observed
in the tests not shown: For the smooth problem, the difference compared to the
presented case, in the residual norm, is at most one order of magnitude when
injecting random values or introducing bitflips. If we increase the patch size
up to 10 % of the domain and use bounded random values instead of zeros, the
difference increases to at most two orders of magnitude. For the oscillatory
problem, we obtain analogous values, with the exception that non-surprisingly,
the differences between injecting zeros and random values are slightly more
pronounced.

Figure 3: Visualisation of the residual immediately after injecting a fault into the almost
converged smooth solution (left), and a zoom on the vicinity of the faulty patch (right).
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Theoretical convergence considerations. Convergence in the case of single faults
can be shown rigorously. However, we omit a formal proof in this paper, and
only sketch its main ideas: First, multigrid is nothing more than a sophisticated
defect correction procedure, i.e., a fixed point iteration. In fact, Hackbusch’s
qualitative multigrid convergence proof [1] is based on contraction arguments
for the recursively defined iteration operator (propagation operator). The main
argument is that as long as the contraction property holds for a given iteration
operator, then convergence of the corresponding iteration procedure is guaran-
teed for any initial guess u0. This is basically Banach’s fixed point theorem,
see for instance [38, Section 4.2]. In particular, this means that in the event of
a fault, the new initial guess ũ0 is simply the last iterate uk with some faulty
entries. Since we assume that all matrices and grid transfer operators are not
affected, the contraction property is not affected by the fault, and convergence
is guaranteed. As a consequence, we may conclude that our findings hold for
general fixed-point iteration schemes.

Explanation of the jumps. This behaviour can be explained by a smoothness
argument. The Laplace operator (second directional derivatives) essentially
describes the curvature, and even in early cycles, the error and thus the residual
is already relatively smooth since the approximate solution is relatively smooth,
cf. Figure 1. Our fault injection model (replacement of values) generally implies
a weak singularity in the solution. This singularity translates to a steep change
of curvature at the patch boundary, which explains the large jump, and also
why the jump reaches the same plateau every time. The magnitude of the jump
however corresponds to the mesh width h, the smaller h, the larger the jump.
We can see in Figure 3, that the residual reaches a global maximum and a
global minimum within one element layer at the patch boundary, corresponding
to the two changes in curvature. Note that when injecting zeros, the residual
is small inside the faulty patch, at least for small patch sizes and the smooth
test problem. This however does not affect the jumps on the patch boundary,
which dominate the failure. For other differential operators, e.g., the gradient
in convection-diffusion problems, we expect similar behaviour.

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 0  2  4  6  8  10  12  14  16  18  20

Iteration

injection step 8
injection step 6
injection step 4
injection step 2

no injection

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 0  2  4  6  8  10  12  14  16  18  20

Iteration

injection step 8
injection step 6
injection step 4
injection step 2

no injection

Figure 4: Multigrid convergence in the L2 (y-axis) norm for the smooth (left) and oscillatory
(right) test problem, see Figure 2 for the analogous curves in the residual norm.

Analysis in the error norm. Our analysis so far has focused on residual-based
convergence control. To gain further insight, Figure 4 depicts the same exper-
iment, but this time in the L2 norm, see Section 3.1. We observe a similar
jump in the error as in the residual norm, which here is directly caused by the
weak singularity at the patch boundary. However, this jump and thus the fault
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injection only delay convergence if the fault dominates the L2 error. This is
particularly clear for the oscillatory problem: The solvers converge identically
to the fault-free case as long as the fault is injected early enough, i.e., as long
as the discretisation error does not dominate the overall error. For instance, an
injection after the second cycle has no negative impact on convergence, and the
jumps in the error are less pronounced for later injections. The mesh resolution
we use translates to different ‘plateaus’ at which the discretisation error can
no longer be reduced, depending on the smoothness of the problem. For the
smooth test problem, the discretisation error is approximately 10−8, and for the
oscillatory problem, it is three orders of magnitude larger. As the order of the
additional error caused by the fault is roughly the same in both test cases, the
jumps in the error are (almost) equally pronounced as in the residual norm for
the smooth case, and less dominant for the latter case.

In our implementation, the solver iterates until a residual-based convergence
criterion is met, while the error is not reduced further once it has reached the
level of the discretisation error. Our results indicate that ultimately, convergence
control based on error estimators rather than the residual [39] may result in
overall less work, as faults in later cycles would simply not happen with such a
convergence criterion, cf. the magenta and cyan plots (injection steps 6 and 8)
in Figure 4 on the right.

3.4. Recurrent faults

To conclude this first set of experiments, and to motivate our hierarchical
asynchronous local failure local recovery approach, we consider the case of re-
current fault injections, exemplarily for the smooth test problem. We randomly
pick small patches after every third cycle, and set the fine-grid solution values in
these patches to zero. A single patch again corresponds to 0.02 % of the entire
solution. Figure 5 depicts the resulting convergence of the multigrid solver. As
expected from our previous analysis, the solver fails to converge while the fault
injector is active, in both the residual and the error norm: Convergence is not
fast enough to compensate for the large jumps caused by each fault. Thus, we
may conclude that multigrid is only self-stabilising for single and sufficiently
infrequent faults, but not for recurrent ones.
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Figure 5: Convergence of the smooth test problem for injected faults at different locations
after every third multigrid cycle, in the scaled residual (left) and L2 (right) norm.
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4. Fault-tolerant multigrid with hierarchical, asynchronous checkpoint-
ing

4.1. Motivation

Classical checkpoint-restart techniques are designed to be ‘black-box’, the
user only specifies which state should be preserved. Checkpoints are taken
periodically, and for consistency reasons, they are taken globally synchronously,
e.g., after every other timestep in a transient simulation. In the traditional
approach, the restart after a fault is also global and synchronous, because this
is the most straightforward way to guarantee consistency. A lot of research has
been devoted to improve classical checkpoint-restart, including in particular
efforts towards scalable uncoordinated checkpointing protocols, see Section 2
for examples.

There is general consensus that global synchronous techniques are too slow
and their data volume is too high, in particular to increase robustness and reli-
ability of (linearised) subproblems which only constitute one, yet often the most
time-consuming, component in real simulations. Our proposed approach, which
we present in Section 4.2, addresses all three issues, i.e., data volume, synchron-
icity, and globality, albeit differently and in particular in a more problem-specific
way than the general solutions mentioned above. See Section 1.3 for our argu-
ment why this can be beneficial.

4.2. Proposed approach

We describe our novel fault-tolerance approach for multigrid methods by
starting from the ‘classical’ coordinated globally synchronous checkpoint-restart
paradigm, because we believe that this makes our ideas easier to understand.
In essence, we propose to checkpoint at more fine-granular intervals, which is
enabled by substantially less overhead and load imbalance in the recovery case
compared to existing solutions.

The main idea of our approach is to exploit the existing grid hierarchy and
thus the data compression that is already built into the algorithm, albeit for
other purposes. Even though we focus on geometric multigrid solvers in this
paper, we believe that similar techniques can be devised for other algorithms
that rely on some sort of hierarchical information representation, such as hier-
archical basis techniques used in multiscale methods, or wavelet compression.
Our approach follows the ‘local failure local recovery’ paradigm, cf. Teranishi
and Heroux [15].

Checkpointing. As we (currently) assume that all data, i.e., discrete operators
on all multigrid levels and the right hand side on the finest level, are not af-
fected by faults, it suffices to periodically checkpoint the fine-grid solution only,
after each fault-free iteration: The matrices and the right hand side are con-
stant during a linear solve, and all remaining auxiliary arrays of the multigrid
algorithm carry no useful information, because we consider the cycle as our level
of granularity.

Since a fine-grid array may be large, we reduce the data volume by storing
only a coarser representation. Similar to the ‘full multigrid’ algorithm (FMG,
see [1, 2, 14]), we use a restriction operation to construct a suitable checkpoint.
In this work, we employ unweighted injection as restriction, i.e., we keep all
solution values in DOF locations that are common to a finer and a coarser
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grid, and discard all other values. The restricted array is smaller by a factor
of four in 2D, and a factor of eight in 3D, per level of coarsening. Overall, we
obtain a geometric reduction in data volume and thus substantial savings. The
target level of the restriction process is a free optimisation parameter, which we
investigate in Section 4.3.

Since the checkpoint is taken directly after convergence control, our ap-
proach does not require an additional global synchronisation point. Instead, we
can copy the current fine-grid iterate, take the checkpoint asynchronously to the
computation of the next multigrid cycle using purely local, independent compu-
tations, and also store it asynchronously. Ignoring communication, the cost of
the checkpoint creation is smaller than the cost of the down-sweep of a V-cycle.
This bound is very conservative, since we do not apply smoothing during the
restriction phase of the checkpoint creation, and since the injection procedure
corresponds to a simple copy. We conclude that in our scheme, the fault-free
performance is barely reduced. We discuss the performance and overhead in
more detail in Section 5.2.

Recovery. When data loss is detected, we take the restricted checkpoint, and
prolongate it back to the fine grid. This is not done globally, but only for the
portion of the checkpoint that corresponds to the faulty patch (the lost node),
plus eventually one or two additional layers of neighbouring values depending on
the size of the support of the prolongation operator. We may thus refer to our
scheme as a local recovery. Again, any prolongation operator except injection
may be used, and in this work, we employ the finite element interpolation we
already use for the multigrid. In our tests, we found that in contrast to full
multigrid, it is not necessary to use higher-order interpolation. The extra costs
of the recovery are again substantially less than the up-sweep of a V-cycle.
Similar to the FMG scheme, we may also apply some smoothing locally.

It is important to note that we perform the recovery instantaneously, and
do not execute multigrid cycles between detection and correction. However, the
checkpoint may be asynchronous, i.e., it does not necessarily have to be based
on the very last fault-free cycle but may be older. We examine the influence of
the degree of asynchronicity experimentally in Section 4.3.

While the backup solution is restored, the solver may make progress else-
where. In practice, this typically means that all MPI processes that are no direct
neighbours may continue, because data exchange in parallel multigrid methods
is limited to immediate neighbours, see Section 1.1. This holds until the next
global synchronisation point is reached, which in current implementations of
parallel multigrid typically means convergence control, or the solution of the
coarse-grid problem. To alleviate the potential load imbalance, we suggest to
execute a cheaper, numerically weaker smoother during the next down-cycle
on the patch after recovery (on all other patches, the original smoother is em-
ployed), so that all processes converge again no later than at the coarse-grid
solver. In fact, temporarily reducing the amount of presmoothing only on the
fine grid should be more than sufficient in practice.

4.3. Numerical evaluation for single faults

In this section, we analyse the convergence of the proposed solver. Unless
otherwise noted, the fault injection and solver configuration are unchanged from
the previous tests in Section 3.3. Building upon our findings in Section 3, we
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initially restrict ourselves to two representative scenarios, corresponding to a
fault injection into an ‘early’ cycle, i.e., no convergence yet in neither the residual
nor the error norm, and a ‘late’ cycle, i.e., convergence not in the residual but in
the error norm (for the refinement level we consider). For the smooth problem,
the ‘early’ scenario corresponds to a fault injection and the immediate recovery
after the fourth cycle, and the ‘late’ scenario after the eighth cycle.

In these tests, the main free parameter is the compression factor of the
checkpoint, measured in multigrid levels (backup depth) starting from the fine
grid at depth zero. A backup level of 0 corresponds to no compression, and
for each additional coarsening level, the compression rate increases by a factor
of four, since we solve 2D problems. Unless otherwise noted, the checkpoint
corresponds to the previous cycle, respectively. We again emphasise that in
these experiments, we are only interested in the numerical behaviour of fault-
tolerant multigrid algorithms.

Early scenario. Figure 6 depicts the results we obtained for the smooth test
problem and the ‘early’ scenario, i.e., we inject and immediately recover from a
fault when the solution is neither converged in the residual nor the error norm.
In the residual norm, we again observe a jump despite the recovery, which
is however substantially smaller than in the uncorrected case. For moderate
compression rates (backup depths up to four levels, i.e., a factor of 256, the
solver requires only one additional iteration, and even for strong compression,
only two extra iterations are needed: The cyan (filled squares) plot corresponds
in 2D to a compression factor of 46 = 4096, i.e., the full, global checkpoint
comprises only 289 out of 1 050 625 unknowns. Depending on the location of
the faulty patch, only one unknown in the compressed backup represents the
entire 13×13 patch. These savings are remarkable, both in terms of data volume
and iterations. In the L2 norm (Figure 6 on the right), convergence is identical
to the error-free case.

1e-10

1e-08

1e-06

1e-04

1e-02

1e+00

1e+02

1e+04

 0  2  4  6  8  10  12  14  16  18  20

Iteration

no injection
backup depth 0

backup depth -2
backup depth -4
backup depth -6

no correction

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 0  2  4  6  8  10  12  14  16  18  20

Iteration

no injection
backup depth 0

backup depth -2
backup depth -4
backup depth -6

no correction

Figure 6: Convergence of the fault-tolerant multigrid solver in the scaled residual (left) and
L2 (right) norm, for the smooth test problem. After the fourth cycle, 169 degrees of freedom
around the centre of the domain are eliminated and immediately recovered from a checkpoint
of varying backup depth (compression level).

The behaviour is qualitatively and quantitatively the same for the oscillatory
test problem, see Figure 7: As expected, strong compression has diminishing
returns, because the relevant error components cannot be represented on too
coarse grids.

Late scenario. Figure 8 shows the analogous situation for the ‘late’ scenario
and the smooth test problem. For the same moderate compression factors, we
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Figure 7: Convergence of the fault-tolerant multigrid solver in the scaled residual (left) and L2

(right) norm, for the oscillatory test problem. After the fourth cycle, 169 degrees of freedom
around the centre of the domain are eliminated and immediately recovered from a checkpoint
of varying backup depth (compression level).

observe similar behaviour as in the previous scenario: In the residual norm,
the amount of cycles until convergence mildly increases, and in the L2 norm,
convergence is identical to the fault-free case. If however the compression is
too strong (more than four levels, i.e., more than a factor of 256 in 2D), the
recovered values on the patch are increasingly less beneficial. In both norms, we
again observe a jump. Its size increases with the compression level, resulting in a
proportional increase in iterations until convergence. In the oscillatory case, the
compression is less beneficial for the mesh resolution we prescribe, see Figure 9.
However, the uncompressed previous iterate fully restores the behaviour of the
fault-free case.

1e-12

1e-10

1e-08

1e-06

1e-04

1e-02

1e+00

1e+02

1e+04

 0  2  4  6  8  10  12  14  16  18  20

Iteration

no injection
backup depth 0

backup depth -2
backup depth -4
backup depth -6

no correction

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 0  2  4  6  8  10  12  14  16  18  20

Iteration

no injection
backup depth 0

backup depth -2
backup depth -4
backup depth -6

no correction

Figure 8: Convergence of the fault-tolerant multigrid solver in the scaled residual (left) and
L2 (right) norm, for the smooth test problem. After the eighth cycle, 169 degrees of freedom
around the centre of the domain are eliminated and immediately recovered from a checkpoint
of varying backup depth (compression level).

Detailed analysis. Due to space constraints, in the remainder of the paper we
only examine the smooth test problem, because as we have seen, there are no
important qualitative differences. Based on our findings in Section 3, these
jumps are in fact the expected behaviour: The purely local restoration again
results in a weak singularity along the boundary of the faulty patch, this time
in the corrected iterate. Without compression, the recovery replaces the current
(faulty) iterate with the one from the previous cycle in the faulty patch. This
can be clearly seen in Figure 10 (left), where we observe that the recovery (for
this test case) results in a small overshoot in parts of the patch: The exact
solution value in the centre of the domain is minus one, and the prolongated
previous iterate takes the value -1.04. With increasing compression, the severity
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Figure 9: Convergence of the fault-tolerant multigrid solver in the scaled residual (left) and L2

(right) norm, for the oscillatory test problem. After the eighth cycle, 169 degrees of freedom
around the centre of the domain are eliminated and immediately recovered from a checkpoint
of varying backup depth (compression level).

of this weak singularity gradually approaches the uncorrected case.
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Figure 10: Impact of the recovery for the smooth test problem: Zoom on the iterate (left) and
the residual (middle) after correcting the iterate without compression. One finite element cell
corresponds to four cells in the illustration, i.e., each grid point corresponds to one degree of
freedom. Right: L2 norm of the compressed checkpoint for different backup levels at different
iterations.

In the residual, this singularity again translates to a sharp change in curvature,
which in turn manifests itself as a jump. See Figure 10 (middle) for an illus-
tration. Importantly, for moderate backup levels up to four (corresponding to
a compression by 256) for the smooth case, this jump is substantially smaller
than in the uncorrected case, and overall behaves proportionally to the backup
level.

In the error norm, the quality of the recovered solution can be quantified.
To illustrate this, we compute the L2 norm of the compressed checkpoint at dif-
ferent cycles and backup levels, see Figure 10 (right). Without compression, the
error reduction is in line with the fault-free case, cf. the green plot in Figure 10
(right) with the red and green plots in Figures 6 and 8. The more compres-
sion (backup depth) we apply, the earlier the error saturates, both in terms of
iterations and absolute amount. This is the expected behaviour, because with
increasing iterations, more and more remaining error frequencies can only be
captured on finer and finer grids. The progress that the solver has made so far
is already optimal with respect to the mesh width, and a too coarse checkpoint
resolution results in stagnation of the error reduction, because the achievable
discretisation error dominates. Figuratively speaking, the correction with the
recovered solution from the previous cycle is always the same from a certain
iteration onwards.

A brief derivation based on the weak formulation (see AppendixA) yields
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the following general quantitative estimate for the case of fault injection into
an already converged solution in the L2 sense. If we denote by γ the fraction of
unknowns that comprise the faulty patch, then

Jk ∼ 8k
√
γ (2)

holds for the expected jump Jk in the error norm and biquadratic conforming
elements, where k denotes the difference between the finest and the backup level.
The square root stems from the use of the L2 norm. In our case, γ ≈ 0.02%,
and the estimate is well in line with the quantitative observations: For instance,
in Figure 8 (right), and k = 6, the formula yields approximately 3.3 · 103, and
the jump in the cyan plot (‘backup depth -6’) is approximately 1.2 · 103.

These observations suggest that the backup level should be chosen depending
on the progress that the solver has achieved so far. We return to this question
in Section 4.4.

Asynchronous checkpoints. One of the advantages of our approach is that the
checkpoints can be taken asynchronously, or more precisely, that any available
previous checkpoint can be used as a starting point to prolongate the correction
term in the faulty patch. To evaluate the impact of older values numerically,
we consider the smooth test problem and the same single fault injection as
throughout this section, and exemplarily a backup depth of four, i.e., a com-
pression factor of 256.
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Figure 11: Impact of the age of the checkpoint (measured in cycles) for the smooth test
problem and a backup four levels coarser. Fault injection after the fourth cycle, scaled residual
(left) and L2 (right) norm.
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Figure 12: Impact of the age of the checkpoint (measured in cycles) for the smooth test
problem and a backup four levels coarser. Fault injection after the eighth cycle, scaled residual
(left) and L2 (right) norm.

Figures 11 and 12 depict the convergence behaviour of the fault-tolerant
multigrid solver for increasing age, measured in cycles, of the checkpoint, for the
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‘early’ and ‘late’ scenarios. An age of one corresponds to the checkpointed iterate
from the previous cycle, and thus to the situation in our previous tests. For an
early fault injection, we observe a gradual increase in the number of iterations
needed until convergence, caused again by an increasing jump in the residual.
Since in practice we only expect one or two cycles delay, the asynchronicity
is paid for with one or two additional iterations. In the L2 norm, only large
delays cause visible differences. In the late scenario, the delay has virtually no
effect at all, in both norms. This is a direct consequence of the fact that at this
compression level, the stored checkpoint is too coarse to capture the remaining
error frequencies, cf. our detailed analysis above and Figure 10 (right).

Discussion. If we consider conventional convergence control based on residual
norms only, our fault-tolerance mechanism for multigrid requires less iterations
compared to the uncorrected case in all our experiments. This holds as long
as the compression level is not chosen extremely. Only for very late faults,
i.e., in the case that the solution is already converged in the L2 sense, and for
aggressive compression, the amount of iterations approaches but never exceeds
the uncorrected case. This, along with the other advantages we discussed, is an
important benefit of our proposed approach.

It is instructive to compare the resulting iteration numbers with the ones
that a global checkpoint-restart mechanism would yield. If we detect the error
and immediately globally restart the solver with the original initial guess, we
would require at most twice the amount of iterations. Our solver always re-
quires substantially fewer iterations if the compression level is not chosen too
aggressively, and does not require any global restart.

If, on the other hand, we would always checkpoint the current iterate and
restart from it, we would need exactly one additional iteration. This tradeoff
is actually a major advantage of our proposed method: It allows to balance
the cost of a global checkpoint-restart scheme (which is a special case of our
method) with the additional iterations implied by our local recovery scheme.
Given that our approach yields the same behaviour as the fault-free case if the
compression depth is not chosen too ambitiously, there is ample head space to
explore in architecture and problem-size specific tuning. We return to perform-
ance considerations in Section 5.2.

4.4. Recurrent faults

In Section 3.4 we have observed that the multigrid solver fails to converge in
the presence of recurrent faults. To examine if our recovery mechanism alleviates
this issue, we consider the case of fault injection after every third cycle, starting
from the second cycle and continuing without faults at the 16th cycle. Figure 13
depicts the convergence plots in the residual and error norms, respectively.

We can see that our fault-tolerance scheme is not able to guarantee conver-
gence in the residual norm. This is actually not surprising, given our previous
analysis: After the error has been reduced to a certain order, the checkpoint
does no longer contain any uneliminated error components (frequencies), and
convergence stalls and jumps appear. In this sense, the plot corresponding to
not applying any compression (green, filled squares) is actually misleading, if
we would have injected faults more often, the solver would have failed to con-
verge as well. With increasing compression level, the situation gets worse. It
is instructive to compare this figure with the quality of the checkpoint in the
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Figure 13: Impact of the recurrent fault injection and immediate recovery from varying com-
pression levels, for the smooth test problem: scaled residual (left) and L2 (right) norm

L2 sense, shown in Figure 10 (right). In addition, the injection frequency is
(deliberately) too high in this test case, so that the solver fails to compensate
for the jumps in the fault-free cycles.

In the L2 norm however, we observe convergence to the order of the discret-
isation error for moderate compression levels, i.e., up to two levels of compres-
sion. This again underlines that convergence control based on error estimators
rather than the residual may be beneficial despite the additional numerical ef-
fort, see the end of Section 3.3.

Improving convergence. To achieve convergence even in the residual norm, we
have to abandon the idea of recovery based on replacing lost patches with in-
formation from the previous iteration only. Instead, we apply a standard idea
for elliptic boundary value problems: Instead of replacing lost values with pre-
vious ones, we communicate the fault-free layer of values from the immediate
neighbourhood of the lost patch to the lost node, and use them as Dirichlet
data for an auxiliary problem on the patch. If we then solve this small auxil-
iary problem, we recover the entire lost patch and thus guarantee convergence
of the full problem. This approach is somewhat similar to Laplace corrections
originally proposed in image processing [40], and has also been discussed for the
GMRES method by Langou et al. [41].

From an implementation point of view, these local solves may be cum-
bersome. In our FEAST framework (see Section 1.1 and reference [6]), such
local solves are actually an integral part of the patch concept and the solution
strategy. Even though such local solves, in particular with a local multigrid
method, have been integrated for numerical scalability reasons in case of strong
anisotropies and locally varying coefficients, this infrastructure is now very be-
neficial, since we can employ it (almost) without additional effort.

Adaptive local solves. Even though this auxiliary problem is small compared to
the global large-scale problem, solving it may be costly. Also, in our envisioned
scenario of a dead node, the local problem is so large that sparse direct solvers
are inefficient both in terms of runtime and additional memory, and we have to
resort to an iterative solver. We discuss several strategies to reduce the impact
of the local solve, which in turn reduce the implied load imbalance of the global
solver. In our experiments, we found that simply applying the smoother for
a small number of local iterations is not beneficial. Even though it helps to
reduce the jumps in the case of early faults, we ultimately reach the case where
smoothing alone, on the fine grid, does not reduce the error frequencies fast
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enough that remain in the iterate. In fact, in our experiments we obtain results
qualitatively identical to Figure 13.

We thus have to solve this auxiliary local problem ‘exactly’. As a first ad-
aptivity criterion, we note that it suffices to prescribe a (residual-based) stopping
criterion that corresponds to the progress that the outer solver has reached so
far, eventually equipped with a small safety margin. In other words, the later
an error occurs, the more exact must the auxiliary problem be solved. This
strategy is obvious.

Our second adaptive scheme makes use of the local compressed backup.
Even though it is not useful on its own as a checkpoint, it is extremely useful as
an initial guess for the local solve. Thus, all outlined benefits of our approach
in terms of data volume, locality and asynchronicity remain valid. Figure 14
depicts on the left the convergence of our final fault-tolerant multigrid scheme,
for varying compression levels of the initial guess for the local auxiliary solve,
in the same case of recurrent faults examined above.
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Figure 14: Convergence of the final fault-tolerant multigrid equipped with local solves using
the (compressed) checkpoint as an initial guess, in case of frequent, recurrent faults. Left:
convergence in the scaled residual norm. Right: Iterations of the local solver at different fault
injection cycles, for varying backup depths (compression levels); ‘none’ denotes an initial guess
of all zeros instead of the checkpoint. As the implementation is prototypical (we employ the
smoother as a local solver), the y axis is unlabelled and we do not argue about the amount
of savings in iterations. The relative differences however are independent of the type of the
local solver.

Looking at the iterations of the local solve given in Figure 14 on the right, we
first observe that, as expected, solving the local problem requires more and more
iterations the later a fault occurs. Using the checkpoint from the previous cycle
as an initial guess is always beneficial. The numbers also highlight that choosing
the compression level adaptively in the course of the global solution is a good
strategy. For instance, an aggressive compression yields the same iterations as
no compression for early faults, etc. Ignoring small granularity effects, we can
state that there is always an optimal compression level that yields iterations
comparable to those of the uncompressed checkpoint. This relation is linear
and can thus be easily implemented heuristically.

5. Practical aspects and performance modelling

5.1. General discussion

As outlined in Section 1.3, one of the most common scenarios of ‘data loss’
in multigrid methods is when an entire compute node dies. Our notion of a
‘node’ is deliberately vague, but without loss of generality we can restrict the
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discussion to the case that in some MPI communicator, at least one rank is
unresponsive. We briefly explain how such a situation can be accounted for
with recently proposed additions to the MPI standard.

In particular, so-called ‘revoke’ mechanisms for MPI communicators in-
volving nonresponsive (presumably dead) ranks seem good candidates. Research
in this direction is pursued for instance in the FT-MPI project [42]. Also, we
anticipate this or similar techniques to be included1 (in one way or another) in
the upcoming MPI-4 standard, and thus to become widely available along with
the arrival of actual exascale machines. Essentially, the FT-MPI proposal only
specifies a general API providing mechanisms to gracefully survive hard and soft
failures, centred around the ULFM (user level failure mitigation) paradigm, i.e.,
a set of MPI interface extensions to enable MPI programs to restore MPI com-
munication capabilities disabled by failures. For instance, O(log p) algorithms
are provided (where p is the number of processes) to determine which rank has
failed. Using such functionality, the actual mitigation including the spawning
of a new MPI process must be implemented by the application. In the case
of our proposed resilient multigrid solver, this means that for instance, values
from neighbouring nodes need to be communicated. But since the required in-
formation is essentially already available from the way parallel multigrid solvers
are implemented, we anticipate that not much more than a few allreduce-type
operations on the neighbourhood communicator need to be added.

5.2. Performance and overhead estimation

To model the performance and benefits of our approach, we assume a macro
mesh (see Section 1.1) where each patch is assigned to one processor. Each
patch is uniformly refined L times into an N ×N mesh. The numbering starts
with zero for the coarse mesh, and level L for the fine grid. We model a ScaRC
multigrid solver, with local multigrid per node and communication only via
patch boundaries (ghost layer of one element).

In our model, we are primarily interested in the time budget that our ap-
proach yields, and in the time compared to classical synchronous checkpointing.
Hence, we ignore the case where the solution of an auxiliary problem is neces-
sary. We use the following quantities:

top - time for one floating point operation
α - latency of communication between nodes

BW - bandwidth between nodes
nsmooth - sum of pre- and postsmoothing steps

p - order of the FEM discretisation, i.e., Qp

δ - additional iterations due to the fault
depth - depth of the backup solution

We restrict our model to the 2D case for simplicity. For a finite element
ansatz with Qp elements, pN is an approximation of the number of degrees of
freedom per spatial dimension: Q1 : N , Q2 : 2N − 1, . . . ). Furthermore, we
assume double precision floating point arithmetics.

To estimate the computational cost, we need to know the number of nonzero
entries of each matrix row. For conforming finite elements of order p, the support
of each ansatz function comprises on average (p + 2)2 functions. For matching

1http://www.open-mpi.org/papers/sc-2014
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prolongations and restrictions, the size of the support is bounded by the number
of degrees of freedom per element, i.e., we obtain a support of at most (p+ 1)2

functions. This simplification ignores prolongations of locations on edges, but
since all inner points of an element require the full support, our approximation
improves with increasing order.

The total runtime of our approach, including regular backups and one repair
step, can then be expressed as

Ttotal = (niter + δ)

(
Tsmooth + Tcycle + Tbackup +

(
α+ 8pN

8 byte

BW

))
+ Trepair,

where we ignore the (tiny) time required by the coarse grid solves. The latency-
bandwidth summand models time for all communications to patch neighbours.
The time for smoothing,

Tsmooth =

L∑
i=1

(
pN

2L−i

)2 (
nsmooth · (2(p+ 2)2 + 2) + 2(p+ 2)2 + 1

)
top

comprises the operations for pre- and postsmoothing, and the time needed to
compute the residual prior to the restriction step. Here, we assume a damped
Jacobi smoother, i.e., per smoothing step on average 2(p + 2)2 operations are
performed per degree of freedom for the matrix-vector multiplication and an
additional two operations for the actual damped scaling by the matrix diagonal.

The prolongation takes

L∑
i=1

(
pN

2L−i

)2

(p+ 1)2 top

time, and thus, the entire cycle without smoothing and coarse grid solution
takes, assuming the transposed prolongation as restriction:

Tcycle = 2

L∑
i=1

(
pN

2L−i

)2

(p+ 1)2 top.

The construction of the backup is trivial, because we use the injection oper-
ator, and owing to the two-level numbering, only its leading entries have to be
read. Thus, the amount of data needed for the backup is reduced exponentially
in the backup depth, and we obtain:

Tbackup = α+

(
pN

2depth

)2
8 byte

BW
.

The repair step contains the prolongation of the stored backup back to the
fine grid. We employ the prolongation operator already used in the multigrid
cycles:

Trepair =

L∑
i=L−depth+1

(
pN

2L−i

)2

(p+ 1)2 top + α+

(
pN

2depth

)2
8 byte

BW
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In contrast, classical checkpoint-restart techniques do not compress, yielding:

Tbackup,CPR = Trepair,CPR = α+ (pN)2 8 byte

BW

Having all these estimates in place, we can now compute the time difference
of the two methods, assuming that no additional iterations take place (δ = 0).
Obviously, the difference lies mainly in the costs for backup and repair. Note
that positive values of the difference imply that our method is beneficial:

niter

(
(pN)2 8 byte

BW
−
(

pN

2depth

)2
8 byte

BW

)
(backup)

+ (pN)2 8 byte

BW
−

L∑
i=L−depth+1

(
pN

2L−i

)2

(p+ 1)2 top −
(

pN

2depth

)2
8 byte

BW

(repair)

=
niter + 1

4depth

(
4depth − 1

)
(pN)2 8 byte

BW
− 4(p+ 1)2

3
(1− 1

4depth
)top

For top � 1
BW , we obtain the following upper bound for the savings in time,

on top of the exponential savings in memory:

(niter + 1)(pN)2 8 byte

BW
(3)

Every additional iteration of the scheme, that is caused by the lossy com-
pression, requires:

Tsmooth + Tcycle + Tbackup + α+ 8
pN · 8 byte

BW

=

L∑
i=1

(
pN

2L−i

)2 (
nsmooth · (2(p+ 2)2 + 2) + 2(p+ 2)2 + 1

)
top (smoothing)

+ 2

L∑
i=1

(
pN

2L−i

)2

(p+ 1)2top + α+ 8pN
8 byte

BW
(cycle+comm.)

+ α+

(
pN

2depth

)2
8 byte

BW
(backup)

=
4

3
(1− 1

4L
)(pN)2

(
nsmooth · (2(p+ 2)2 + 2) + 4(p+ 2)2 + 1

)
top

+ pN(
pN

4depth
+ 8)

8 byte

BW
+ 2α.

Application of the performance model. We exemplarily evaluate the model with
a Q2-FEM discretisation, i.e., p = 2 on a mesh hierarchy of eight levels (L = 7)
and the four Jacobi smoothing steps (nsmooth = 4). As the target machine,
we consider Hornet, as per the November 2014 TOP500 list Germany’s third-
fastest machine installed at the HLRS in Stuttgart. Hornet comprises 94 656
cores in 3 944 nodes.2. We scale the performance for typical sparse linear al-
gebra computations of 39 TFLOPS3 down to the node level, resulting in top =

2http://www.hlrs.de/systems/platforms/cray-xc40-hornet
3http://www.hpcg-benchmark.org/custom/index.html?lid=155&slid=275
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0.101 ns. The available bandwidth between nodes is approximately 14 GBit/s
(BW=1.75 GB/s), with a latency of α = 1 500 ns.4. We scale up the problem
size to (2 ·213)2 degrees of freedom, i.e., N = 213, matching the installed 128 GB
of memory per node. Finally, we assume that in the fault-free case, the solver
converges in niter = 20 iterations.
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Figure 15: Exemplary model predictions of time savings and asymptotics

In Figure 15, we see exemplary results and predictions of our model. The
green plot is simply the upper bound (3) for top � 1

BW , i.e., the asymptotically
maximum time available for additional iterations δ in our approach. Since we
assume 20 iterations and the upper bound is predicted at 25 s, this means that
our approach saves 25/20=1.25 s per iteration.

The red plot shows the time savings of our approach as a function of the com-
pression depth. We observe that asymptotically, stronger compression becomes
less effective, and quickly approaches the asymptotic limit.

We now take exemplarily the data point for depth = 2 from the red plot,
this yields the magenta plot, showing the available time budget for this backup
depth, again for 20 multigrid iterations. Note that this backup depth addition-
ally corresponds to savings of a factor of eight in memory consumption. The
blue plot shows the time for multigrid iterations (x-axis). Looking at the in-
tersection of the two curves, we can see that within our model parameters, our
model predicts a budget of δ ≤ 3 additional iterations to compensate for the
lossy compression while still being beneficial compared to full checkpoints of the
fine-grid iterate.

6. Outlook and future work

Our experimental analysis of the convergence behaviour and our performance
model have shown noteworthy efficiency improvements of our approach to make
multigrid solvers more resilient. In addition, the effort required by our family
of techniques can be tailored to the expected mean time between failure.

There are several main avenues for future work. First, our experimental
analysis needs to be backed up by theoretical considerations, as sketched in
Section 3.3. Second, we need to consider other PDEs, for instance transport-
dominated convection-diffusion problems, although we expect similar behaviour

4https://www.nersc.gov/assets/pubs_presos/NUG2014Aries.pdf
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in the residual norm for gradients instead of the Laplace operator (curvature).
Finally, we plan to experiment with other techniques, like improved interpol-
ation, to dampen the impact of the weak singularity in and around the lost
patch, that is the root cause of convergence degradation. Also, our prototypical
implementation needs to be transferred to our FEAST code base in order to
address scalability and load balancing issues associated with our approach and
to assess how well our performance model works on real machines.
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AppendixA. Derivation of the quantitative impact of fault injection
on the error norm

In this appendix, we assume a finite element discretisation with biquadratic
conforming elements, i.e., polynomial order p = 2. A simple linearity argument
gives that(∫

Ω

(u− uh)2dx

) 1
2

=
(∫

Ω\Ωe

(u− uh)2dx︸ ︷︷ ︸
=O(h2(p+1))

+

∫
Ωe

(u− uh)2dx
) 1

2

,

holds for the L2 error, if Ωe denotes the patch of lost data. The order-six
term h2(p+1) = h6 is a direct property of the finite element space we use, see
for instance [43]. We now replace uh with a backup solution uh,k, which is
prolongated from a k-times coarser checkpoint of the previous fine-grid iterate.
Here, analogously to Section 4.2, k denotes the level difference rather than an
actual compression factor. Since we analyse the uniformly refined setting only,
k = 0 corresponds to a checkpoint on the mesh h, k = 1 to a checkpoint for the
mesh h

2 etc.
Substitution of the fully repaired solution ũh yields:(∫

Ω

(u− ũh)2dx

) 1
2

=
(∫

Ω\Ωe

(u− uh)2dx︸ ︷︷ ︸
=O(h2(p+1))

+

∫
Ωe

(u− uh,k)2dx︸ ︷︷ ︸
=22k(p+1) O(h2(p+1))

) 1
2

Assuming that the fraction |Ωe|
|Ω| =: γ is small, we obtain for biquadratic
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elements: (∫
Ω

(u− ũh)2dx

) 1
2

≈
(

(1− γ)O(h6) + γ64k O(h6)
) 1

2

= (1− γ + 64kγ)
1
2O(h3)

≤ (1 + 64kγ)
1
2O(h3)

≤ (1 + 8k
√
γ)O(h3).

This shows that the order of the jump, Jk, in the limit of a converged iterate,
is proportional to

Jk ∼ 8k
√
γ

in the L2 (error) norm.
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