

GPU Cluster Computing for Finite Element Applications

Dominik Göddeke Sven H.M. Buijssen, Hilmar Wobker and Stefan Turek

Applied Mathematics TU Dortmund, Germany dominik.goeddeke@math.tu-dortmund.de

SIAM Conference on Computational Science and Engineering Emerging Manycore Architectures Minisymposium Miami, March 6, 2009

Introduction

FEAST

Co-processor integration

Results

Scientific computing is in the middle of a paradigm shift

ILP wall	memory wall	characteristic feature size
heat	power consumption	leaking voltage

Hardware evolves towards parallelism and heterogeneity

multicore CPUs Cell BE processor GPUs

Emerging manycore architectures

accelerators algorithm design for 10000s of threads

Introduction

FEAST

Co-processor integration

Results

FEAST -

Hardware-oriented Numerics

Introduction

FEAST

Co-processor integration

Results

U technische universität dortmund

Fully adaptive grids

Maximum flexibility 'Stochastic' numbering Unstructured sparse matrices Indirect addressing, very slow.

Locally structured grids

Logical tensor product Fixed banded matrix structure Direct addressing (\Rightarrow fast) *r*-adaptivity

Unstructured macro mesh of tensor product subdomains

Introduction

FEAST

Co-processor integration

Results

Example: SpMV on TP grid

- Opteron X2 2214, 2.2 GHz, 2x1 MB L2 cache, one thread
- 50 vs. 550 MFLOP/s for interesting large problem size
- Caching of coefficient vector, full streaming bandwidth for A
- const: constant coefficients \Rightarrow stencil

In	tr	0	d	u	c	t	i	0	n	
~										

FEAST

Co-processor integration

Results

Solver structure

ScaRC – Scalable Recursive Clustering

- Minimal overlap by extended Dirichlet BCs
- Hybrid multilevel domain decomposition method
- Inspired by parallel MG ("best of both worlds")
 - Multiplicative vertically (between levels), global coarse grid problem (MG-like)
 - Additive horizontally: block-Jacobi / Schwarz smoother (DD-like)
- Hide local irregularities by MGs within the Schwarz smoother
- Embed in Krylov to alleviate Block-Jacobi character

global BiCGStab				
preconditioned by				
global multilevel (V 1+1)				
additively smoothed by				
for all Ω_i : local multigrid				
coarse grid solver: UMFPACK				

uction

In

FEAST

0000

Co-processor integration 000000 Results

Block-structured systems

- Guiding idea: Tune scalar case once per architecture instead of over and over again per application
- Equation-wise ordering of the unknowns
- Block-wise treatment enables multivariate ScaRC solvers

Examples

- Linearised elasticity with compressible material
- Stokes
- Saddle point problems: Elasticity with (nearly) incompressible material, Navier-Stokes with stabilisation

$$\begin{pmatrix} \textbf{A}_{11} & \textbf{A}_{12} \\ \textbf{A}_{21} & \textbf{A}_{22} \end{pmatrix} \begin{pmatrix} \textbf{u}_1 \\ \textbf{u}_2 \end{pmatrix} = f, \begin{pmatrix} \textbf{A}_{11} & \textbf{0} & \textbf{B}_1 \\ \textbf{0} & \textbf{A}_{22} & \textbf{B}_2 \\ \textbf{B}_1^\top & \textbf{B}_2^\top & \textbf{0} \end{pmatrix} \begin{pmatrix} \textbf{v}_1 \\ \textbf{v}_2 \\ \textbf{p} \end{pmatrix} = f, \begin{pmatrix} \textbf{A}_{11} & \textbf{A}_{12} & \textbf{B}_1 \\ \textbf{A}_{21} & \textbf{A}_{22} & \textbf{B}_2 \\ \textbf{B}_1^\top & \textbf{B}_2^\top & \textbf{C}_C \end{pmatrix} \begin{pmatrix} \textbf{v}_1 \\ \textbf{v}_2 \\ \textbf{p} \end{pmatrix} = f$$

 A_{11} and A_{22} correspond to scalar (elliptic) operators \Rightarrow Tuned linear algebra **and** tuned solvers

Introduction	FEAST	Co-processor integration	Results	Conclusions
0	0000	000000	0000000	00

Co-processor integration into FEAST

Introduction

FEAST

Co-processor integration

Results

ntroduction	FEAST	Co-processor integration	Results	Conclusions
C	0000	00000	0000000	00

Example: SpMV on TP grid

40 GFLOP/s, 140 GB/s with CUDA on GeForce GTX 280 'only' 13 GFLOP/s on 8800 GTX (90 GB/s peak)

Introduction	FEAST	Co-processor integration	Results	Conclusions
0	0000	00000	0000000	00

	single p	precision	double precision		
Level	Error	Reduction	Error	Reduction	
2	2.391E-3		2.391E-3		
3	5.950E-4	4.02	5.950E-4	4.02	
4	1.493E-4	3.98	1.493E-4	3.99	
5	3.750E-5	3.98	3.728E-5	4.00	
6	1.021E-5	3.67	9.304E-6	4.01	
7	6.691E-6	1.53	2.323E-6	4.01	
8	2.012E-5	0.33	5.801E-7	4.00	
9	7.904E-5	0.25	1.449E-7	4.00	
10	3.593E-4	0.22	3.626E-8	4.00	

- \bullet Poisson $-\Delta \textbf{u}=\textbf{f}$ on $[0,1]^2$ with Dirichlet BCs, MG solver
- Bilinear conforming Finite Elements (Q_1) on cartesian mesh
- L₂ error against analytical reference solution
- Residuals indicate convergence, but results are completely off
- Mixed precision solver: double precision Richardson, preconditioned with single precision MG ('gain one digit')
- Same results as entirely in double precision

ı			÷	-	_	_		_		:	_	-	
	ł	ł	۲		9	u	u	-	۲	1	9	-	

Co-processor integration

Results

Core2Duo (double)			GTX 280 (mixed)			
Level	time(s)	MFLOP/s	time(s)	MFLOP/s	speedup	
7	0.021	1405	0.009	2788	2.3x	
8	0.094	1114	0.012	8086	7.8x	
9	0.453	886	0.026	15179	17.4x	
10	1.962	805	0.073	21406	26.9x	

- Poisson on unitsquare, Dirichlet BCs, not only a matrix stencil
- 1M DOF, multigrid, FE-accurate in less than 0.1 seconds!
- 27x faster than CPU
- 1.7x faster than pure double on GPU
- 8800 GTX (correction loop on CPU): 0.44 seconds on level 10

technische universität dortmund

global BiCGStab preconditioned by global multilevel (V 1+1) additively smoothed by for all Ω_i : local multigrid

coarse grid solver: UMFPACK

All outer work: CPU, double Local MGs: GPU, single

GPU is preconditioner

Applicable to many coprocessors

FEAST

Co-processor integration

Results

General approach

- Balance acceleration potential and integration effort
- Accelerate many different applications built on top of one central FE and solver toolkit
- Diverge code paths as late as possible
- No changes to application code!
- Retain all functionality
- Do not sacrifice accuracy

Challenges

- Heterogeneous task assignment to maximise throughput
- Limited device memory (modeled as huge L3 cache)
- Overlapping CPU and GPU computations
- Building dense accelerated clusters

technische universität

dortmund

Some results

Introduction

FEAST

Co-processor integration

Results

Linearised elasticity

$$\begin{pmatrix} \mathsf{A}_{11} & \mathsf{A}_{12} \\ \mathsf{A}_{21} & \mathsf{A}_{22} \end{pmatrix} \begin{pmatrix} \mathsf{u}_1 \\ \mathsf{u}_2 \end{pmatrix} = \mathsf{f} \\ \begin{pmatrix} (2\mu + \lambda)\partial_{xx} + \mu \partial_{yy} & (\mu + \lambda)\partial_{xy} \\ (\mu + \lambda)\partial_{yx} & \mu \partial_{xx} + (2\mu + \lambda)\partial_{yy} \end{pmatrix}$$
 global multivariate BiCGStab block-preconditioned by Global multivariate multilevel (V 1+1) additively smoothed (block GS) by for all Ω_i : solve $\mathsf{A}_{12} = \mathsf{d}_1$ by local scalar multigrid update RHS: $\mathsf{d}_2 = \mathsf{d}_2 - \mathsf{A}_{21}\mathsf{c}_1$ for all Ω_i : solve $\mathsf{A}_{22}\mathsf{c}_2 = \mathsf{d}_2$ by local scalar multigrid

coarse grid solver: UMFPACK

troduction	FEAST	Co-processor integration	Results	Conclusions
	0000	000000	0000000	00

Accuracy (I)

Conclusions

• Same results for CPU and GPU

- L₂ error against analytically prescribed displacements
- Tests on 32 nodes, 512 M DOF

Introduction	FEAST	Co-processor integration	Results
0	0000	000000	0000000

Accuracy (II)

technische universität dortmund

Cantilever beam, aniso 1:1, 1:4, 1:16 Hard, very ill-conditioned CSM test CG solver: > 2x iterations per refinement GPU-ScaRC solver: same results as CPU

aniso04	aniso04 Iterations		Vol	ume	y-Displacement		
refinement L	CPU	GPU	CPU	GPU	CPU	GPU	
8	4	4	1.6087641E-3	1.6087641E-3	-2.8083499E-3	-2.8083499E-3	
9	4	4	1.6087641E-3	1.6087641E-3	-2.8083628E-3	-2.8083628E-3	
10	4.5	4.5	1.6087641E-3	1.6087641E-3	-2.8083667E-3	-2.8083667E-3	
aniso16							
8	6	6	6.7176398E-3	6.7176398E-3	-6.6216232E-2	-6.6216232E-2	
9	6	5.5	6.7176427E-3	6.7176427E-3	-6.621655 1 E-2	-6.621655 2 E-2	
10	5.5	5.5	6.7176516E-3	6.7176516E-3	-6.6217501E-2	-6.621750 2 E-2	

Introduction	FEAST	Co-processor integration	Results	Conclusions
0	0000	000000	0000000	00

Weak scalability

- Outdated cluster, dual Xeon EM64T,
- one NVIDIA Quadro FX 1400 per node (one generation behind the Xeons, 20 GB/s BW)
- Poisson problem (left): up to 1.3 B DOF, 160 nodes
- Elasticity (right): up to 1 B DOF, 128 nodes

Absolute speedup

U technische universität dortmund

- 16 nodes, Opteron X2 2214,
- NVIDIA Quadro FX 5600 (76 GB/s BW), OpenGL
- Problem size 128 M DOF
- Dualcore 1.6x faster than singlecore
- GPU 2.6x faster than singlecore, 1.6x than dual

Introduction

Co-processor integration

Results

Speedup analysis

- Addition of GPUs increases resources
- \Rightarrow Correct model: strong scalability inside each node
- Accelerable fraction of the elasticity solver: 2/3
- Remaining time spent in MPI and the outer solver

technische universität

dortmund

ntroduction	FEAST	Co-processor integration	Results	Conclusions
)	0000	000000	00000000	00

Stationary Navier-Stokes

technische universität dortmund

$$\begin{pmatrix} \textbf{A}_{11} & \textbf{A}_{12} & \textbf{B}_1 \\ \textbf{A}_{21} & \textbf{A}_{22} & \textbf{B}_2 \\ \textbf{B}_1^T & \textbf{B}_2^T & \textbf{C} \end{pmatrix} \begin{pmatrix} \textbf{u}_1 \\ \textbf{u}_2 \\ \textbf{p} \end{pmatrix} = \begin{pmatrix} \textbf{f}_1 \\ \textbf{f}_2 \\ \textbf{g} \end{pmatrix}$$

- 4-node cluster
- Opteron X2 2214
- GeForce 8800 GTX (90 GB/s BW), CUDA
- Driven cavity and channel flow around a cylinder

fixed point iteration solving linearised subproblems with global BiCGStab (reduce initial residual by 1 digit) Block-Schurcomplement preconditioner 1) approx. solve for velocities with global MG (V 1+0), additively smoothed by for all Ω_i : solve for $\mathbf{u_1}$ with local MG

> for all Ω_i: solve for u₂ with local MG

2) update RHS:
$$\mathbf{d_3} = -\mathbf{d_3} + \mathbf{B^T}(\mathbf{c_1}, \mathbf{c_2})^T$$

3) scale $\mathbf{c_3} = (\mathbf{M_n^L})^{-1}\mathbf{d_3}$

 Introduction
 FEAST
 Co-processor integration
 Results
 Conclusions

 0
 0000
 000000
 0000000
 00

Speedup analysis

	R _{acc}		S _{local}		$S_{\rm total}$	
	L9	L10	L9	L10	L9	L10
DC Re100	41%	46%	бх	12x	1.4x	1.8x
DC Re250	56%	58%	5.5x	11.5x	1.9×	2.1x
Channel flow	60%	_	бx	_	1.9×	_

Important consequence: Ratio between assembly and linear solve changes significantly

DC Re100		DC F	Re250	Channel flow		
plain	accel.	plain	accel.	plain	accel.	
29:71	50:48	11:89	25:75	13:87	26:74	

I	n	t	r	0	d	u	c	t	i	0	1

FEAST

Co-processor integration

Results

Conclusions

Introduction

FEAST

Co-processor integration

Results

- Hardware-oriented numerics prevents existing codes being worthless in a few years
- Mixed precision schemes exploit the available bandwidth without sacrificing accuracy
- GPUs as local preconditioners in a large-scale parallel FEM package
- Not limited to GPUs, applicable to all kinds of hardware accelerators
- Minimally invasive approach, no changes to application code
- Excellent local acceleration, global acceleration limited by 'sequential' part
- Future work: Design solver schemes with higher acceleration potential without sacrificing numerical efficiency

technische universität

dortmund

U technische universität dortmund

Collaborative work with

FEAST group (TU Dortmund)

Robert Strzodka (Max Planck Institut Informatik)

Jamaludin Mohd-Yusof, Patrick McCormick (Los Alamos National Laboratory)

http://www.mathematik.tu-dortmund.de/~goeddeke

Supported by Deutsche Forschungsgemeinschaft, project TU 102/22-1

Introduction	FEAST	Co-processor integration	Results	Conclusions
0	0000	000000	00000000	0.