
GPU Acceleration of Unmodified

CSM and CFD Solvers

Dominik Göddeke
Sven H.M. Buijssen, Hilmar Wobker and Stefan Turek

Angewandte Mathematik und Numerik
TU Dortmund, Germany

dominik.goeddeke@math.tu-dortmund.de

High Performance Computing & Simulation
Workshop on Architecture-aware Simulation and Computing

Leipzig, June 22, 2009

Introduction FEAST Co-processor integration Results Conclusions

The big picture

Scientific computing is in the middle of a paradigm shift

ILP wall memory wall characteristic feature size

heat power consumption leaking voltage

Hardware evolves towards parallelism and heterogeneity

multicore CPUs Cell BE processor GPUs

Emerging manycore architectures

accelerators algorithm design for 10000s of threads

Introduction FEAST Co-processor integration Results Conclusions

FEAST –

Hardware-oriented Numerics

Introduction FEAST Co-processor integration Results Conclusions

Mesh structure

Fully adaptive grids
Maximum flexibility
‘Stochastic’ numbering
Unstructured sparse matrices
Indirect addressing, very slow.

Locally structured grids
Logical tensor product
Fixed banded matrix structure
Direct addressing (⇒ fast)
r -adaptivity

Unstructured macro mesh of tensor product subdomains

UU

“window” for
matrix-vector
multiplication,
per macro

hierarchically
refined subdomain
(= “macro”),
rowwise numbered

unstructured mesh

UD
UL

DU
DDDL

LU
LDLL

I-1

I

I+1

I-M-1
I-M

I-M+1
I+M-1

I+M

I+M+1

Ω
i

Introduction FEAST Co-processor integration Results Conclusions

Solver structure

ScaRC – Scalable Recursive Clustering

Minimal overlap by extended Dirichlet BCs

Hybrid multilevel domain decomposition method

Inspired by parallel MG (”best of both worlds”)

Multiplicative vertically (between levels), global coarse grid problem
(MG-like)
Additive horizontally: block-Jacobi / Schwarz smoother (DD-like)

Hide local irregularities by MGs within the Schwarz smoother

Embed in Krylov to alleviate Block-Jacobi character

global BiCGStab

preconditioned by

global multilevel (V 1+1)

additively smoothed by

for all Ωi : local multigrid

coarse grid solver: UMFPACK

Introduction FEAST Co-processor integration Results Conclusions

Multivariate problems

Block-structured systems

Guiding idea: Tune scalar case once per architecture instead of over
and over again per application

Equation-wise ordering of the unknowns

Block-wise treatment enables multivariate ScaRC solvers

Examples

Linearised elasticity with compressible material (2x2 blocks)

Saddle point problems: Stokes, linearised elasticity with (nearly)
incompressible material, Navier-Stokes with stabilisation (3x3 blocks,
three zero Blocks for Stokes)

(

A11 A12

A21 A22

)(

u1

u2

)

= f,





A11 0 B1

0 A22 B2

BT

1
BT

2
0









v1

v2

p



 = f,

A11 and A22 correspond to scalar (elliptic) operators
⇒ Tuned linear algebra and tuned solvers

Introduction FEAST Co-processor integration Results Conclusions

Co-processor integration
into FEAST

Introduction FEAST Co-processor integration Results Conclusions

Bandwidth in a CPU/GPU node

Introduction FEAST Co-processor integration Results Conclusions

Mixed Precision Multigrid

Core2Duo (double) GTX 280 (mixed)
Level time(s) MFLOP/s time(s) MFLOP/s speedup

7 0.021 1405 0.009 2788 2.3x
8 0.094 1114 0.012 8086 7.8x
9 0.453 886 0.026 15179 17.4x
10 1.962 805 0.073 21406 26.9x

Poisson on unitsquare, Dirichlet BCs, TP grid, not a matrix stencil

1M DOF, multigrid, FE-accurate in less than 0.1 seconds!

Converges against wrong solution in single precision

27x faster than CPU, exactly same results as pure double

1.7x faster than pure double on GPU

8800 GTX (correction loop on CPU): 0.44 seconds on level 10

Introduction FEAST Co-processor integration Results Conclusions

Minimally invasive integration

global BiCGStab

preconditioned by

global multilevel (V 1+1)

additively smoothed by

for all Ωi : local multigrid

coarse grid solver: UMFPACK

All outer work: CPU, double

Local MGs: GPU, single

GPU performs preconditioning

Applicable to many co-
processors

Introduction FEAST Co-processor integration Results Conclusions

Minimally invasive integration

General approach

Balance acceleration potential and integration effort

Accelerate many different applications built on top of one central FE
and solver toolkit

Diverge code paths as late as possible

No changes to application code!

Retain all functionality

Do not sacrifice accuracy

Challenges

Heterogeneous task assignment to maximise throughput

Limited device memory (modeled as huge L3 cache)

Overlapping CPU and GPU computations

Building dense accelerated clusters

Introduction FEAST Co-processor integration Results Conclusions

Some results

Introduction FEAST Co-processor integration Results Conclusions

Linearised elasticity

(

A11 A12

A21 A22

)(

u1

u2

)

= f

(

(2µ +λ)∂xx + µ∂yy (µ +λ)∂xy

(µ +λ)∂yx µ∂xx +(2µ +λ)∂yy

)

global multivariate BiCGStab
block-preconditioned by

Global multivariate multilevel (V 1+1)
additively smoothed (block GS) by

for all Ωi : solve A11c1 = d1 by
local scalar multigrid

update RHS: d2 = d2 −A21c1

for all Ωi : solve A22c2 = d2 by
local scalar multigrid

coarse grid solver: UMFPACK

Introduction FEAST Co-processor integration Results Conclusions

Accuracy (I)

1e-8

1e-7

1e-6

1e-5

1e-4

16 64 256

<
--

--
 s

m
al

le
r

is
 b

et
te

r
<

--
--

 L
2

er
ro

r

number of subdomains

L7(CPU)
L7(GPU)
L8(CPU)
L8(GPU)
L9(CPU)
L9(GPU)

L10(CPU)
L10(GPU)

Same results for CPU and GPU

L2 error against analytically prescribed displacements

Tests on 32 nodes, 512M DOF

Introduction FEAST Co-processor integration Results Conclusions

Accuracy (II)

Cantilever beam, aniso 1:1, 1:4, 1:16
Hard, very ill-conditioned CSM test
CG solver: > 2x iterations per refinement
GPU-ScaRC solver: same results as CPU

 128

 256

 512

 1024

 2048

 4096

 8192

 16384

 32768

 65536

2.1Ki 8.4Ki 33.2Ki 132Ki 528Ki 2.1Mi 8.4Mi

<
--

--
 s

m
a
ll
e
r

is
 b

e
tt
e
r

<
--

--
n
u
m

b
e
r

o
f
it
e
ra

ti
o
n
s

number of DOF

aniso01
aniso04
aniso16

aniso04 Iterations Volume y-Displacement
refinement L CPU GPU CPU GPU CPU GPU

8 4 4 1.6087641E-3 1.6087641E-3 -2.8083499E-3 -2.8083499E-3
9 4 4 1.6087641E-3 1.6087641E-3 -2.8083628E-3 -2.8083628E-3
10 4.5 4.5 1.6087641E-3 1.6087641E-3 -2.8083667E-3 -2.8083667E-3

aniso16

8 6 6 6.7176398E-3 6.7176398E-3 -6.6216232E-2 -6.6216232E-2
9 6 5.5 6.7176427E-3 6.7176427E-3 -6.6216551E-2 -6.6216552E-2
10 5.5 5.5 6.7176516E-3 6.7176516E-3 -6.6217501E-2 -6.6217502E-2

Introduction FEAST Co-processor integration Results Conclusions

Weak scalability

 0

 20

 40

 60

 80

 100

 120

 140

 160

 8 16 32 64 96 128 160

<
--

--
 s

m
al

le
r

is
 b

et
te

r
<

--
--

 s
ec

Number of nodes

2c8m_Cn_L10_const
1g8m_Cn_L10_const
1c8m_Cn_L10_const

 20

 25

 30

 35

 40

 45

 50

4 8 16 32 64 128

<
--

--
 s

m
al

le
r

is
 b

et
te

r
<

--
--

 n
or

m
al

iz
ed

 ti
m

e
pe

r
ite

ra
tio

n
in

 s
ec

Number of nodes

CPU
GPU

Outdated cluster, dual Xeon EM64T,

one NVIDIA Quadro FX 1400 per node (one generation behind the
Xeons, 20GB/s BW)

Poisson problem (left): up to 1.3B DOF, 160 nodes

Elasticity (right): up to 1B DOF, 128 nodes

Introduction FEAST Co-processor integration Results Conclusions

Absolute speedup

 0

 50

 100

 150

 200

 250

BLOCK CRACK PIPE STEELFRAME

<
--

--
 s

m
al

le
r

is
 b

et
te

r
<

--
--

tim
e

(s
ec

)

CPU-single
CPU-dual

GPU-single

16 nodes, Opteron X2 2214,

NVIDIA Quadro FX 5600 (76GB/s BW), OpenGL

Problem size 128M DOF

Dualcore 1.6x faster than singlecore

GPU 2.6x faster than singlecore, 1.6x than dual

Introduction FEAST Co-processor integration Results Conclusions

Acceleration analysis

Speedup analysis

Addition of GPUs increases resources

⇒ Correct model: strong scalability inside each node

Accelerable fraction of the elasticity solver: 2/3

Remaining time spent in MPI and the outer solver

Accelerable fraction Racc: 66%
Local speedup Slocal: 9x
Total speedup Stotal: 2.6x
Theoretical limit Smax: 3x

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 5 6 7 8 9 10

--
--

>
 la

rg
er

 is
 b

et
te

r
--

--
>

S
to

ta
l

Slocal

GPU
X

SSE

X

Racc = 1/2
Racc = 2/3
Racc = 3/4

Introduction FEAST Co-processor integration Results Conclusions

Stationary Navier-Stokes





A11 A12 B1

A21 A22 B2

BT

1
BT

2
C









u1

u2

p



 =





f1
f2
g





4-node cluster

Opteron X2 2214

GeForce 8800 GTX
(90GB/s BW), CUDA

Driven cavity and channel
flow around a cylinder

fixed point iteration
solving linearised subproblems with

global BiCGStab (reduce initial residual by 1 digit)
Block-Schurcomplement preconditioner
1) approx. solve for velocities with

global MG (V 1+0), additively smoothed by

for all Ωi : solve for u1 with
local MG

for all Ωi : solve for u2 with
local MG

2) update RHS: d3 = −d3 +BT(c1,c2)T

3) scale c3 = (ML
p)−1d3

Introduction FEAST Co-processor integration Results Conclusions

Navier-Stokes results

Speedup analysis

Racc Slocal Stotal

L9 L10 L9 L10 L9 L10
DC Re100 41% 46% 6x 12x 1.4x 1.8x
DC Re250 56% 58% 5.5x 11.5x 1.9x 2.1x
Channel flow 60% – 6x – 1.9x –

Important consequence: Ratio between assembly and linear solve
changes significantly

DC Re100 DC Re250 Channel flow

plain accel. plain accel. plain accel.
29:71 50:48 11:89 25:75 13:87 26:74

Introduction FEAST Co-processor integration Results Conclusions

Conclusions

Introduction FEAST Co-processor integration Results Conclusions

Conclusions

Hardware-oriented numerics prevents existing codes being worthless
in a few years

Mixed precision schemes exploit the available bandwidth without
sacrificing accuracy

GPUs as local preconditioners in a large-scale parallel FEM package

Not limited to GPUs, applicable to all kinds of hardware accelerators

Minimally invasive approach, no changes to application code

Excellent local acceleration, global acceleration limited by
‘sequential’ part

Future work: Design solver schemes with higher acceleration
potential without sacrificing numerical efficiency

Introduction FEAST Co-processor integration Results Conclusions

Acknowledgements

Collaborative work with

FEAST group (TU Dortmund)

Robert Strzodka (Max Planck Institut Informatik)

Jamaludin Mohd-Yusof, Patrick McCormick (Los Alamos National
Laboratory)

http://www.mathematik.tu-dortmund.de/~goeddeke

Supported by Deutsche Forschungsgemeinschaft, project TU 102/22-1, TU

102/22-2, TU 102/27-1, TU102/11-3

Introduction FEAST Co-processor integration Results Conclusions

http://www.mathematik.tu-dortmund.de/~goeddeke

	Introduction
	The big picture

	FEAST -- hardware-oriented numerics
	Mesh structure
	Solver structure
	Multivariate problems

	Co-processor integration
	Bandwidth in a CPU/GPU node
	Mixed Precision Multigrid
	Minimally invasive integration
	Minimally invasive integration

	Results
	Linearised elasticity
	Accuracy (I)
	Accuracy (II)
	Weak scalability
	Absolute speedup
	Acceleration analysis
	Stationary Navier-Stokes
	Navier-Stokes results

	Conclusions
	Conclusions
	Acknowledgements

