GPU Cluster Computing for FEM

Dominik Goéddeke
Sven H.M. Buijssen, Hilmar Wobker and Stefan Turek

Angewandte Mathematik und Numerik
TU Dortmund, Germany

dominik.goeddeke@math.tu-dortmund.de

GPU Computing in Computational Science and Engineering
International Workshop on Computational Engineering
Special Topic Fluid-Structure Interaction
Herrsching, October 14, 2009

c®

“®
. o‘?o

FEAST —

Hardware-oriented Numerics

Structured vs. unstructured grids

Fully adaptive grids
Maximum flexibility
‘Stochastic’ numbering
Unstructured sparse matrices

Indirect addressing, very slow.

Locally structured grids
Logical tensor product

Fixed banded matrix structure
Direct addressing (= fast)
r-adaptivity

Unstructured macro mesh of tensor product subdomains

unstructured mesh

hierarchically
refined subdomain
(= "macro”),

rowwise numbered

“window" for
matrix-vector
multiplication,
per macro

a T
lm;m,munn #

s

LUNN DU
LL LD DL DD,

Exploit local structure for tuned linear algebra and tailored
multigrid smoothers

Solver approach

ScaRC — Scalable Recursive Clustering
Hybrid multilevel domain decomposition method
Minimal overlap by extended Dirichlet BCs

Inspired by parallel MG ("best of both worlds”)

Multiplicative between levels, global coarse grid problem (MG-like)
Additive horizontally: block-Jacobi / Schwarz smoother (DD-like)

Hide local irregularities by MGs within the Schwarz smoother

Embed in Krylov to alleviate Block-Jacobi character

global BiCGStab
preconditioned by
global multilevel (V 1+1)
additively smoothed by
for all Q;: local multigrid

coarse grid solver: UMFPACK

Multivariate problems

Block-structured systems

Guiding idea: Tune scalar case once per architecture instead of over
and over again per application

Equation-wise ordering of the unknowns

Block-wise treatment enables multivariate ScaRC solvers
Examples

Linearised elasticity with compressible material (2x2 blocks)

Saddle point problems: Stokes (3x3 with zero blocks), elasticity with
(nearly) incompressible material, Navier-Stokes with stabilisation
(3x3 blocks)

A A (u A 0 B\ /w1 A A Bi\ (w1
(Ai A;z) <U;> :f, 0 Azz Bz V2 :f7 A21 Agz Bz Vo =f
Bl B 0/ \p Bl B Cc/ \p
A11 and Ay correspond to scalar (elliptic) operators
= Tuned linear algebra and tuned solvers

Co-processor integration
into FEAST

Bandwidth in a CPU/GPU node

CO-processor

20-160 GB/s

6-15 GB/s

1-2 GB/s 1-8 GB/s

Infiniband to
next node

Mixed Precision Multigrid

Core2Duo (double) GTX 280 (mixed)

Level time(s) MFLOP/s time(s) MFLOP/s speedup
7 0.021 1405 0.009 2788 2.3x
8 0.094 1114 0.012 8086 7.8x
9 0.453 886 0.026 15179 17.4x
10 1.962 805 0.073 21406 26.9x

Poisson on unitsquare, Dirichlet BCs, TP grid, not a matrix stencil
Converges to wrong solution in single precision

1M DOF, multigrid, FE-accurate in less than 0.1 seconds!

27x faster than CPU, exactly same results as pure double

1.7x faster than pure double on GPU

defect calculation alone: 46.5 GFLOP/s, 50x speedup (single vs.
single)

Minimally invasive integration

global BiCGStab
preconditioned by
global multilevel (V 1+1)
additively smoothed by
for all Q;j: local multigrid

coarse grid solver: UMFPACK

All outer work: CPU, double
Local MGs: GPU, single

Same accuracy and functional-
ity mandatory

Oblivious of the application

User
Application
Code

Generalised
MG/DD
Solver

Smoother Local CPU
_..Interface___. Smoother
Task + Data (MG)
Scheduling

Heterogeneous Hardware Resources

Some results

Linearised elasticity

global multivariate BiCGStab
block-preconditioned by
Au Ar) (ul) Global multivariate multilevel (V 1+1)
Axr Ao us additively smoothed (block GS) by

for all Q;: solve A11¢1 =d; by
local scalar multigrid

(2“ +/\)0XX+“ayy (“ +A)% update RHS: dy; =d; — Az
(H+A)ayx Haxx+(2l1+)\)ayy for all Q;: solve AxC, =dy by

local scalar multigrid
coarse grid solver: UMFPACK

NN ’m\\
— dm X2

Accuracy

B

Cantilever beam, aniso 1:1, 1:4, 1:16

Hard, very ill-conditioned CSM test

CG solver: > 2x iterations per refinement
GPU-ScaRC solver: same results as CPU

<o smaller is better <----
umber of ierations.

18

aniso0l ——
anso0d
ansol —¥—

20K BAK A 1K

number of DOF

sek M 84

Volume

CPU

GPU

y-Displacement

CPU

GPU

1.6087641E-3
1.6087641E-3
1.6087641E-3

1.6087641E-3
1.6087641E-3
1.6087641E-3

-2.8083499E-3
-2.8083628E-3
-2.8083667E-3

-2.8083499E-3
-2.8083628E-3
-2.8083667E-3

aniso04 Iterations
refinement L CPU GPU

8 4 4
9 4 4
10 4.5 4.5

anisol6
8 6 6
9 6 5.5
10 5.5 5.5

6.7176398E-3
6.7176427E-3
6.7176516E-3

6.7176398E-3
6.7176427E-3
6.7176516E-3

-6.6216232E-2
-6.6216551E-2
-6.6217501E-2

-6.6216232E-2
-6.6216552E-2
-6.6217502E-2

Weak scalability

<e-w- smaller is better <

sec

160

140

120

50
8—B—8—8——8—*f
A
———
L[2c8m_cn 110_const ——
1g8m_Cn_L10 const CPU ——
1c8m_Cn_L10_const —=— GPU
20
9% 128 160 4 8 16 32 64 128
Number of nodes Number of nodes

Outdated cluster, dual Xeon EM64T singlecore

one NVIDIA Quadro FX 1400 per node (one generation behind the
Xeons, 20 GB/s BW)

Poisson problem (left): up to 1.3B DOF, 160 nodes
Elasticity (right): up to 1B DOF, 128 nodes

Absolute speedup

250

CPU-single
CPU-dual =3
GPU-single

<---- smaller is better <----
time (sec)

BLOCK CRACK PIPE STEELFRAME

16 nodes, Opteron 2214 dualcore

NVIDIA Quadro FX 5600 (76 GB/s BW), OpenGL
Problem size 128 M DOF

Dualcore 1.6x faster than singlecore

GPU 2.6x faster than singlecore, 1.6x than dual

Acceleration analysis

Speedup analysis
Addition of GPUs increases resources
= Correct model: strong scalability inside each node
Accelerable fraction of the elasticity solver: 2/3

Remaining time spent in MPI and the outer solver

Accelerable fraction R,.c: 66%
Local speedup Soca: Ox
Total speedup Sotal: 2.6x .]
Theoretical limit Syax: 3x s]

> larger i better >
Stotal

Stationary Navier-Stokes

A Az Bi\ [fur 1
A Axp Ba||ux|=|f
Bl Bl cC p g

4-node cluster
Opteron 2214 dualcore

GeForce 8800 GTX
(90GB/s BW), CUDA

Driven cavity and channel
flow around a cylinder

fixed point iteration
assemble linearised subproblems and solve with

global BiCGStab (reduce initial residual by 1 digit)

Block-Schurcomplement preconditioner

1) approx. solve for velocities with
global MG (V 1+0), additively smoothed by
for all Q;: solve for u; with
local MG

for all Qj: solve for uy with
local MG
2) update RHS: d3 = —d3 + BT(Cl.,Cz)T
3) scale ¢z = (M})~*ds

pressure + isolines
elevation plof)

magnitude of velocity + coarse grid

Navier-Stokes results

Speedup analysis

Racc Socal Sotal
L9 L10 L9 L10 L9 L10
DC Rel00 41% 46% 6x 12x 1.4x 1.8x
DC Re250 56% 58% 5.5x 11.5x 1.9x 2.1x
Channel flow 60% - 6x - 19x -

Important consequence: Ratio between assembly and linear solve
changes significantly

DC Rel00 DC Re250 Channel flow
plain accel. plain accel. plain accel.
29:71 50:48 11:89 25:75 13:87 26:74

Conclusions

Conclusions

Hardware-oriented numerics prevents existing codes being worthless
in a few years

Mixed precision schemes exploit the available bandwidth without
sacrificing accuracy

GPUs as local preconditioners in a large-scale parallel FEM package
Not limited to GPUs, applicable to all kinds of hardware accelerators
Minimally invasive approach, no changes to application code

Excellent local acceleration, global acceleration limited by
‘sequential’ part

Future work: Design solver schemes with higher acceleration
potential without sacrificing numerical efficiency

Acknowledgements

Collaborative work with

FEAST group (TU Dortmund)
Robert Strzodka (Max Planck Institut Informatik)

Jamaludin Mohd-Yusof, Patrick McCormick (Los Alamos National
Laboratory)

Max Planck Cent Aj
ax Planck Center
for visual computing and communication - Los Alamos

NATIONAL LABORATORY
EsT.1943

v
IJ
%

=~

http://www.mathematik.tu-dortmund.de/~goeddeke

Supported by DFG, projects TU 102/22-1, TU 102/22-2, TU 102/27-1,
TU102/11-3; and BMBF, HPC Software fiir skalierbare Parallelrechner:
SKALB project 011H08003D

http://www.mathematik.tu-dortmund.de/~goeddeke

	Introduction
	FEAST -- hardware-oriented numerics
	Structured vs. unstructured grids
	Solver approach
	Multivariate problems

	Co-processor integration
	Bandwidth in a CPU/GPU node
	Mixed Precision Multigrid
	Minimally invasive integration

	Results
	Linearised elasticity
	Accuracy
	Weak scalability
	Absolute speedup
	Acceleration analysis
	Stationary Navier-Stokes
	Navier-Stokes results

	Conclusions
	Conclusions
	Acknowledgements

