GPU Cluster Computing for FEM

Dominik Göddeke Sven H.M. Buijssen, Hilmar Wobker and Stefan Turek

Angewandte Mathematik und Numerik TU Dortmund, Germany dominik.goeddeke@math.tu-dortmund.de

GPU Computing in Computational Science and Engineering International Workshop on Computational Engineering Special Topic Fluid-Structure Interaction Herrsching, October 14, 2009

FEAST –

Hardware-oriented Numerics

Fully adaptive grids

Maximum flexibility 'Stochastic' numbering Unstructured sparse matrices Indirect addressing, very slow.

Locally structured grids

Logical tensor product Fixed banded matrix structure Direct addressing (\Rightarrow fast) *r*-adaptivity

Unstructured macro mesh of tensor product subdomains

Exploit local structure for tuned linear algebra and tailored multigrid smoothers

ScaRC – Scalable Recursive Clustering

- Hybrid multilevel domain decomposition method
- Minimal overlap by extended Dirichlet BCs
- Inspired by parallel MG ("best of both worlds")
 - Multiplicative between levels, global coarse grid problem (MG-like)
 - Additive horizontally: block-Jacobi / Schwarz smoother (DD-like)
- Hide local irregularities by MGs within the Schwarz smoother
- Embed in Krylov to alleviate Block-Jacobi character

global BiCGStab
preconditioned by
global multilevel (V 1+1)
additively smoothed by
for all Ω_i : local multigrid
coarse grid solver: UMFPACK

Block-structured systems

- Guiding idea: Tune scalar case once per architecture instead of over and over again per application
- Equation-wise ordering of the unknowns
- Block-wise treatment enables multivariate ScaRC solvers

Examples

- Linearised elasticity with compressible material (2x2 blocks)
- Saddle point problems: Stokes (3x3 with zero blocks), elasticity with (nearly) incompressible material, Navier-Stokes with stabilisation (3x3 blocks)

$$\begin{pmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{pmatrix} \begin{pmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \end{pmatrix} = \mathbf{f}, \quad \begin{pmatrix} \mathbf{A}_{11} & \mathbf{0} & \mathbf{B}_1 \\ \mathbf{0} & \mathbf{A}_{22} & \mathbf{B}_2 \\ \mathbf{B}_1^{\mathsf{T}} & \mathbf{B}_2^{\mathsf{T}} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{p} \end{pmatrix} = \mathbf{f}, \quad \begin{pmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} & \mathbf{B}_1 \\ \mathbf{A}_{21} & \mathbf{A}_{22} & \mathbf{B}_2 \\ \mathbf{B}_1^{\mathsf{T}} & \mathbf{B}_2^{\mathsf{T}} & \mathbf{C}_C \end{pmatrix} \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{p} \end{pmatrix} = \mathbf{f}$$

 A_{11} and A_{22} correspond to scalar (elliptic) operators \Rightarrow Tuned linear algebra **and** tuned solvers

Co-processor integration into FEAST

Bandwidth in a CPU/GPU node

	Core2D	uo (double)	GTX 280 (mixed)			
Level	time(s)	MFLOP/s	time(s)	MFLOP/s	speedup	
7	0.021	1405	0.009	2788	2.3x	
8	0.094	1114	0.012	8086	7.8x	
9	0.453	886	0.026	15179	17.4x	
10	1.962	805	0.073	21406	26.9x	

- Poisson on unitsquare, Dirichlet BCs, TP grid, not a matrix stencil
- Converges to wrong solution in single precision
- 1M DOF, multigrid, FE-accurate in less than 0.1 seconds!
- 27x faster than CPU, exactly same results as pure double
- 1.7x faster than pure double on GPU
- defect calculation alone: 46.5 GFLOP/s, 50x speedup (single vs. single)

global BiCGStab preconditioned by global multilevel (V 1+1) additively smoothed by for all Ω_i : local multigrid

coarse grid solver: UMFPACK

All outer work: CPU, double

Local MGs: GPU, single

Same accuracy and functionality mandatory

Oblivious of the application

Some results

$$\begin{pmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{pmatrix} \begin{pmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \end{pmatrix} = \mathbf{f}$$

$$\begin{pmatrix} (2\mu+\lambda)\partial_{xx}+\mu\partial_{yy} & (\mu+\lambda)\partial_{xy} \\ (\mu+\lambda)\partial_{yx} & \mu\partial_{xx}+(2\mu+\lambda)\partial_{yy} \end{pmatrix}$$

Accuracy

Cantilever beam, aniso 1:1, 1:4, 1:16 Hard, very ill-conditioned CSM test CG solver: > 2x iterations per refinement GPU-ScaRC solver: same results as CPU

aniso04	Itera	tions	Vol	Volume		y-Displacement		
refinement L	CPU	GPU	CPU	GPU	CPÚ	GPU		
8	4	4	1.6087641E-3	1.6087641E-3	-2.8083499E-3	-2.8083499E-3		
9	4	4	1.6087641E-3	1.6087641E-3	-2.8083628E-3	-2.8083628E-3		
10	4.5	4.5	1.6087641E-3	1.6087641E-3	-2.8083667E-3	-2.8083667E-3		
aniso16								
8	6	6	6.7176398E-3	6.7176398E-3	-6.6216232E-2	-6.6216232E-2		
9	6	5.5	6.7176427E-3	6.7176427E-3	-6.621655 1 E-2	-6.621655 2 E-2		
10	5.5	5.5	6.7176516E-3	6.7176516E-3	-6.621750 1 E-2	-6.621750 2 E-2		

Weak scalability

- Outdated cluster, dual Xeon EM64T singlecore
- one NVIDIA Quadro FX 1400 per node (one generation behind the Xeons, 20 GB/s BW)
- Poisson problem (left): up to 1.3 B DOF, 160 nodes
- Elasticity (right): up to 1 B DOF, 128 nodes

Absolute speedup

- 16 nodes, Opteron 2214 dualcore
- NVIDIA Quadro FX 5600 (76 GB/s BW), OpenGL
- Problem size 128 M DOF
- Dualcore 1.6x faster than singlecore
- GPU 2.6x faster than singlecore, 1.6x than dual

Speedup analysis

- Addition of GPUs increases resources
- \blacksquare \Rightarrow Correct model: strong scalability inside each node
- Accelerable fraction of the elasticity solver: 2/3
- Remaining time spent in MPI and the outer solver

Accelerable fraction R_{acc} : Local speedup S_{local} : Total speedup S_{total} : Theoretical limit S_{max} :

$$\begin{pmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} & \mathbf{B}_1 \\ \mathbf{A}_{21} & \mathbf{A}_{22} & \mathbf{B}_2 \\ \mathbf{B}_1^{\mathsf{T}} & \mathbf{B}_2^{\mathsf{T}} & \mathbf{C} \end{pmatrix} \begin{pmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \\ \mathbf{p} \end{pmatrix} = \begin{pmatrix} \mathbf{f}_1 \\ \mathbf{f}_2 \\ \mathbf{g} \end{pmatrix}$$

- 4-node cluster
- Opteron 2214 dualcore
- GeForce 8800 GTX (90 GB/s BW), CUDA
- Driven cavity and channel flow around a cylinder

fixed point iteration assemble linearised subproblems and solve with global BiCGStab (reduce initial residual by 1 digit) Block-Schurcomplement preconditioner 1) approx. solve for velocities with global MG (V1+0), additively smoothed by

for all Ω_i : solve for u_1 with local MG

for all $\Omega_i :$ solve for u_2 with $\ensuremath{\textit{local}}\xspace$ MG

2) update RHS:
$$\mathbf{d}_3 = -\mathbf{d}_3 + \mathbf{B}^{\mathsf{T}}(\mathbf{c}_1, \mathbf{c}_2)^{\mathsf{T}}$$

3) scale $\mathbf{c}_3 = (\mathbf{M}_p^{\mathsf{L}})^{-1}\mathbf{d}_3$

Speedup analysis

	$R_{\sf acc}$		$S_{\sf local}$		S_{total}	
	L9	L10	L9	L10	L9	L10
DC Re100	41%	46%	бх	12x	1.4x	1.8x
DC Re250	56%	58%	5.5x	11.5x	1.9×	2.1x
Channel flow	60%	-	бх	-	1.9x	-

Important consequence: Ratio between assembly and linear solve changes significantly

DC Re100		DC Re250		Channel flow	
plain	accel.	plain	accel.	plain	accel.
29:71	50:48	11:89	25:75	13:87	26:74

Conclusions

- Hardware-oriented numerics prevents existing codes being worthless in a few years
- Mixed precision schemes exploit the available bandwidth without sacrificing accuracy
- GPUs as local preconditioners in a large-scale parallel FEM package
- Not limited to GPUs, applicable to all kinds of hardware accelerators
- Minimally invasive approach, no changes to application code
- Excellent local acceleration, global acceleration limited by 'sequential' part
- Future work: Design solver schemes with higher acceleration potential without sacrificing numerical efficiency

Collaborative work with

FEAST group (TU Dortmund)

Robert Strzodka (Max Planck Institut Informatik)

Jamaludin Mohd-Yusof, Patrick McCormick (Los Alamos National Laboratory)

http://www.mathematik.tu-dortmund.de/~goeddeke

Supported by DFG, projects TU 102/22-1, TU 102/22-2, TU 102/27-1, TU102/11-3; and BMBF, *HPC Software für skalierbare Parallelrechner*: SKALB project 01IH08003D