GPU Cluster Computing for FEM with Applications in CFD and CSM

Dominik Göddeke Sven H.M. Buijssen, Hilmar Wobker and Stefan Turek

Institut für Angewandte Mathematik TU Dortmund, Germany dominik.goeddeke@math.tu-dortmund.de

Mini-Symposium: GPU Computing in CFD ECCOMAS-CFD 2010 Lisbon, Portugal, June 17, 2010

FEAST –

Hardware-oriented Numerics

Hardware-oriented numerics

- Much more than good implementation of good numerics
- Balancing of (often) contradictory efficiency requirements
 - Numerical efficiency (convergence rates)
 - Hardware efficiency (MFLOP/s rates)
 - Parallel efficiency (scalability)
- Goal: Maximise total efficiency

FEAST – Finite Element Analysis and Solution Tools

- Toolbox and infrastructure for large-scale finite element discretisations and parallel multilevel solvers
- Applications are built on top of FEAST
- Not maximum performance for one particular application, but high and scalable performance for many problems

Fully adaptive grids

Maximum flexibility 'Stochastic' numbering Unstructured sparse matrices Indirect addressing, very slow.

Locally structured grids

Logical tensor product Fixed banded matrix structure Direct addressing (\Rightarrow fast) *r*-adaptivity

Unstructured macro mesh of generalised tensor product patches

Exploit local structure for tuned linear algebra and tailored multigrid components

Solver approach

ScaRC – Scalable Recursive Clustering

- Hybrid multilevel domain decomposition method
- Minimal overlap by extended Dirichlet BCs
- Inspired by parallel MG ('best of both worlds')
 - Multiplicative between levels, global coarse grid problem (MG-like)
 - Additive horizontally: block-Jacobi / Schwarz smoother (DD-like)
- Schwarz smoother encapsulates local irregularities: Robust multigrid ('gain a digit') with strong smoothers
- Embed in Krylov to alleviate Block-Jacobi character

global BiCGStab						
preconditioned by						
global multilevel (V 1+1)						
additively smoothed by						
for all Ω_i : local multigrid						
coarse grid solver: UMFPACK						

Block-structured systems

- Guiding idea: Tune scalar case once per architecture instead of over and over again per application
- Equation-wise ordering of the unknowns
- Block-wise treatment enables multivariate ScaRC solvers

Examples

- Linearised elasticity with compressible material (2x2 blocks)
- Saddle point problems: Stokes (3x3 with zero blocks), elasticity with (nearly) incompressible material, Navier-Stokes with stabilisation (3x3 blocks)

$$\begin{pmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{pmatrix} \begin{pmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \end{pmatrix} = \mathbf{f}, \quad \begin{pmatrix} \mathbf{A}_{11} & \mathbf{0} & \mathbf{B}_1 \\ \mathbf{0} & \mathbf{A}_{22} & \mathbf{B}_2 \\ \mathbf{B}_1^{\mathsf{T}} & \mathbf{B}_2^{\mathsf{T}} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{p} \end{pmatrix} = \mathbf{f}, \quad \begin{pmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} & \mathbf{B}_1 \\ \mathbf{A}_{21} & \mathbf{A}_{22} & \mathbf{B}_2 \\ \mathbf{B}_1^{\mathsf{T}} & \mathbf{B}_2^{\mathsf{T}} & \mathbf{C}_C \end{pmatrix} \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{p} \end{pmatrix} = \mathbf{f}$$

 A_{11} and A_{22} correspond to scalar (elliptic) operators \Rightarrow Tuned linear algebra **and** tuned solvers

GPU integration into **FEAST**

Motivation: Bandwidth in a CPU/GPU node

GPUs as accelerators for the most computationally intense parts

CPUs execute outer MLDD solver

No changes to applications required!

global BiCGStab

preconditioned by

global multilevel (V 1+1)

additively smoothed by

for all Ω_i : **local multigrid**

coarse grid solver: UMFPACK

Fundamental building block in FEAST

- Local (geometric) multigrid on a $N = M \times M$ patch/subdomain
- Exploit generalised tensor product property

In the following

 Parallelisation of inherently sequential, numerically strong smoothers (preconditioners) for more than 100 000 threads on the GPU

Starting point

- Explicit coupling, but inherently sequential ('natural order GS')
- Exact parallelisation (wavefronts) not efficient

Decouple dependencies via colouring \Rightarrow indep. parallel work

- Standard-GS Update: 'left-bottom'
- Red: Jacobi
- Green: Coupling with left
- Blue: Coupling with bottom
- Yellow: Coupling with left and bottom

Analysis

- Parallel efficiency: 4 sweeps with $\approx N/4$ parallel work each
- Numerical efficiency: Full coupling only in last sweep

Observation

 After decoupling via colours, the 'Standard-GS'-Update is suboptimal

Better inexact parallelisation: 'All-Colour-Coupling'

- Rot: Jacobi
- Green: Coupling with left and right
- Blue: Coupling with top and bottom
- Yellow: Full coupling (8 neighbours)
- More computation than standard colouring

Analysis

- Corresponds to renumbering of the mesh points
- Convergence rates of sequential GS are recovered
- Total efficiency: \rightarrow later

Starting point

- Good for 'line-wise' anisotropies
- 'Alternating Direction Implicit' technique (ADI) alternately acts line- and column-wise
- CPU implementation: Thomas-Algorithm

	0	1	2	3	4	5	6	7	8	9	10 11
0	x	х				х	х				
1	х	х	х			х	х	х			
2		х	x	х			х	х	х		
3			х	х	х			х	х	х	
4				х	х				х	х	
5	х	х				х	х				хх
6	х	х	х			х	х	х			XX
7		х	х	х			х	х	х		×
8			х	х	х			х	х	х	~
9				х	х				х	х	
10						х	х				XX
11						х	х	х			хх
	A. A. A. A. A.						Sec. 25.				

Observations

- One independent tridiagonal system per mesh row
- Top-level parallelisation: All mesh rows
- Implicit coupling: Wavefront and colouring techniques not applicable

Cyclic reduction for tridiagonal systems

- Exact, stable (w/o pivoting) and cost-efficient
- Problem: Classical formulation parallelises computation but not memory accesses (multibank, shared memory)
- Developed a better formulation, 2-4x faster (published in TPDS, online version available)

TriGS smoother

- Combination of tridiagonal and Gauß-Seidel smoother: Shift known results from previous row to right hand side and solve remaining tridiagonal system per row
- ADI-TRIGS: most robust generalised TP smoother in FEAST
- Difference to tridiagonal solvers: Mesh rows depend sequentially on each other
- Use colouring to decouple the dependencies between rows

Test problem (one subdomain)

- Generalised Poisson with anisotropic diffusion
- Total efficiency: Time per unknown per digit (μs)
- Mixed precision iterative refinement multigrid solver
- Strong smoothers required

GPU only saturated for sufficiently large problem sizes

Speedup GPU vs. CPU

Summary for local problems

- Factor 10-30 (dep. on precision and smoother selection) speedup over already highly tuned CPU implementation
- Same functionality on CPU and GPU
- Balancing of numerical and parallel efficiency (hardware-oriented numerics)

Results: FEAST on large GPU clusters

$$\begin{pmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{pmatrix} \begin{pmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \end{pmatrix} = \mathbf{f}$$

$$\begin{pmatrix} (2\mu+\lambda)\partial_{xx}+\mu\partial_{yy} & (\mu+\lambda)\partial_{xy} \\ (\mu+\lambda)\partial_{yx} & \mu\partial_{xx}+(2\mu+\lambda)\partial_{yy} \end{pmatrix}$$

Weak scalability

Simultaneous doubling of problem size and resources

- Left: Poisson, 160 dual-CPU nodes, max. 1.3 · 10⁹ DOF
- Right: Linearised elasticity, 64 dual-CPU nodes, max. 0.5 · 10⁹ DOF

Results

- No loss of weak scalability despite local acceleration
- 1.3 billion unknowns (no stencil!) on 160 GPUs in less than 50 s

Speedup linearised elasticity

- USC cluster in Los Alamos, 16 dualcore nodes
- Problem size 128 M DOF
- Dualcore 1.6x faster than singlecore (memory wall)
- GPU 2.6x faster than singlecore, 1.6x than dualcore

Theoretical model of expected speedup

- Integration of GPUs increases resources
- Correct model: strong scaling within each node
- Acceleration potential of the elasticity solver: $R_{acc} = 2/3$ (remaining time in MPI and the outer solver)

$$\label{eq:max} {\rm S}_{\rm max} = \frac{1}{1-R_{\rm acc}} \qquad \qquad {\rm S}_{\rm model} = \frac{1}{(1-R_{\rm acc}) + (R_{\rm acc}/S_{\rm local})}$$

This example

Accelerable fraction $R_{\rm acc}$	66%
Local speedup S_{local}	9x
Modeled speedup S_{model}	2.5x
Measured speedup S_{total}	2.6x
Upper bound S _{max}	3x

Stationary laminar flow (Navier-Stokes)

$$\begin{pmatrix} \mathbf{A_{11}} & \mathbf{A_{12}} & \mathbf{B_1} \\ \mathbf{A_{21}} & \mathbf{A_{22}} & \mathbf{B_2} \\ \mathbf{B}_1^{\mathsf{T}} & \mathbf{B}_2^{\mathsf{T}} & \mathbf{C} \end{pmatrix} \begin{pmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \\ \mathbf{p} \end{pmatrix} = \begin{pmatrix} \mathbf{f}_1 \\ \mathbf{f}_2 \\ \mathbf{g} \end{pmatrix}$$

fixed point iteration assemble linearised subproblems and solve with global BiCGStab (reduce initial residual by 1 digit) Block-Schurcomplement preconditioner 1) approx. solve for velocities with

global MG (V 1+0), additively smoothed by

for all Ω_i : solve for u_1 with local MG

for all Ω_i : solve for u_2 with local MG

2) update RHS:
$$\mathbf{d}_3 = -\mathbf{d}_3 + \mathbf{B}^{\mathsf{T}}(\mathbf{c}_1, \mathbf{c}_2)^{\mathsf{T}}$$

3) scale $\mathbf{c}_3 = (\mathbf{M}_n^{\mathsf{L}})^{-1}\mathbf{d}_3$

magnitude of velocity + coarse grid

Stationary laminar flow (Navier-Stokes)

Solver configuration

- Driven cavity: Jacobi smoother sufficient
- Channel flow: ADI-TRIDI smoother required

Speedup analysis

	$R_{\sf acc}$		S_{lc}	cal	S_{total}	
	L9	L10	L9	L10	L9	L10
DC Re250	52%	62%	9.1x	24.5x	1.63x	2.71x
Channel flow	48%	—	12.5x	-	1.76x	_

Shift away from domination by linear solver (fraction of FE assembly and linear solver of total time, max. problem size)

DC F	Re250	Channel			
CPU	GPU	CPU	GPU		
12:88	31:67	38:59	68:28		

Conclusions and future work

- Hardware-oriented numerics
 - Balance conflicting efficiency goals (numerics, hardware, scalability)
 - Make code future-proof with respect to long-term hardware trends
- Integration of GPUs into FEAST
 - Multicolouring and cyclic reduction for strong parallel multigrid smoothers
 - Accelerate many applications without modifying them, rather than delivering *the optimal speedup for one specific problem*
- Significant speedups in walltime to solution for large CSM and CFD problems on GPU clusters
- Future work
 - Investigate finite element assembly on GPUs (see Chris Cecka's talk later today)
 - Design solution schemes with higher acceleration potential (increase locality)

Collaborative work with

FEAST group (TU Dortmund)

Robert Strzodka (Max Planck Institut Informatik)

Jamaludin Mohd-Yusof, Patrick McCormick (Los Alamos National Laboratory)

http://www.mathematik.tu-dortmund.de/~goeddeke

Supported by DFG, projects TU 102/22-1, TU 102/22-2, TU 102/27-1, TU102/11-3; and BMBF, *HPC Software für skalierbare Parallelrechner*: SKALB project 01IH08003D