
GPU Cluster Computing for FEM with
Applications in CFD and CSM

Dominik Göddeke
Sven H.M. Buijssen, Hilmar Wobker and Stefan Turek

Institut für Angewandte Mathematik
TU Dortmund, Germany

dominik.goeddeke@math.tu-dortmund.de

Mini-Symposium: GPU Computing in CFD
ECCOMAS-CFD 2010

Lisbon, Portugal, June 17, 2010



FEAST –

Hardware-oriented Numerics



FEAST – hardware-oriented numerics

Hardware-oriented numerics

Much more than good implementation of good numerics

Balancing of (often) contradictory efficiency requirements

Numerical efficiency (convergence rates)
Hardware efficiency (MFLOP/s rates)
Parallel efficiency (scalability)

Goal: Maximise total efficiency

FEAST – Finite Element Analysis and Solution Tools

Toolbox and infrastructure for large-scale finite element
discretisations and parallel multilevel solvers

Applications are built on top of FEAST

Not maximum performance for one particular application, but high
and scalable performance for many problems



Discretisation approach

Fully adaptive grids
Maximum flexibility
‘Stochastic’ numbering
Unstructured sparse matrices
Indirect addressing, very slow.

Locally structured grids
Logical tensor product
Fixed banded matrix structure
Direct addressing (⇒ fast)
r-adaptivity

Unstructured macro mesh of generalised tensor product patches

UU

“window” for
matrix-vector
multiplication,
per macro

hierarchically
refined subdomain
(= “macro”),
rowwise numbered

unstructured mesh

UD
UL

DU
DDDL

LU
LDLL

I-1

I

I+1

I-M-1
I-M

I-M+1
I+M-1

I+M

I+M+1

Ω
i

Exploit local structure for tuned linear algebra and tailored
multigrid components



Solver approach

ScaRC – Scalable Recursive Clustering

Hybrid multilevel domain decomposition method

Minimal overlap by extended Dirichlet BCs

Inspired by parallel MG (‘best of both worlds’)

Multiplicative between levels, global coarse grid problem (MG-like)
Additive horizontally: block-Jacobi / Schwarz smoother (DD-like)

Schwarz smoother encapsulates local irregularities: Robust multigrid
(‘gain a digit’) with strong smoothers

Embed in Krylov to alleviate Block-Jacobi character

global BiCGStab

preconditioned by

global multilevel (V 1+1)

additively smoothed by

for all Ωi: local multigrid

coarse grid solver: UMFPACK



Multivariate problems

Block-structured systems

Guiding idea: Tune scalar case once per architecture instead of over
and over again per application

Equation-wise ordering of the unknowns

Block-wise treatment enables multivariate ScaRC solvers

Examples

Linearised elasticity with compressible material (2x2 blocks)

Saddle point problems: Stokes (3x3 with zero blocks), elasticity with
(nearly) incompressible material, Navier-Stokes with stabilisation
(3x3 blocks)

(

A11 A12
A21 A22

)(

u1
u2

)

= f,





A11 0 B1
0 A22 B2

BT
1 BT

2 0









v1
v2
p



= f,





A11 A12 B1
A21 A22 B2

BT
1 BT

2 CC









v1
v2
p



= f

A11 and A22 correspond to scalar (elliptic) operators
⇒ Tuned linear algebra and tuned solvers



GPU integration into FEAST



Motivation: Bandwidth in a CPU/GPU node



Minimally invasive integration

GPUs as accelerators for the most
computationally intense parts

CPUs execute outer MLDD solver

No changes to applications re-
quired!

global BiCGStab

preconditioned by

global multilevel (V 1+1)

additively smoothed by

for all Ωi: local multigrid

coarse grid solver: UMFPACK



Fine-grained parallelisation of multigrid on GPUs

Fundamental building block in FEAST

Local (geometric) multigrid on a N = M×M patch/subdomain

Exploit generalised tensor product property

In the following

Parallelisation of inherently sequential, numerically strong smoothers
(preconditioners) for more than 100 000 threads on the GPU



Gauß-Seidel smoother

Starting point

Explicit coupling, but inherently sequential
(‘natural order GS’)

Exact parallelisation (wavefronts) not efficient

Decouple dependencies via colouring ⇒ indep. parallel work

Standard-GS Update: ‘left-bottom’

Red: Jacobi

Green: Coupling with left

Blue: Coupling with bottom

Yellow: Coupling with left and bottom

Analysis

Parallel efficiency: 4 sweeps with ≈ N/4 parallel work each

Numerical efficiency: Full coupling only in last sweep



Gauß-Seidel smoother

Observation

After decoupling via colours, the ‘Standard-GS’-Update is
suboptimal

Better inexact parallelisation: ‘All-Colour-Coupling’

Rot: Jacobi

Green: Coupling with left and right

Blue: Coupling with top and bottom

Yellow: Full coupling (8 neighbours)

More computation than standard
colouring

Analysis

Corresponds to renumbering of the mesh points

Convergence rates of sequential GS are recovered

Total efficiency: → later



Tridiagonal smoother

Starting point

Good for ‘line-wise’ anisotropies

‘Alternating Direction Implicit’ technique
(ADI) alternately acts line- and column-wise

CPU implementation: Thomas-Algorithm

Observations

One independent tridiagonal system per mesh row

Top-level parallelisation: All mesh rows

Implicit coupling: Wavefront and colouring techniques not applicable



Tridiagonal and TriGS smoothers

Cyclic reduction for tridiagonal systems

Exact, stable (w/o pivoting) and cost-efficient

Problem: Classical formulation parallelises computation but not
memory accesses (multibank, shared memory)

Developed a better formulation, 2-4x faster (published in TPDS,
online version available)

TriGS smoother

Combination of tridiagonal and Gauß-Seidel smoother: Shift known
results from previous row to right hand side and solve remaining
tridiagonal system per row

ADI-TRIGS: most robust generalised TP smoother in FEAST

Difference to tridiagonal solvers: Mesh rows depend sequentially on
each other

Use colouring to decouple the dependencies between rows



Evaluation: Total efficiency on CPU and GPU

Test problem (one subdomain)

Generalised Poisson with anisotropic diffusion

Total efficiency: Time per unknown per digit (µs)

Mixed precision iterative refinement multigrid solver

Strong smoothers required

 0.01

 0.1

 1

 10

332

L=5
652

L=6
1292

L=7
2572

L=8
5132

L=9
10252

L=10

<
--

--
 s

m
al

le
r 

is
 b

et
te

r 
<

--
--

T
im

e 
pe

r 
un

kn
ow

n 
pe

r 
D

O
F

 (
lo

g1
0)

CPU

GS
ADITRIDI

ADITRIGS

 0.01

 0.1

 1

 10

332

L=5
652

L=6
1292

L=7
2572

L=8
5132

L=9
10252

L=10

<
--

--
 s

m
al

le
r 

is
 b

et
te

r 
<

--
--

T
im

e 
pe

r 
un

kn
ow

n 
pe

r 
D

O
F

 (
lo

g1
0)

GPU

GS(4C)
GS(ACC)
ADITRIDI

ADITRIGS(2C)

GPU only saturated for sufficiently large problem sizes



Speedup GPU vs. CPU

 0.1

 1

 10

332

L=5
652

L=6
1292

L=7
2572

L=8
5132

L=9
10252

L=10

--
--

>
 la

rg
er

 is
 b

et
te

r 
--

--
>

S
pe

ed
up

 G
P

U
 (

lo
g1

0)

Problem size

GS(ACC)
ADITRIDI

ADITRIGS(2C)

Summary for local problems

Factor 10-30 (dep. on precision and smoother selection) speedup
over already highly tuned CPU implementation

Same functionality on CPU and GPU

Balancing of numerical and parallel efficiency (hardware-oriented
numerics)



Results: FEAST on large GPU
clusters



Linearised elasticity

(

A11 A12
A21 A22

)(

u1
u2

)

= f

(

(2µ +λ )∂xx +µ∂yy (µ +λ )∂xy

(µ +λ )∂yx µ∂xx +(2µ +λ )∂yy

)

global multivariate BiCGStab
block-preconditioned by
Global multivariate multilevel (V 1+1)
additively smoothed (block GS) by

for all Ωi: solve A11c1 = d1 by
local scalar multigrid

update RHS: d2 = d2 −A21c1

for all Ωi: solve A22c2 = d2 by
local scalar multigrid

coarse grid solver: UMFPACK



Weak scalability

Simultaneous doubling of problem size and resources

Left: Poisson, 160 dual-CPU nodes, max. 1.3 ·109 DOF

Right: Linearised elasticity, 64 dual-CPU nodes, max. 0.5 ·109 DOF

 10

 20

 30

 40

 50

 60

 70

 80

64
M

N
=

8

12
8M

N
=

16

25
6M

N
=

32

51
2M

N
=

64

10
24

M
N

=
12

8

<
--

--
 s

m
al

le
r 

is
 b

et
te

r 
<

--
--

Li
ne

ar
 s

ol
ve

r 
(s

ec
)

2 CPUs
GPU

 80

 90

 100

 110

 120

 130

 140

 150

 160

32
M

N
=

4

64
M

N
=

8

12
8M

N
=

16

25
6M

N
=

32

51
2M

N
=

64

<
--

--
 s

m
al

le
r 

is
 b

et
te

r 
<

--
--

Li
ne

ar
 s

ol
ve

r 
(s

ec
)

2 CPUs
GPU

Results

No loss of weak scalability despite local acceleration

1.3 billion unknowns (no stencil!) on 160 GPUs in less than 50 s



Speedup linearised elasticity

 0

 50

 100

 150

 200

 250

 300

BLOCK PIPE CRACK FRAME

<
--

--
 s

m
al

le
r 

is
 b

et
te

r 
<

--
--

Li
ne

ar
 s

ol
ve

r 
(s

ec
)

Singlecore
Dualcore

GPU

USC cluster in Los Alamos, 16 dualcore nodes

Problem size 128M DOF

Dualcore 1.6x faster than singlecore (memory wall)

GPU 2.6x faster than singlecore, 1.6x than dualcore



Speedup analysis

Theoretical model of expected speedup

Integration of GPUs increases resources

Correct model: strong scaling within each node

Acceleration potential of the elasticity solver: Racc = 2/3
(remaining time in MPI and the outer solver)

Smax =
1

1−Racc
Smodel =

1
(1−Racc)+(Racc/Slocal)

This example

Accelerable fraction Racc 66%
Local speedup Slocal 9x
Modeled speedup Smodel 2.5x
Measured speedup Stotal 2.6x
Upper bound Smax 3x

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

1 5 10 15 20 25 30 35

--
--

>
 la

rg
er

 is
 b

et
te

r 
--

--
>

S
m

od
el

Slocal

B=0.900
B=0.750
B=0.666



Stationary laminar flow (Navier-Stokes)





A11 A12 B1
A21 A22 B2

BT
1 BT

2 C









u1
u2
p



=





f1
f2
g





fixed point iteration
assemble linearised subproblems and solve with

global BiCGStab (reduce initial residual by 1 digit)
Block-Schurcomplement preconditioner
1) approx. solve for velocities with

global MG (V 1+0), additively smoothed by

for all Ωi: solve for u1 with
local MG

for all Ωi: solve for u2 with
local MG

2) update RHS: d3 =−d3 +BT(c1,c2)
T

3) scale c3 = (ML
p)

−1d3



Stationary laminar flow (Navier-Stokes)

Solver configuration

Driven cavity: Jacobi smoother sufficient

Channel flow: ADI-TRIDI smoother required

Speedup analysis

Racc Slocal Stotal
L9 L10 L9 L10 L9 L10

DC Re250 52% 62% 9.1x 24.5x 1.63x 2.71x
Channel flow 48% – 12.5x – 1.76x –

Shift away from domination by linear solver (fraction of FE
assembly and linear solver of total time, max. problem size)

DC Re250 Channel
CPU GPU CPU GPU
12:88 31:67 38:59 68:28



Conclusions and future work



Conclusions and future work

Hardware-oriented numerics

Balance conflicting efficiency goals (numerics, hardware, scalability)
Make code future-proof with respect to long-term hardware trends

Integration of GPUs into FEAST

Multicolouring and cyclic reduction for strong parallel multigrid
smoothers
Accelerate many applications without modifying them, rather than
delivering the optimal speedup for one specific problem

Significant speedups in walltime to solution for large CSM and CFD
problems on GPU clusters

Future work

Investigate finite element assembly on GPUs (see Chris Cecka’s talk
later today)
Design solution schemes with higher acceleration potential (increase
locality)



Acknowledgements

Collaborative work with

FEAST group (TU Dortmund)

Robert Strzodka (Max Planck Institut Informatik)

Jamaludin Mohd-Yusof, Patrick McCormick (Los Alamos National
Laboratory)

http://www.mathematik.tu-dortmund.de/~goeddeke

Supported by DFG, projects TU 102/22-1, TU 102/22-2, TU 102/27-1,

TU102/11-3; and BMBF, HPC Software für skalierbare Parallelrechner:

SKALB project 01IH08003D

http://www.mathematik.tu-dortmund.de/~goeddeke

	FEAST – hardware-oriented numerics
	FEAST – hardware-oriented numerics
	Discretisation approach
	Solver approach
	Multivariate problems

	GPU integration into FEAST
	Motivation: Bandwidth in a CPU/GPU node
	Minimally invasive integration
	Fine-grained parallelisation of multigrid on GPUs
	Gauß-Seidel smoother
	Tridiagonal smoother
	Evaluation: Total efficiency on CPU and GPU
	Speedup GPU vs. CPU

	Cluster results
	Linearised elasticity
	Weak scalability
	Speedup linearised elasticity
	Speedup analysis
	Stationary laminar flow (Navier-Stokes)

	Conclusions and future work
	Conclusions and future work
	Acknowledgements


