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The Big Picture

Problems with current hardware

Memory wall: Data movement cost prohibitively expensive

Power wall: Nuclear power plant for each machine (in the cloud)?

ILP wall: ‘Automagic’ maximum resource utilisation?

Memory wall + power wall + ILP wall = brick wall

Inevitable paradigm shift: Parallelism and heterogeneity

In a single chip: singlecore → multicore, manycore, . . .

In a workstation (cluster node): NUMA, CPUs and GPUs, . . .

In a big cluster: different nodes, communication characteristics, . . .

This is our problem as mathematicians

Affects standard workstations and even laptops

In most cases, cannot be hidden from us properly



Consequences for Numerics

Without respecting parallelism

Impossible to exploit ever increasing peak performance

Sequential codes even run slower on newer hardware (!)

Challenges

Technical: Compilers can’t solve these problems, libraries are limited

Numerical: Traditional methods often contrary to hardware trends

Goal: Redesign existing numerical schemes (and invent new ones) to
work well in the fine-grained parallel setting

GPUs (‘manycore’) are forerunners of this development

10 000s of simultaneously active threads

Promises of significant speedups

Focus of this mini-symposium



GPUs vs. CPUs



GPUs: Myth, Marketing and Reality

Raw marketing numbers

> 2 TFLOP/s peak floating point performance

Lots of papers claim > 100× speedup

Looking more closely

Single or double precision? Same on both devices?

Sequential CPU code vs. parallel GPU implementation?

‘Standard operations’ or many low-precision graphics constructs?

Reality

GPUs are undoubtedly fast, but so are CPUs

Quite often: CPU codes significantly less carefully tuned

Anything between 5− 30× speedup is realistic (and worth the effort)



Mini-Symposium Schedule

This mini-symposium

Brief introduction to GPU computing

Discussion of advanced numerical methods on GPUs

State-of-the-art examples covering a wide range of numerical
methods and applications

Session 1 (today): Introduction and toolkits

11:00–11:30: Dominik Göddeke:
Mini-symposium welcome & introduction to GPU computing

11:30–12:00: Dominik Göddeke:
Mixed-precision GPU-multigrid solvers with strong smoothers and
applications in CFD and CSM

12:00–12:30: Mike Giles:
OP2: An open-source library for unstructured grid applications

12:30: open discussion (or beating the lunch queue)



Mini-Symposium Schedule

Session 2 (tomorrow): Applications in CFD and CSM

11:00–11:30: Martin Geier:
EsoStripe – An aligned data-layout for efficient CFD simulations on
GPUs using the Lattice Boltzmann Method

11:30–12:00: Allan Peter Engsig-Karup:
On the development of a GPU-accelerated nonlinear free-surface
model for coastal engineering

12:00–12:30: Martin Lilleeng Sætra:
Shallow water simulations on implicitly defined global grids

12:30–13:00: Christian Dick:
CUDA FE multigrid with applications in flow/solid mechanics



Mini-Symposium Schedule

Session 3 (tomorrow): Solvers and preconditioners

14:00–14:30: Jan-Philipp Weiß:
Fine-grained parallel preconditioners on GPUs and beyond

14:30–15:00: Robert Strzodka:
GPU bandwidth optimization of preconditioners

14:30–15:00: Stephan Kramer:
Parallel preconditioning strategies for decoupled indoor air flow
simulation

15:00–15:30: Hans Knibbe:
GPU implementation of a Krylov solver preconditioned by a shifted
Laplace multigrid method for the Helmholtz equation



Introduction to GPU Computing

Programming Languages and Existing Libraries

Pseudorandomly Chosen ‘Didactical’ Examples



Programming GPUs Directly

Obviously the most general approach

Often unavoidable when programming for performance

Not necessarily optimal in terms of programming effort

Main focus of the work presented in this mini-symposium

Rationale: When developing new numerical methods, you don’t
want some ‘arbitrary’ layer of abstraction hiding things from you

Two environments

CUDA: More mature, bigger ‘ecosystem’, NVIDIA only

OpenCL: Vendor-independent, open industry standard

Interfaces to C/C++, Fortran, Python, .NET, . . .

Important: Hardware abstraction and ‘expressiveness’ are identical



Compilers and Frameworks

Compilers

PGI Accelerator Compiler: OpenMP-like code annotations for
Fortran and C

New: Ongoing work to extend/generalise OpenMP to GPUs (!)

Frameworks

PetSc and Trilinos: GPU support in some (important) sub-packages

HMPP, StarPU, Quark: Load-balancing in heterogeneous systems

Standard software with GPU backends

Matlab: GPU backends for plain Matlab and some toolboxes

And many more: Mathematica, Ansys, OpenFOAM, . . .



Standard Mathematical Libraries

Fourier Transforms

CUFFT: NVIDIA, part of the CUDA toolkit

APPML (formerly ACML-GPU): AMD Accelerated Parallel
Processing Math Libraries

Dense linear algebra

CUBLAS: NVIDIA’s basic linear algebra subprograms

APPML (formerly ACML-GPU): AMD Accelerated Parallel
Processing Math Libraries

CULA: Third-party LAPACK, matrix decompositions and eigenvalue
problems

MAGMA and PLASMA: BLAS/LAPACK for multicore and
manycore (ICL, Tennessee)



Standard Mathematical Libraries

Sparse linear algebra and solvers

CUSPARSE: CSR-SpMV (part of the CUDA toolkit)

CUDPP: Building blocks for some important operations (NVIDIA
and UC Davis, open-source)

CUSP: Krylov subspace methods with simple preconditioners
(NVIDIA, open-source)

Next version of CUSPARSE: ILU(k) preconditioner

PARDISO: sparse direct solvers

My personal two cents

Structured case ‘solved‘, unstructured case is the challenging one!

As always in the sparse world: Little to no standardisation



GPU Programming Model



From CPUs to GPUs on one Slide

Step 1: Simplification

Remove caches and hard-wired logic (branch prediction, . . . )

Step 2: Invest transistors into compute

Add as many of these ‘stripped-down’ cores to the chip as
price/performance/power budgets allow

Step 3: ‘Beef up’ cores by increasing SIMD width

16–64 functional units per core (CPUs: 2–4) execute the same
instruction in each cycle, one hardware thread per ALU

Add local shared scratchpad memory and register file

Step 4: Tidy up

Add several memory controllers (and graphics-specific circuits)



Architectural Key Feature of GPUs

Main difference between CPUs and GPUs

So far, this design is not spectacularly different

CPUs are optimised for latency of an individual task

GPUs are optimised for throughput of many similar tasks

Key design feature: Hardware scheduler switches (groups of)
threads in zero time as soon as one stalls

Reason for stalls: Off-chip memory transfers (1000+ cycles),
instructions mapping to many µ-ops, . . .

Thread creation and management entirely in hardware

Leads to programming model

Code written for one thread, SIMD-isation done by the hardware,
with some parameterisation to enable mapping of threads to data



GPU Programming Model

High level view

Data parallelism with limited synchronisation and data sharing

Key concept: Thread blocks = virtualised multiprocessors

Note: CUDA terminology, similar in OpenCL

Batch computations into ‘thread blocks’

Thread blocks resident in one multiprocessor

Blocks are independent, no guarantee of execution order

Threads per block specified by the user (32–1024), problem-specific
tunable parameter

Threads in one block may cooperate via cheap barrier
synchronisation and shared memory

Threads from different blocks may only coordinate via global
memory, synchronisation only at kernel scope



GPU Programming Model

Execution: Warps = SIMD granularity

Threads in one block are executed in ‘warps’ of 32, enumerated in
natural order

One instruction per warp (SIMD granularity)

Warps are independent, no guaranteed execution order

Scheduler switches to next available warp in case of stall (availability
due to finished memory transaction, entire block reaches barrier, . . . )

Threads in one warp may follow different execution paths
(‘divergence’), resolved by serialisation and thus performance penalty

Limited resources

Register file (32K 4-byte entries) and shared memory (16–48 kB) are
partitioned among all blocks

Rule of thumb: Ensure at least two resident blocks per
multiprocessor for good throughput (‘occupancy’)



Memory Subsystem

Caches

Small global L2 cache, 768 kB currently

Tiny L1 cache per multiprocessor, 16–48 kB

Tiny ‘texture cache’ per memory controller, optimised for 2D locality

Parallel memory system

6–10 partitions, round-robin assignment in small chunks of 256 kB

Access granularity: half-warp, i.e. 16 threads access 16 values

Hardware may ‘coalesce’ these parallel accesses into as few as one
bulk memory transaction ⇒ crucial for performance

Requires adhering to strict rules for memory access patterns of
neighbouring threads

Avoid ‘partition camping’, i.e. data layouts which map accesses to
only one partition



Memory Subsystem

Shared memory

16–48 kB ‘scratchpad memory’ per multiprocessor

Can be used as a manually controlled cache

Common use case: Stage off-chip transfers through this memory to
achieve better coalescing (different threads load data than compute
on it)

Access granularity: half-warp (16 threads)

Physically implemented as 16-bank memory, each bank services one
request at a time

‘Bank conflicts’: Simultaneous requests map to only one bank,
resulting in serialisation and thus up to 16-fold slowdown



GPU Architecture Summary

GPUs . . .

are wide-SIMD manycore architectures

are parallel on all levels (compute and memory)

operate in a block-threaded way

GPUs are not

Vector architectures (rather wide-SIMD+multithread)

Fully task-parallel (performance stems from data parallelism)

Easy to program efficiently (getting things running is easy though)

GPUs are particularly bad at

Pointer chasing through memory (serialisation of memory accesses)

Codes with lots of fine-granular branches

Codes with lots of synchronisation and huge sequential portions



Summary: This Mini-Symposium

Parallelism and heterogeneity are inevitable

GPUs are prominent fore-runners of this trend

Necessary development of novel numerical methods that are better
suited for the hardware: hardware-oriented numerics

GPU Architecture

Tricky at first, especially in this crash coarse

But: Learning curve is not so steep if one is familiar with
performance tuning for CPUs

Active research topic

‘Structured’ cases pretty much solved, irregular and (at first sight)
inherently sequential ones are challenging

Algorithmic research required rather than focus on implementational
details
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Reprise: Hardware-oriented numerics

Conflicting situations

Existing methods no longer hardware-compatible

Neither want less numerical efficiency, nor less hardware efficiency

Challenge: New algorithmic way of thinking

Balance these conflicting goals

Consider short-term hardware details in actual implementations,
but long-term hardware trends in the design of numerical schemes

Locality, locality, locality

Commmunication-avoiding (-delaying) algorithms between all
flavours of parallelism

Multilevel methods, hardware-aware preconditioning



Grid and Matrix Structures

Flexibility ↔ Performance



Grid and matrix structures

General sparse matrices (unstructured grids)

CSR (and variants): General data structure for arbitrary grids

Maximum flexibility, but during SpMV

Indirect, irregular memory accesses

Index overhead reduces already low arithm. intensity further

Performance depends on nonzero pattern (grid numbering)

Structured sparse matrices

Example: Structured grids, suitable numbering ⇒ band matrices

Important: No stencils, fully variable coefficients

Direct regular memory accesses, fast independent of mesh

‘FEAST patches’: Exploitation in the design of strong MG
components



Example: Poisson on unstructured mesh
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Unstructured formats highly numbering-dependent

Multicore 2–3x over singlecore, GPU 8–12x over multicore

Banded format (here: 8 ‘blocks’) 2–3x faster than best unstructured
layout and predictably on par with multicore



Strong Smoothers

Parallelising Inherently
Sequential Operations



Motivation: Why strong smoothers?

Test case: Generalised Poisson problem with anisotropic diffusion

−∇ · (G ∇u) = f on unit square (one FEAST patch)

G = I: standard Poisson problem, G 6= I: arbitrarily challenging

Example: G introduces anisotropic diffusion along some vector field
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Gauß-Seidel smoother

Disclaimer: Not necessarily a good smoother, but a good didactical example.

Sequential algorithm

Forward elimination, sequential dependencies between matrix rows

Illustrative: Coupling to the left and bottom

1st idea: Classical wavefront-parallelisation (exact)

Pro: Always works to resolve explicit dependencies

Con: Irregular parallelism and access patterns, implementable?



Gauß-Seidel smoother

2nd idea: Decouple dependencies via multicolouring (inexact)

Jacobi (red) – coupling to left (green) – coupling to bottom (blue) –
coupling to left and bottom (yellow)

Analysis

Parallel efficiency: 4 sweeps with ≈ N/4 parallel work each

Regular data access, but checkerboard pattern challenging for
SIMD/GPUs due to strided access

Numerical efficiency: Sequential coupling only in last sweep



Gauß-Seidel smoother

3rd idea: Multicolouring = renumbering

After decoupling: ‘Standard’ update (left+bottom) is suboptimal

Does not include all already available results

Recoupling: Jacobi (red) – coupling to left and right (green) – top
and bottom (blue) – all 8 neighbours (yellow)

More computations that standard decoupling

Experiments: Convergence rates of sequential variant recovered (in
absence of preferred direction)



Tridiagonal smoother (line relaxation)

Starting point

Good for ‘line-wise’ anisotropies

‘Alternating Direction Implicit (ADI)’
technique alternates rows and columns

CPU implementation: Thomas-Algorithm
(inherently sequential)

Observations

One independent tridiagonal system per mesh row

⇒ top-level parallelisation across mesh rows

Implicit coupling: Wavefront and colouring techniques not applicable



Tridiagonal smoother (line relaxation)

Cyclic reduction for tridiagonal systems

Exact, stable (w/o pivoting) and cost-efficient

Problem: Classical formulation parallelises computation but not
memory accesses on GPUs (bank conflicts in shared memory)

Developed a better formulation, 2-4x faster

Index challenge, general idea: Recursive padding between odd and
even indices on all levels



Combined GS and TRIDI

Starting point

CPU implementation: Shift previous row to
RHS and solve remaining tridiagonal system
with Thomas-Algorithm

Combined with ADI, this is the best general
smoother (we have) for this matrix structure

Observations and implementation

Difference to tridiagonal solvers: Mesh rows depend sequentially on
each other

Use colouring (#c ≥ 2) to decouple the dependencies between rows
(more colours = more similar to sequential variant)



Evaluation: Total efficiency on CPU and GPU

Test problem: Generalised Poisson with anisotropic diffusion

Total efficiency: (µs per unknown per digit)−1

Mixed precision iterative refinement multigrid solver

Intel Westmere vs. NVIDIA Fermi
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Speedup GPU vs. CPU
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Summary: Smoother parallelisation

Factor 10-30 (dep. on precision and smoother selection) speedup
over already highly tuned CPU implementation

Same numerical capabilities on CPU and GPU

Balancing of numerical and parallel efficiency (hardware-oriented
numerics)



CSM and CFD on
GPU-Accelerated Clusters



ScaRC Solvers in FEAST

Combination of structured and unstructured advantages

Global macro-mesh: Unstructured, flexible, complex domains

Local micro-meshes: Structured (logical TP-structure), fast

Important: Structured 6= simple meshes!

UU

“window” for
matrix-vector
multiplication,
per macro

hierarchically
refined subdomain
(= “macro”),
rowwise numbered

unstructured mesh

UD
UL

DU
DDDL

LU
LDLL

I-1

I

I+1

I-M-1
I-M

I-M+1
I+M-1

I+M

I+M+1

Ω
i

Hybrid multilevel domain decomposition method

Multiplicative between levels, global coarse grid problem (MG-like)

Additive horizontally: block-Jacobi / Schwarz smoother (DD-like)

Local GPU-accelerated MG hides local irregularities



Linearised elasticity

(

A11 A12

A21 A22

)(

u1

u2

)

= f

(

(2µ+ λ)∂xx + µ∂yy (µ+ λ)∂xy

(µ+ λ)∂yx µ∂xx + (2µ+ λ)∂yy

)

global multivariate BiCGStab
block-preconditioned by
Global multivariate multilevel (V 1+1)
additively smoothed (block GS) by

for all Ωi: solve A11c1 = d1

by
local scalar multigrid

update RHS: d2 = d2 − A21c1

for all Ωi: solve A22c2 = d2

by
local scalar multigrid

coarse grid solver: UMFPACK



Speedup
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USC cluster in Los Alamos, 16 dualcore nodes (Opteron Santa Rosa,
Quadro FX5600)

Problem size 128M DOF

Dualcore 1.6x faster than singlecore (memory wall)

GPU 2.6x faster than singlecore, 1.6x than dualcore



Speedup analysis

Theoretical model of expected speedup

Integration of GPUs increases resources

Correct model: Strong scaling within each node

Acceleration potential of the elasticity solver: Racc = 2/3
(remaining time in MPI and the outer solver)

Smax =
1

1−Racc
Smodel =

1
(1−Racc)+(Racc/Slocal)

This example

Accelerable fraction Racc 66%
Local speedup Slocal 9x
Modeled speedup Smodel 2.5x
Measured speedup Stotal 2.6x
Upper bound Smax 3x
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Weak scalability

Simultaneous doubling of problem size and resources

Left: Poisson, 160 dual Xeon / FX1400 nodes, max. 1.3 B DOF

Right: Linearised elasticity, 64 nodes, max. 0.5 B DOF
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Results

No loss of weak scalability despite local acceleration

1.3 billion unknowns (no stencil!) on 160 GPUs in less than 50 s



Stationary laminar flow (Navier-Stokes)





A11 A12 B1

A21 A22 B2

BT
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
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u1

u2

p


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=





f1
f2
g





fixed point iteration
assemble linearised subproblems and solve with

global BiCGStab (reduce initial residual by 1 digit)
Block-Schurcomplement preconditioner
1) approx. solve for velocities with

global MG (V 1+0), additively smoothed by

for all Ωi: solve for u1 with
local MG

for all Ωi: solve for u2 with
local MG

2) update RHS: d3 = −d3 + B
T(c1, c2)

T

3) scale c3 = (ML
p)

−1
d3



Stationary laminar flow (Navier-Stokes)

Solver configuration

Driven cavity: Jacobi smoother sufficient

Channel flow: ADI-TRIDI smoother required

Speedup analysis

Racc Slocal Stotal

L9 L10 L9 L10 L9 L10
DC Re250 52% 62% 9.1x 24.5x 1.63x 2.71x
Channel flow 48% – 12.5x – 1.76x –

FE assembly vs. linear solver, max. problem size

DC Re250 Channel
CPU GPU CPU GPU
12:88 31:67 38:59 68:28



Summary



Summary

Grid and data layouts

ScaRC approach: locally structured, globally unstructured

GPU computing

Parallelising numerically strong recursive smoothers

More than an order of magnitude speedup

Scale-out to larger clusters

Minimally invasive integration

Good speedup despite ‘Amdahl’s Law’

Excellent weak scalability

One GPU code to accelerate CSM and CFD applications built on
top of ScaRC
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