
Accelerating Double Precision FEM Simulations
with GPUs

Dominik Göddeke1 3 Robert Strzodka2 Stefan Turek1

dominik.goeddeke@math.uni-dortmund.de

1Mathematics III: Applied Mathematics and Numerics, University of Dortmund

2Computer Science, Stanford University, California

3Computer Science VII: Computer Graphics, University of Dortmund

ASIM 2005 – 18th Symposium on Simulation Technique
Workshop Parallel Computing and Graphics Processors

Erlangen, Germany, September 12th-15th 2005

Motivation Algorithm Accuracy and performance evaluation Conclusions

Overview

1 Motivation

2 Algorithm

3 Accuracy and performance evaluation
Test setup
Influence of input data precision
Influence of solver accuracies
Performance evaluation

4 Conclusions

Motivation Algorithm Accuracy and performance evaluation Conclusions

Overview

1 Motivation

2 Algorithm

3 Accuracy and performance evaluation
Test setup
Influence of input data precision
Influence of solver accuracies
Performance evaluation

4 Conclusions

Motivation Algorithm Accuracy and performance evaluation Conclusions

Overview

1 Motivation

2 Algorithm

3 Accuracy and performance evaluation
Test setup
Influence of input data precision
Influence of solver accuracies
Performance evaluation

4 Conclusions

Motivation Algorithm Accuracy and performance evaluation Conclusions

Overview

1 Motivation

2 Algorithm

3 Accuracy and performance evaluation
Test setup
Influence of input data precision
Influence of solver accuracies
Performance evaluation

4 Conclusions

Motivation Algorithm Accuracy and performance evaluation Conclusions

Motivation and related work

As described in previous talk: GPUs exhibit the attractive potential to
accelerate FEM simulations by at least one order of magnitude.

Available half (s10e5) and single (s23e8 NVIDIA, s16e7 ATI, IEEE 754
on CPUs) floating point formats do not provide sufficient accuracy for
numerical simulations in technical applications, e.g. quantitatively correct
drag and lift values in virtual wind tunnels compared to qualitatively
correct flow field calculations.

Native double precision support in hardware is unlikely to appear in the
medium-term: Not required for graphics purposes.

Possible approach: Emulate double through single precision (essentially
doubling the mantissa, so-called single-double). Feasibility in a GPU
context currently being analyzed in the GAIA project (Lawrence
Livermore Labs), drawback: Factor 10 increase in number of operations.

Motivation Algorithm Accuracy and performance evaluation Conclusions

Motivation and related work

As described in previous talk: GPUs exhibit the attractive potential to
accelerate FEM simulations by at least one order of magnitude.

Available half (s10e5) and single (s23e8 NVIDIA, s16e7 ATI, IEEE 754
on CPUs) floating point formats do not provide sufficient accuracy for
numerical simulations in technical applications, e.g. quantitatively correct
drag and lift values in virtual wind tunnels compared to qualitatively
correct flow field calculations.

Native double precision support in hardware is unlikely to appear in the
medium-term: Not required for graphics purposes.

Possible approach: Emulate double through single precision (essentially
doubling the mantissa, so-called single-double). Feasibility in a GPU
context currently being analyzed in the GAIA project (Lawrence
Livermore Labs), drawback: Factor 10 increase in number of operations.

Motivation Algorithm Accuracy and performance evaluation Conclusions

Our approach

Context: Use the GPU as a co-processor for computationally intensive
components of FEM solvers, e.g. iterative solvers for linear systems.

Revitalize Mixed Precision Defect Correction techniques, combining
the high performance of the GPU and the high accuracy of the CPU.

Core algorithm: Outer defect correction loop running in double precision
on the CPU, GPU-based iterative solver in single precision works as a
preconditioner for the outer solver to ensure reducing the defect by few
digits per iteration.

Time won by running the preconditioner on the GPU easily outweights
the (potentially expensive) data transfers between CPU and GPU and the
additional iterations implied by the Richardson approach.

Motivation Algorithm Accuracy and performance evaluation Conclusions

Our approach

Context: Use the GPU as a co-processor for computationally intensive
components of FEM solvers, e.g. iterative solvers for linear systems.

Revitalize Mixed Precision Defect Correction techniques, combining
the high performance of the GPU and the high accuracy of the CPU.

Core algorithm: Outer defect correction loop running in double precision
on the CPU, GPU-based iterative solver in single precision works as a
preconditioner for the outer solver to ensure reducing the defect by few
digits per iteration.

Time won by running the preconditioner on the GPU easily outweights
the (potentially expensive) data transfers between CPU and GPU and the
additional iterations implied by the Richardson approach.

Motivation Algorithm Accuracy and performance evaluation Conclusions

Notation and input parameters

Note:
Reformulated algorithm compared to proceedings (relative instead of
absolute termination criteria). Presented results are based on new version
and an improved implementation.

Notation and parameters:

εinner and εouter : stopping criteria for the inner and outer solver.

Ax = b: given linear system of equations to be solved in double
precision.

α: scaling factor.

d0: norm of initial defect for convergence control.

Subscript 32: single precision vectors stored in GPU memory as
textures.

Subscript 64: double precision vectors stored in CPU memory.

Motivation Algorithm Accuracy and performance evaluation Conclusions

The algorithm

1 Set initial values and calculate initial defect: α64 = 1.0, x64 = initial
guess, d64 = b64 − A64x64, d0

64 = ||d64||.
2 Set initial values for inner solver: d32 = d64, c32 = initial guess,

d0
32 = ||d32 − A32c32||

3 Iterate inner solver until ||d32 − A32c32|| < εinner · d0
32.

4 Update outer solution: x64 = x64 + α64c32.

5 Calculate defect in double precision: d64 = b64 − A64x64.

6 Calculate norm of defect: α64 = ||d64||
7 Check for convergence (α64 < εouter · d0

64); otherwise scale defect:
d64 = 1

α64
d64 and continue with step 2.

Motivation Algorithm Accuracy and performance evaluation Conclusions

The algorithm

1 Set initial values and calculate initial defect: α64 = 1.0, x64 = initial
guess, d64 = b64 − A64x64, d0

64 = ||d64||.
2 Set initial values for inner solver: d32 = d64, c32 = initial guess,

d0
32 = ||d32 − A32c32||

3 Iterate inner solver until ||d32 − A32c32|| < εinner · d0
32.

4 Update outer solution: x64 = x64 + α64c32.

5 Calculate defect in double precision: d64 = b64 − A64x64.

6 Calculate norm of defect: α64 = ||d64||
7 Check for convergence (α64 < εouter · d0

64); otherwise scale defect:
d64 = 1

α64
d64 and continue with step 2.

Motivation Algorithm Accuracy and performance evaluation Conclusions

The algorithm

1 Set initial values and calculate initial defect: α64 = 1.0, x64 = initial
guess, d64 = b64 − A64x64, d0

64 = ||d64||.
2 Set initial values for inner solver: d32 = d64, c32 = initial guess,

d0
32 = ||d32 − A32c32||

3 Iterate inner solver until ||d32 − A32c32|| < εinner · d0
32.

4 Update outer solution: x64 = x64 + α64c32.

5 Calculate defect in double precision: d64 = b64 − A64x64.

6 Calculate norm of defect: α64 = ||d64||
7 Check for convergence (α64 < εouter · d0

64); otherwise scale defect:
d64 = 1

α64
d64 and continue with step 2.

Motivation Algorithm Accuracy and performance evaluation Conclusions

The algorithm

1 Set initial values and calculate initial defect: α64 = 1.0, x64 = initial
guess, d64 = b64 − A64x64, d0

64 = ||d64||.
2 Set initial values for inner solver: d32 = d64, c32 = initial guess,

d0
32 = ||d32 − A32c32||

3 Iterate inner solver until ||d32 − A32c32|| < εinner · d0
32.

4 Update outer solution: x64 = x64 + α64c32.

5 Calculate defect in double precision: d64 = b64 − A64x64.

6 Calculate norm of defect: α64 = ||d64||
7 Check for convergence (α64 < εouter · d0

64); otherwise scale defect:
d64 = 1

α64
d64 and continue with step 2.

Motivation Algorithm Accuracy and performance evaluation Conclusions

The algorithm

1 Set initial values and calculate initial defect: α64 = 1.0, x64 = initial
guess, d64 = b64 − A64x64, d0

64 = ||d64||.
2 Set initial values for inner solver: d32 = d64, c32 = initial guess,

d0
32 = ||d32 − A32c32||

3 Iterate inner solver until ||d32 − A32c32|| < εinner · d0
32.

4 Update outer solution: x64 = x64 + α64c32.

5 Calculate defect in double precision: d64 = b64 − A64x64.

6 Calculate norm of defect: α64 = ||d64||
7 Check for convergence (α64 < εouter · d0

64); otherwise scale defect:
d64 = 1

α64
d64 and continue with step 2.

Motivation Algorithm Accuracy and performance evaluation Conclusions

The algorithm

1 Set initial values and calculate initial defect: α64 = 1.0, x64 = initial
guess, d64 = b64 − A64x64, d0

64 = ||d64||.
2 Set initial values for inner solver: d32 = d64, c32 = initial guess,

d0
32 = ||d32 − A32c32||

3 Iterate inner solver until ||d32 − A32c32|| < εinner · d0
32.

4 Update outer solution: x64 = x64 + α64c32.

5 Calculate defect in double precision: d64 = b64 − A64x64.

6 Calculate norm of defect: α64 = ||d64||
7 Check for convergence (α64 < εouter · d0

64); otherwise scale defect:
d64 = 1

α64
d64 and continue with step 2.

Motivation Algorithm Accuracy and performance evaluation Conclusions

The algorithm

1 Set initial values and calculate initial defect: α64 = 1.0, x64 = initial
guess, d64 = b64 − A64x64, d0

64 = ||d64||.
2 Set initial values for inner solver: d32 = d64, c32 = initial guess,

d0
32 = ||d32 − A32c32||

3 Iterate inner solver until ||d32 − A32c32|| < εinner · d0
32.

4 Update outer solution: x64 = x64 + α64c32.

5 Calculate defect in double precision: d64 = b64 − A64x64.

6 Calculate norm of defect: α64 = ||d64||
7 Check for convergence (α64 < εouter · d0

64); otherwise scale defect:
d64 = 1

α64
d64 and continue with step 2.

Motivation Algorithm Accuracy and performance evaluation Conclusions

Remarks

Test setup is strictly prototypical:

Inner solver: Unpreconditioned conjugate gradients.

Mesh: Regularly refined cartesian grid due to potential instabilities
of CG solver on deformed meshes.

Goal: Multigrid as inner preconditioner will greatly enhance
performance and allow arbitrarily deformed and adapted generalized
tensorproduct meshes.

Motivation Algorithm Accuracy and performance evaluation Conclusions

Test setup

Solve Poisson equation −∆u = f: Dirichlet boundary conditions on
Ω = [0, 1]2, conforming bilinear Finite Elements (Q1) for spatial
discretization, levels of refinement from N = 32 to N = 10252

unknowns.

Perform error analysis with test function
u0(x , y) := x(1− x)y(1− y).

Measure error nodewise with the scaled l2 norm (approximate L2) of
analytic solution and computed results.

Reference CPU data through cache-aware highly optimized FEAST
simulation package on Opteron 250 node (∼ 4 GFLOP/s LINPACK).

GPU timings on NVIDIA GeForce 6800 graphics card (AGP).

Motivation Algorithm Accuracy and performance evaluation Conclusions

Influence of input data precision (I)

Goal: Analyze influence of input data precision on the overall error.

Compute RHS as discrete Laplacian f := −∆hu0 to avoid
discretization errors.

Clamp from double (f64) to single (f32) and half (f16) floating point
precision.

Perform computation in the CPU reference solver and the
GPU-based defect correction solver with full accuracy until norm of
residuals drops below d0

64 · εouter = 10−10.

Motivation Algorithm Accuracy and performance evaluation Conclusions

Influence of input data precision (II)

Results for this test case, N = 2572 and N = 5132:

f16 (CPU) f16 (GPU-CPU)

2.333 · 10−6 2.333 · 10−6

1.008 · 10−6 1.008 · 10−6

f32 (CPU) f32 (GPU-CPU)

7.718 · 10−10 7.717 · 10−10

7.726 · 10−10 7.725 · 10−10

f64 (CPU) f64 (GPU-CPU)

2.750 · 10−13 2.806 · 10−13

1.051 · 10−12 1.049 · 10−12

Representing all data in double
precision is essential.

Improving internal
computational precision without
introducing a higher precision
format for input and output is
useless.

GPU-CPU defect correction
yields identical precision.

Motivation Algorithm Accuracy and performance evaluation Conclusions

Influence of solver accuracies (I)

Goal: Analyze overall error of the continuous problem and compare
possible accuracy with varying solver precision.

Compute RHS f := −∆u0 with continuous Laplacian to obtain the
continuous problem −∆u = f in Ω.

Analytically known solution: u = u0.

Run pure CPU and the GPU-CPU solver at half, single and double
precision, with input data in the corresponding precision, and solve
until the initial defect is reduced by 10−10.

Motivation Algorithm Accuracy and performance evaluation Conclusions

Influence of solver accuracies (II)

N CPU16 GPU16 CPU32 GPU32 CPU64 GPU-CPU64

32 5.208 · 10−3 5.208 · 10−3 5.208 · 10−3 5.208 · 10−3 5.208 · 10−3 5.208 · 10−3

52 1.444 · 10−3 1.509 · 10−3 1.440 · 10−3 1.440 · 10−3 1.440 · 10−3 1.440 · 10−3

92 2.675 · 10−4 7.556 · 10−4 3.869 · 10−4 3.869 · 10−4 3.869 · 10−4 3.869 · 10−4

172 4.047 · 10−4 2.332 · 10−3 1.015 · 10−4 1.016 · 10−4 1.015 · 10−4 1.015 · 10−4

332 2.120 · 10−3 2.253 · 10−3 2.611 · 10−5 2.648 · 10−5 2.607 · 10−5 2.607 · 10−5

652 noise noise 6.464 · 10−6 8.324 · 10−6 6.612 · 10−6 6.612 · 10−6

1292 noise noise 1.656 · 10−6 8.554 · 10−6 1.666 · 10−6 1.666 · 10−6

2572 noise noise 5.927 · 10−7 2.781 · 10−5 4.181 · 10−7 4.181 · 10−7

5132 noise noise 2.803 · 10−5 1.119 · 10−4 1.047 · 10−7 1.047 · 10−7

10252 noise noise 7.708 · 10−5 4.463 · 10−4 2.620 · 10−8 2.620 · 10−8

No discernible difference for N ≥ 172 in a given visualization: 16 bit
floating point arithmetic is sufficient for visual accuracy.

Half precision: Inappropriate beyond visual accuracy.

Single precision: Discretization error dominates for the first few
levels (factor 4 error reduction per refinement as expected), but due
to insufficient precision, further refinement increases the error again.

Note the difference in single precision accuracy between CPU and
GPU.

GPU-CPU approach yields identical accuracy compared to pure CPU
implementation.

Motivation Algorithm Accuracy and performance evaluation Conclusions

Influence of solver accuracies (II)

N CPU16 GPU16 CPU32 GPU32 CPU64 GPU-CPU64

32 5.208 · 10−3 5.208 · 10−3 5.208 · 10−3 5.208 · 10−3 5.208 · 10−3 5.208 · 10−3

52 1.444 · 10−3 1.509 · 10−3 1.440 · 10−3 1.440 · 10−3 1.440 · 10−3 1.440 · 10−3

92 2.675 · 10−4 7.556 · 10−4 3.869 · 10−4 3.869 · 10−4 3.869 · 10−4 3.869 · 10−4

172 4.047 · 10−4 2.332 · 10−3 1.015 · 10−4 1.016 · 10−4 1.015 · 10−4 1.015 · 10−4

332 2.120 · 10−3 2.253 · 10−3 2.611 · 10−5 2.648 · 10−5 2.607 · 10−5 2.607 · 10−5

652 noise noise 6.464 · 10−6 8.324 · 10−6 6.612 · 10−6 6.612 · 10−6

1292 noise noise 1.656 · 10−6 8.554 · 10−6 1.666 · 10−6 1.666 · 10−6

2572 noise noise 5.927 · 10−7 2.781 · 10−5 4.181 · 10−7 4.181 · 10−7

5132 noise noise 2.803 · 10−5 1.119 · 10−4 1.047 · 10−7 1.047 · 10−7

10252 noise noise 7.708 · 10−5 4.463 · 10−4 2.620 · 10−8 2.620 · 10−8

No discernible difference for N ≥ 172 in a given visualization: 16 bit
floating point arithmetic is sufficient for visual accuracy.

Half precision: Inappropriate beyond visual accuracy.

Single precision: Discretization error dominates for the first few
levels (factor 4 error reduction per refinement as expected), but due
to insufficient precision, further refinement increases the error again.

Note the difference in single precision accuracy between CPU and
GPU.

GPU-CPU approach yields identical accuracy compared to pure CPU
implementation.

Motivation Algorithm Accuracy and performance evaluation Conclusions

Influence of solver accuracies (II)

N CPU16 GPU16 CPU32 GPU32 CPU64 GPU-CPU64

32 5.208 · 10−3 5.208 · 10−3 5.208 · 10−3 5.208 · 10−3 5.208 · 10−3 5.208 · 10−3

52 1.444 · 10−3 1.509 · 10−3 1.440 · 10−3 1.440 · 10−3 1.440 · 10−3 1.440 · 10−3

92 2.675 · 10−4 7.556 · 10−4 3.869 · 10−4 3.869 · 10−4 3.869 · 10−4 3.869 · 10−4

172 4.047 · 10−4 2.332 · 10−3 1.015 · 10−4 1.016 · 10−4 1.015 · 10−4 1.015 · 10−4

332 2.120 · 10−3 2.253 · 10−3 2.611 · 10−5 2.648 · 10−5 2.607 · 10−5 2.607 · 10−5

652 noise noise 6.464 · 10−6 8.324 · 10−6 6.612 · 10−6 6.612 · 10−6

1292 noise noise 1.656 · 10−6 8.554 · 10−6 1.666 · 10−6 1.666 · 10−6

2572 noise noise 5.927 · 10−7 2.781 · 10−5 4.181 · 10−7 4.181 · 10−7

5132 noise noise 2.803 · 10−5 1.119 · 10−4 1.047 · 10−7 1.047 · 10−7

10252 noise noise 7.708 · 10−5 4.463 · 10−4 2.620 · 10−8 2.620 · 10−8

No discernible difference for N ≥ 172 in a given visualization: 16 bit
floating point arithmetic is sufficient for visual accuracy.

Half precision: Inappropriate beyond visual accuracy.

Single precision: Discretization error dominates for the first few
levels (factor 4 error reduction per refinement as expected), but due
to insufficient precision, further refinement increases the error again.

Note the difference in single precision accuracy between CPU and
GPU.

GPU-CPU approach yields identical accuracy compared to pure CPU
implementation.

Motivation Algorithm Accuracy and performance evaluation Conclusions

Influence of solver accuracies (II)

N CPU16 GPU16 CPU32 GPU32 CPU64 GPU-CPU64

32 5.208 · 10−3 5.208 · 10−3 5.208 · 10−3 5.208 · 10−3 5.208 · 10−3 5.208 · 10−3

52 1.444 · 10−3 1.509 · 10−3 1.440 · 10−3 1.440 · 10−3 1.440 · 10−3 1.440 · 10−3

92 2.675 · 10−4 7.556 · 10−4 3.869 · 10−4 3.869 · 10−4 3.869 · 10−4 3.869 · 10−4

172 4.047 · 10−4 2.332 · 10−3 1.015 · 10−4 1.016 · 10−4 1.015 · 10−4 1.015 · 10−4

332 2.120 · 10−3 2.253 · 10−3 2.611 · 10−5 2.648 · 10−5 2.607 · 10−5 2.607 · 10−5

652 noise noise 6.464 · 10−6 8.324 · 10−6 6.612 · 10−6 6.612 · 10−6

1292 noise noise 1.656 · 10−6 8.554 · 10−6 1.666 · 10−6 1.666 · 10−6

2572 noise noise 5.927 · 10−7 2.781 · 10−5 4.181 · 10−7 4.181 · 10−7

5132 noise noise 2.803 · 10−5 1.119 · 10−4 1.047 · 10−7 1.047 · 10−7

10252 noise noise 7.708 · 10−5 4.463 · 10−4 2.620 · 10−8 2.620 · 10−8

No discernible difference for N ≥ 172 in a given visualization: 16 bit
floating point arithmetic is sufficient for visual accuracy.

Half precision: Inappropriate beyond visual accuracy.

Single precision: Discretization error dominates for the first few
levels (factor 4 error reduction per refinement as expected), but due
to insufficient precision, further refinement increases the error again.

Note the difference in single precision accuracy between CPU and
GPU.

GPU-CPU approach yields identical accuracy compared to pure CPU
implementation.

Motivation Algorithm Accuracy and performance evaluation Conclusions

Influence of solver accuracies (II)

N CPU16 GPU16 CPU32 GPU32 CPU64 GPU-CPU64

32 5.208 · 10−3 5.208 · 10−3 5.208 · 10−3 5.208 · 10−3 5.208 · 10−3 5.208 · 10−3

52 1.444 · 10−3 1.509 · 10−3 1.440 · 10−3 1.440 · 10−3 1.440 · 10−3 1.440 · 10−3

92 2.675 · 10−4 7.556 · 10−4 3.869 · 10−4 3.869 · 10−4 3.869 · 10−4 3.869 · 10−4

172 4.047 · 10−4 2.332 · 10−3 1.015 · 10−4 1.016 · 10−4 1.015 · 10−4 1.015 · 10−4

332 2.120 · 10−3 2.253 · 10−3 2.611 · 10−5 2.648 · 10−5 2.607 · 10−5 2.607 · 10−5

652 noise noise 6.464 · 10−6 8.324 · 10−6 6.612 · 10−6 6.612 · 10−6

1292 noise noise 1.656 · 10−6 8.554 · 10−6 1.666 · 10−6 1.666 · 10−6

2572 noise noise 5.927 · 10−7 2.781 · 10−5 4.181 · 10−7 4.181 · 10−7

5132 noise noise 2.803 · 10−5 1.119 · 10−4 1.047 · 10−7 1.047 · 10−7

10252 noise noise 7.708 · 10−5 4.463 · 10−4 2.620 · 10−8 2.620 · 10−8

No discernible difference for N ≥ 172 in a given visualization: 16 bit
floating point arithmetic is sufficient for visual accuracy.

Half precision: Inappropriate beyond visual accuracy.

Single precision: Discretization error dominates for the first few
levels (factor 4 error reduction per refinement as expected), but due
to insufficient precision, further refinement increases the error again.

Note the difference in single precision accuracy between CPU and
GPU.

GPU-CPU approach yields identical accuracy compared to pure CPU
implementation.

Motivation Algorithm Accuracy and performance evaluation Conclusions

Performance evaluation

Iteration counts and timings for εouter = 10−10 (relative), FEAST gaining
10 decimals directly vs. combined GPU-CPU solver gaining 2-3 decimals
per (inner) iteration, (timings include all necessary data transfers):

N Iters FEAST Iters GPU-CPU Time FEAST Time GPU-CPU

1272 188 437 (4) 0.27s 0.62s
2572 368 877 (4) 2.30s 1.89s
5132 707 1762 (4) 18.38s 8.81s
10252 1392 3506 (4) 191.39s 53.13s

CPU outperforms GPU for smaller problems.

FEAST convergence behaviour as expected O(h−1). GPU-CPU
solver shows surprisingly high iteration counts.

GPU-CPU solver outperforms FEAST by a factor of 3.6 despite
unoptimized ”proof of concept” implementation and an increase in
iterations by 2.5.

Motivation Algorithm Accuracy and performance evaluation Conclusions

Performance evaluation

Iteration counts and timings for εouter = 10−10 (relative), FEAST gaining
10 decimals directly vs. combined GPU-CPU solver gaining 2-3 decimals
per (inner) iteration, (timings include all necessary data transfers):

N Iters FEAST Iters GPU-CPU Time FEAST Time GPU-CPU

1272 188 437 (4) 0.27s 0.62s
2572 368 877 (4) 2.30s 1.89s
5132 707 1762 (4) 18.38s 8.81s
10252 1392 3506 (4) 191.39s 53.13s

CPU outperforms GPU for smaller problems.

FEAST convergence behaviour as expected O(h−1). GPU-CPU
solver shows surprisingly high iteration counts.

GPU-CPU solver outperforms FEAST by a factor of 3.6 despite
unoptimized ”proof of concept” implementation and an increase in
iterations by 2.5.

Motivation Algorithm Accuracy and performance evaluation Conclusions

Analysis of GPU-CPU convergence behaviour

Exemplary setup: N = 2572 (left) and N = 5132 (right), εouter = 10−10,
iteration counts for different values of εinner :

εinner CPU 64-64 CPU 64-32 GPU 64-32 CPU 64-64 CPU 64-32 GPU 64-32

10−1 970 (10) 998 (10) 956 (10) 1626 (10) 1931 (10) 1634 (10)

10−2 654 (5) 776 (5) 831 (5) 1139 (5) 1818 (5) 1508 (5)

10−3 830 (4) 941 (4) 877 (4) 1649 (4) 1984 (4) 1762 (4)

10−5 531 (2) 1111 (3) 927 (3) 1034 (2) 2241 (4) 2822 (4)

10−10 368 (1) 2222 (3) 1780 (3) 707 (1) 5182 (3) 4848 (5)

Defect correction scheme itself is main reason for iteration increase:
Inner CG solver ’unsuitable’ (bad restart values? loss of
orthogonality?).

2 decimals in the inner solver do not translate to 2 decimals in the
outer defect, this scales with the problem size!

Will be further examined as soon as more powerful (MG) inner
preconditioners are available.

Motivation Algorithm Accuracy and performance evaluation Conclusions

Potential improvements, conclusions

Do not check for convergence of the inner solver in every iteration, but
heuristically based on expected convergence behaviour.

Incorporate asynchroneous readbacks for convergence checks, do norm
evaluation during potentially superfluous next inner iteration.

Evaluate better scaling schemes, e.g. use (d−1
i)i as preconditioner.

Remark: The same algorithm can also be implemented completely in the
GPU to improve a half precision result to single precision, taking
advantage of the 50% bandwidth reduction.

Conclusion: We have presented an approach that allows double precision
calculations while using the GPU as a fast co-processor. Convergence
behaviour needs to be further examined, but for practical purposes, the
algorithm works very well and delivers good speedups compared to a
highly tuned CPU-only solution.

Motivation Algorithm Accuracy and performance evaluation Conclusions

	Motivation
	Motivation and related work
	Our approach

	Algorithm
	Notation and input parameters
	The algorithm

	Accuracy and performance evaluation
	Test setup
	Test setup 2
	Influence of input data precision
	Influence of input data precision (II)
	Influence of solver accuracies
	Influence of solver accuracies (II)
	Performance evaluation
	Performance evaluation 2

	Conclusions
	Conclusions

