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In this survey paper, we compare native double precision solvers with emulated- and mixed- pre-
cision solvers of linear systems of equations as they typically arise in finite element discretisations.
The emulation utilises two single float numbers to achieve higher precision, while the mixed preci-
sion iterative refinement computes residuals and updates the solution vector in double precision but
solves the residual systems in single precision. Both techniques have been known since the 1960s, but
little attention has been devoted to their performance aspects. Motivated by changing paradigms
in processor technology and the emergence of highly parallel devices with outstanding single float
performance, we adapt the emulation and mixed precision techniques to coupled hardware configu-
rations, where the parallel devices serve as scientific co-processors. The performance advantages are
examined with respect to speedups over a native double precision implementation (time aspect) and
reduced area requirements for a chip (space aspect).

The paper begins with an overview of the theoretical background, algorithmic approaches and
suitable hardware architectures. We then employ several conjugate gradient and multigrid solvers and
study their behaviour for different parameter settings of the iterative refinement technique. Concrete
speedup factors are evaluated on the coupled hardware configuration of a general-purpose CPU and
a graphics processor. The dual performance aspect of potential area savings is assessed on a field
programmable gate array. In the last part, we test the applicability of the proposed mixed precision
schemes with ill-conditioned matrices. We conclude that the mixed precision approach works very
well with the parallel co-processors gaining speedup factors of four to five, and area savings of three
to four, while maintaining the same accuracy as a reference solver executing everything in double
precision.
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1 Introduction

After a long period of steady growth, desktop computer architecture has
reached a turning point. Further progress is no longer enabled by growth in
core clock rates, but by growth in parallelism. Physical limitations, in par-
ticular thermal restrictions, generate a trend towards more parallelism on a
chip: Double-core processors are already on sale and multi-core processors with
much more parallelism are in the making. The parallel arrangements distribute
the heat more evenly, avoiding dangerous hot spots.

In the attempt to uphold a simple sequential programming model, the CPU
has only recently opted for the parallelisation instead of enhancement of its
inner structures. Other more application specific chips have followed this path
from the beginning. For instance, Field Programmable Gate Arrays (FPGAs)
and Graphics Processor Units (GPUs) are made up of a large number of
boolean or arithmetic processing elements (PEs). In these highly parallel ar-
chitectures the PEs consume a high percentage of the overall transistor count,
in contrast to the cache-dominated general purpose CPUs. If we use the PEs
for floating point computations then the required precision has a strong im-
pact on the size and costs of the chip. Hardwired PEs in most highly parallel
architectures are therefore only single precision (e.g. in the GPU), while re-
configurable architectures (e.g. FPGA) can be configured for double precision
operations, but these arithmetic units consume so many resources that efficient
parallelisation is only possible with low precision units.

For memory dominated processors the change from low precision to high
precision PEs has only a small impact on the overall number of transistors and
thus CPUs can more easily afford to compute in high precision in the Floating
Point Unit (FPU) than other more parallel devices. However, higher precision
FPUs not only increase the transistor count but also require wider data paths
through the chip and make it more difficult to meet timing constraints. So
even the CPU would waste too many resources by concentrating on double
precision alone, and the SSE units in CPUs include a dedicated optimisation
for the single float format, enabling the processing of twice as many operations
on single than on double floats.

We see that current hardware architectures offer a lot of computation power
in single float precision but scientific applications do not take advantage of
these capabilities, as the accuracy requirements apparently force them to use
double precision operations exclusively. In fact, for many problems the restric-
tion of the computational precision to single float would mean an unacceptable
loss of the result accuracy, see for example the PDE case in section 5.3. The
many parallel single precision PEs can be exploited by emulating high precision
operations and for a completely general algorithm this is the only possibility to
gain more accuracy with low precision PEs. However, for many algorithms we
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do not require high precision arithmetic for all intermediate computations to
gain highly accurate final results. The knowledge about the error propagation
in the algorithm can be used to confine the use of high precision computations
to only few relevant places. We obtain a mixed precision method which utilises
low and high precision computations in different parts of the algorithms.

Given these three approaches of native high precision, emulated high preci-
sion and mixed precision implementations, we compare the resulting perfor-
mance and accuracy in this paper. The main focus lies on the mixed precision
technique for the solution of PDEs. The performance aspect is studied in view
of the existing parallel co-processors that execute single precision operations
extremely fast. The accuracy is examined with respect to wide applicability
of these approaches for problems of high condition.

1.1 Mixed precision

The idea behind mixed precision methods is obviously to perform a large
part of the computation in low and only a small part in high precision, thus
allowing the hardware to save on transistors by offering many low precision
and only few high precision PEs. The low and high precision PEs may reside in
different chips, e.g. a general purpose CPU with double float arithmetic and a
parallel co-processor with single float arithmetic. Section 4 discusses available
architectures that are particularly suitable for this kind of processing.

This simple idea of utilising different precision formats in the same algorithm
has surprisingly many beneficial properties:

Accuracy
• For many algorithms the mixed precision method can obtain exactly the

same final accuracy as though the entire computation were performed in
the high precision format.

• For certain algorithms, like the solution of a linear equation system, the
above savings are particularly large, because even 99% of the operations
can be performed in the low precision format, without affecting the final
accuracy.

• Since we use less precision in the computation it is always possible to
construct problems for which the mixed precision approach must break
down, however, we show that even for very badly conditioned practical
cases of PDE problems there is no loss in accuracy.

Computation
• The number of transistors required to implement a hardware multiplier

grows quadratically with the size of the operands (bit length). Conse-
quently, instead of one high precision multiplier we can use the same
number of transistors for four low precision multipliers if the low preci-
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sion format is half the size of the high precision format.
• As a consequence of the above, the number of operations required in the

emulation of a high precision format with low precision arithmetic grows
quadratically with the quotient of the high and low precision number
format sizes. For floating point operations even more emulation operations
are required, because of the special treatment of the exponent.

• Mixed precision techniques are used extensively in reconfigurable archi-
tectures where low precision PEs directly translate into low resource con-
sumption and thus more parallelism. In this case PEs of different precision
can be configured on the same chip.

• Hardwired processors gain even more from mixed precision algorithms, be-
cause hardwired PEs are far more transistor efficient than reconfigurable
ones. Thus we may utilise a highly parallel low precision co-processor for
the majority of the computations and upgrade the accuracy with few high
precision computations on a slower general purpose processor.

• The decision to produce a highly parallel architecture of limited precision
does not limit the accuracy of the final results. In combination with a
general purpose processor which supports various number formats and
can emulate even more, the same parallel architecture can be used to
obtain double, extended or even variable accuracy results.

Memory
• The use of low precision formats does not only require fewer resources for

the PEs but also for the memory. This is particularly important for the
very expensive and limited memory that resides next to the PEs (register
file, L1 cache) and the second level memory on the same die (embedded
memory, L2 cache). For optimal processing, large data sets are often split
into blocks that match the size of these local memories. Smaller data
formats allow the division into larger blocks which increases the efficiency
of the entire algorithm.

• The use of low precision formats reduces the bandwidth requirement in
computations. This is much in favour of mixed precision methods as mem-
ory transfers are often the bottleneck in computations and also account
for more power consumption than the computation itself.

In summary, we can say that mixed precision methods have wide applica-
bility and benefit both computation and bandwidth limited algorithms. For
bandwidth limited algorithms with low arithmetic intensity (ratio of opera-
tions per memory access), we measure almost the theoretical factor of two in
speedup when transitioning from double to single float precision. More gene-
rally, in the exponential development of computer technology in the last ten
years we observe that memory performance is increasing much slower than
computational performance, because the integration of additional PEs into
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a processor is much cheaper both in costs and power than the widening of
the data bus for additional bandwidth. This leads to the so-called memory
wall [1], the inability to provide enough bandwidth for the PEs, thus limit-
ing the overall performance of the system by the memory performance rather
than the peak computational performance. Using low precision number for-
mats in most intermediate computations of an algorithm cuts the bandwidth
requirements almost in half and thus alleviates the memory wall problem.

If a particular algorithm is computation limited despite the general memory
wall problem, then the savings obtained from mixed precision methods can
be even larger than in the memory limited case, since the area of a multiplier
grows quadratically with the bit length of the operands. Thus, cutting the
number format size in half allows up to four times as many PEs on the same
area. The factor is not exactly four, as there is some overhead associated with
each unit and for floating point numbers the ratio of the exponent to the man-
tissa has additional impact. Also, in hardwired architectures this quadratic
advantage cannot be exploited so easily since the data paths are fixed. There-
fore, hardwired dual-mode FPUs, like the SSE unit in current CPUs, have
only a linear and not quadratic efficiency, offering twice and not four times as
many operations in single than double precision. In reconfigurable architec-
tures where we have control over the data paths, we do indeed benefit directly
from the quadratic savings and can configure four single instead of one double
multiplier, see section 7.

To avoid the inefficiency of dual-mode FPUs we could think of producing
chips with four times as many single float units and emulate double precision
when needed. However, once a chip has been fabricated with single precision
FPUs, emulation of double precision costs much more than the factor of four,
because we are confined to a fixed instruction set and cannot use the transistors
in the most efficient way for the emulation, see section 2.2. Thus, we are in
a dilemma: a dual-mode FPU offers only two instead of four single precision
operations. However, if the same transistors are invested in four single precision
FPUs, we double the single precision performance, but also half or even quarter
double precision performance due to the inefficient emulations. To resolve this
problem the chips simply concentrate on the precision that is most often used
in their application domains and take into account that operations in the other
precision will be fairly inefficient in comparison to the other architecture. With
mixed precision methods we actually take advantage of this specialisation for
a certain precision and divide the algorithm into two parts that execute best
on one or the other architecture, see section 3.

In reconfigurable hardware the tradeoff between the precision and area of
a multiplier is truly quadratic, but here we pay a price a-priori, as the area
of a configured FPU is approximately six times larger than that of a hard-
wired FPU. This is the reason why newer FPGAs contain hardwired integer
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multipliers in high numbers. They can be efficiently used for the treatment of
the mantissa of floating point numbers. Integer multipliers have the advantage
of allowing efficient emulations of higher precision integer operations, see sec-
tion 2.2. But even with embedded hardwired multipliers there still remains a
configuration overhead for the data paths. The optimal balance between hard-
wired and reconfigurable elements, in particular for floating point operations,
is discussed in detail by Ho et al. [2].

1.2 Paper organisation

The paper is roughly divided in four parts. After this introductory section,
we discuss the theoretical background of high precision floating point emula-
tion and the mixed precision iterative refinement technique in sections 2 and
3. Section 3.2 describes our general template of the iterative refinement al-
gorithm for the solution of large, sparse linear equation systems. The next
section is devoted to hardware configurations particularly suitable for the dis-
cussed algorithms. The third part of the paper contains our main numerical
and benchmarking results. After a brief introduction to the test procedure
that we apply in the finite element context, we present tests to analyse the
performance and accuracy of the iterative refinement solvers in section 5. Sec-
tion 6 then reports on achievable speedups with both the emulation and the
refinement techniques using a GPU as a co-processor to the general purpose
CPU. We analyse the potential resource savings on a FPGA in section 7. The
last section of the paper returns to the numerical examination of the itera-
tive refinement schemes with respect to increasingly ill-conditioned matrices.
There, we employ operator and mesh anisotropies as a practical approach
to examine such influences in the FEM context. We conclude with a concise
summary, plans and suggestions for future work. The appendix contains tables
with the actual performance and accuracy numbers, while in the main text we
use mostly diagrams for better readability.

Given the combination of diverse research areas ranging from numerical
analysis to hardware systems we do not present related work in one place,
but rather discuss related approaches in the individual sections. This allows
to discuss the techniques, their background and application to our algorithms
in one context.
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2 High precision emulation

2.1 Exact and redundant emulation

For unsigned integers the emulation of higher precision arithmetic with lower
precision units is straightforward. An addition of two m-bit operands generates
a m+1-bit, and a multiplication a 2m-bit result. Integer units typically provide
a carry bit that stores the additional bit of the sum, and subsequent assembly
commands can include this carry bit in the addition, such that an arbitrary
long chain of m-bit words can be processed to emulate a k · m-bit format.
In case of the multiplication, the hardware either provides the entire 2m-bit
result of a m × m-bit multiplication and thus the product of two k · m-bit
operands results from the addition of 1

2k(k + 1) mixed m × m-bit products;
or the multiplier delivers only a m-bit result, then each m-bit word must be
split into two m/2-bit words and we have four times as many mixed products
to process.

The emulation of higher precision floating point numbers follows the same
lines, but there is an additional difficulty as the bits belonging to the exponent
must be treated differently. So while an emulated k ·m-bit integer has exactly
the same precision as a native k ·m-bit integer (exact emulation), floating point
emulations with the same property are too expensive in software due to the
treatment of rounding modes, denormalisation etc. Instead, a partially redun-
dant number representation with less precision is chosen in favour of efficiency
(redundant emulation). This technique has been introduced by Møller, Knuth,
Dekker and other researchers in the late 1960s [3–5]. In the literature, it is re-
ferred to with a variety of different names, double-single, nativepair arithmetic
or double-length floating point. We will use the first nomenclature.

For example, if the hardware provides only s23e8 single float arithmetic,
we can emulate a higher precision format by spreading the mantissa over two
single float values and use the exponents to align the two mantissas. The
resulting precision equivalents approximately a s46e8 format, but the effective
range of the exponent is reduced by 23. In this respect the double-single format
is even less precise than an exact s46e8 format and is clearly inferior to a full
s53e11 IEEE double. However, the two separate exponents allow to represent
some numbers, e.g. 1 + 2−100, that are rounded off even in the double format.
So the comparison to a s46e8 format is only approximative.

With native double (s52e11) or extended precision (s64e15) support in cur-
rent CPUs, this approach is most often used to construct higher precision
formats, e.g. by combining two native double precision values into a quad pre-
cision format [6, 7] or even arbitrary precision [8, 9]. These approaches are
applicable if the underlying floating point format satisfies certain minimal
conditions, e.g. faithful rounding and the existence of guard bits.
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2.2 Double-single operations

Arithmetic operations on combinations of low precision floating point values
require a careful treatment of overflows and underflows between the high and
low order parts, using only low precision arithmetic operations. In this section,
we will briefly present the algorithms for addition and multiplication. For
reference implementations and more details, we refer to Bailey et al. and the
GNU Multiple Precision Arithmetic Library [10,11].

Addition of two double-single values c = a + b is straightforward. The high-
order parts are added, then the low order parts are added including the error
from the high order addition. Finally the overflow from the low part is included
in the high part. In pseudocode (using the notation .hi and .lo for the two
components), we get:

Double-single addition c = a + b, cf. [10]:
(i) Compute high-order sum and error:

t1 = a.hi + b.hi

e = t1 - a.hi

(ii) Compute low order term, including error and overflows:
t2 = ((b.hi - e) + (a.hi - (t1 - e))) + a.lo + b.lo

(iii) Normalise to get final result:
c.hi = t1 + t2

c.lo = t2 - (c.hi - t1)

We note that the emulated arithmetic for addition requires 11 native opera-
tions.

Multiplication is slightly more complicated. The emulation is significantly
cheaper on systems that provide a fused multiply-add (y = a + b ∗ c), i.e.
rounding and normalisation in the underlying floating point system are not
performed until the final addition (the product b ∗ c is not rounded before the
accumulation to a). If no fused multiply-add is available, the low and high
order products during the multiplication have to be split separately.

Double-single multiplication c = a ∗ b, cf. [10]:
(i) Compute initial high-order approximation and error:

• If a fused multiply-add is available:
c11 = a.hi * b.hi

c21 = a.hi * b.hi - c11

• If no fused multiply-add is available:
cona = a.hi * 8193.0

conb = b.hi * 8193.0

a1 = cona - (cona - a.hi)

b1 = conb - (conb - b.hi)

a2 = a.hi - a1
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b2 = b.hi - b1

c11 = a.hi * b.hi

c21 = (((a1 * b1 - c11) + a1 * b2) + a2 * b1) + a2 * b2

(ii) Compute high-order word of mixed term:
c2 = a.hi * b.lo + a.lo * b.hi

(iii) Compute (c11, c21) + c2 using Knuth’s trick, including low-order prod-
uct:
t1 = c11 + c2

e = t1 - c11

t2 = ((c2 - e) + (c11 - (t1 - e))) + c21 + a.lo * b.lo

(iv) Normalise to get final result:
c.hi = t1 + t2

c.lo = t2 - (c.hi - t1)

We note that 18 native arithmetic operations are required, and 32 if no fused
multiply-add is available.

Variations of these algorithms have been published, it is for example possible
to save a few operations and trade them for an additional branch. We refer to
the literature for more details [6, 9].

2.3 Normalisation

Both the addition and the multiplication perform a normalisation step at the
end of the computation. In an effort to reduce the instruction count in the
emulation one can skip this step, thus trading performance for precision. Before
normalisation the lower term t2 in the addition of two numbers a, b has an
exponent of at most ExponentOf(max(a.hi, b.hi))−23+2. If a.hi and b.hi

have the same sign, then t1 has an exponent of ExponentOf(max(a.hi, b.hi))
or one higher, so the mantissas are already almost aligned, and we could skip
the normalisation. In the worst case this leads to the loss of 2 bits of precision
in a subsequent operation. However, if a.hi and b.hi have different signs,
then the normalisation step is much more important, as the exponent of t1
can greatly vary. In the worst case t1 evaluates to zero and the normalisation
step is crucial to transfer the mantissa from the lower to the upper term. In
multiplications we are generally on the safe side, since the high order term
a.hi * b.hi dominates the result and thus its exponent.

The general effect of fewer normalisations is an increase of the redun-
dancy of the format, because now we allow for a double-single c that
ExponentOf(c.lo) > ExponentOf(c.hi) − 23. This is just a specific example
of the general tradeoff between the latency of operations and the redundancy
of the operand representation in arithmetic hardware circuits.
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3 Mixed precision iterative refinement

3.1 Background and related work

Iterative refinement methods have been known for more than 100 years al-
ready. They gained rapid interest with the arrival of computer systems in
the 1940s and 1950s. Wilkinson et al. [12–14] combined the approach with
accumulated inner products as a means to assess and increase the accuracy
of computed results for linear system solvers, and provided a solid theoret-
ical foundation of these methods. The core idea is to use the residual of a
computed solution as a right hand side to solve a correction equation. This
process is iterated, and it is essential that the residuals are computed with
higher than working precision (see below). The algorithm in its original form
to solve Ax = b for a quadratic N × N matrix A reads:

x(0) = 0

d(s) = b − Ax(s) compute residual in high precision

Ac(s) = d(s) solve equation system in low precision

x(s+1) = x(s) + c(s) accumulate solution in high precision

Wilkinson and his colleagues showed that the computed solution x(s⋆) is the
exact solution of (A + δA)x = b where δA is dependent on b and uniformly
bounded. The upper bound m of ||δA||2 depends on the details of the floating
point system used, in particular on the intermediate rounding modes of accu-
mulations. A is ’too ill-conditioned’ [13] for the precision of the computation
if m||A−1||2 ≥ 1. In this case A + δA could be singular in the given floating
point system and no solution can be obtained. If however m||A−1||2 = 2−p for
some p > 1, then the successive iterates x(s) of the refinement process satisfy
(x denoting the exact solution):

||x − x(s+1)||2 ≤ 2−p

1 − 2−p
||x − x(s)||2,

and the refinement procedure converges to working accuracy.
They also suggest the use of a LU decomposition to solve the system quickly

given multiple right hand sides. But the procedure in itself is very general and
can in principle be used with any solver, especially iterative ones for large
sparse matrices.

A lot of research efforts have been devoted to improve this method, and in
the following, we will briefly explain selected approaches that are relevant for
the context of this paper. For a more comprehensive overview and references,
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see Demmel et al. and Zielke and Drygalla [15,16].
Turner and Walker [17] analyse the applicability of the iterative solver GM-

RES(m) in the context of iterative refinement methods and conclude that
they can achieve the same accuracy as a reference double precision solver with
roughly the same arithmetic work. The original GMRES(m) solver already in-
volves restarts and is therefore particularly well suited for the interleaving of
low precision computations with few high precision corrections. The numerical
examples in their publication are based on discretised linear elliptic PDEs and
the scheme is implemented in FISHPACK and achieves noteworthy speedup
factors.

Geddes and Zheng [18] propose a mixed precision linear Newton iteration.
They demonstrate their method for a wide range of different problems such
as least-squares fits of overdetermined systems and the solution of multivari-
ate nonlinear polynomial equations. For each specialised adaptation of their
algorithm, they provide a detailed cost analysis and thorough numerical tests.
This work, in particular, demonstrates that the algorithmic mixed precision
optimisation can be successfully applied to various problems.

Langou et al. [19] evaluate iterative refinement techniques for dense matri-
ces on a wide variety of modern CPUs such as the Opteron, Itanium, Cray,
PowerPC and Cell processors. The speedup is achieved by executing the most
expensive operation, namely the LU decomposition, in lower precision. The
decomposition can be computed much faster in single than in double precision
and dominates the solution time with O(N3) arithmetic work. Once the LU
decomposition is available, few iterations of the iterative refinement scheme
(each requiring only O(N2) work) suffice to solve the problem. Adapting re-
sults from Stewart [20] the authors provide a convergence condition with an
upper bound for the number of required iterations, which depends on the low
and high precision bit length and the matrix condition. More general error
analysis of fixed and mixed precision iterative refinement techniques is pro-
vided by Stewart and Higham [20,21].

3.2 Mixed precision iterative refinement algorithm framework

In the following we describe a mixed precision iterative refinement algorithm
for the large sparse linear equation systems arising in FEM simulations. In
particular, it is not feasible to apply an LU decomposition or similar direct
methods in this context.

The core idea of the algorithm is to split the solution process into a com-
putationally intensive but less precise inner iteration and a computationally
simple but precise outer correction loop. The loops are coupled by a scaling
heuristics to enlarge the exponent range locally and consequently the dynamic
range of the scheme as a whole. To solve the defect equation, an arbitrary iter-
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ative solver running in low precision can be employed. In our implementation
and numerical tests, we make use of conjugate gradient and multigrid solvers
(cf. section 5.1).

Another view on this scheme is to interpret the inner solver as a black-
box preconditioner ensuring the reduction of residuals by a prescribed number
of digits for an outer Richardson iteration. Other outer solvers are of course
conceivable, for example a multigrid or a BiCGStab iteration.

Let εinner and εouter denote the stopping criteria for the inner and outer
solver and Ax = b the linear equation system to be solved in high precision.
Furthermore, α and d0 are two scalars used for scaling and convergence control.
Defect and iteration vectors are labelled d and c respectively. Subscript low

and high indicate the precision of the data vectors. The conversion between the
two precision formats is intentionally left abstract, the details depend on the
target hardware: On some systems, the conversion might mean duplicating the
values into a new array with different precision, on other systems, the values
can be casted on the fly when they are first accessed. In any case, no special
operations are performed apart from a regular number format conversion. The
template form of the algorithm can then be written as:

General template of the mixed precision iterative refinement solver. Input:
System matrix Ahigh, right hand side bhigh, convergence parameters εinner

and εouter. Output: Solution xhigh.

(i) Set initial values and calculate initial defect:
αhigh = 1.0, xhigh = initial guess,
dhigh = bhigh −Ahighxhigh,
d0
high = ||dhigh||.

(ii) Set initial values for inner solver and convert data to low precision:
Alow = Ahigh, dlow = dhigh, clow = initial guess,
d0
low = ||dlow − Alowclow||.

(iii) Iterate inner solver until ||dlow − Alowclow|| < εinner · d0
low.

(iv) Update outer solution: xhigh = xhigh + αhighclow.
(v) Calculate defect in high precision: dhigh = bhigh − Ahighxhigh.
(vi) Calculate norm of defect: αhigh = ||dhigh||.
(vii) Check for convergence (αhigh < εouter · d0

high);

otherwise scale defect: dhigh = 1
αhigh

dhigh and continue with step (ii).

Note that in high precision, we only need to assemble the system once and
perform a matrix-vector multiplication, a vector update and a norm calculation
in each outer iteration.

Since the matrix is assembled in high precision, we gain two additional ad-
vantages: First, in the hardware-oriented scenario that we target with this
work, we need the final solution in high precision on the CPU to incorporate
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it in the main application (cf. sections 4 and 8.1). Second, although some sys-
tems can be represented in low precision, they cannot be assembled therein.
For instance, the transformation to the reference element used in certain FEM
implementations suffers strongly from cancellation effects in single precision
during the computation of the Jacobi determinant for very anisotropic ele-
ments. Consequently, the approach is inapplicable if the defect equation cannot
be represented in low precision at all.

As scaling heuristics, we tested both normalising the defect vector (as in the
above algorithm) and shifting the exponent by multiplying with an appropriate
power of two, and both work equally well.

As stopping criterion, we evaluated predefining a threshold for the (relative)
reduction of the norm of the residuals by a fixed number of digits, and ex-
ecuting the inner solver for a fixed number of iterations. The latter has the
disadvantage that eventually too many inner iterations, especially in the last
step, or too frequent update steps are performed. Which of these drawbacks is
more critical depends on the actual hardware, but in general an update step
can be considered costly compared to a solver iteration. This is particularly
true for co-processor architectures where the data bus between the different
chips is comparatively slow. In our numerical experiments, we were not able
to construct test cases (apart from pathological examples that are not rep-
resentable in low precision) which we could not solve by iterating the inner
solver until a moderate error reduction of two digits in each outer iteration was
achieved. We discuss the influence of the stopping criterion further in section
5.4.

We finally note that the iterative refinement approach can be cascaded to
form a multilevel mixed precision solver. Instead of solving a given problem
expensively in high precision, the solution process is split up recursively into a
series of defect equations which are solved in succesively decreasing precision.
This way, most of the arithmetic work is performed on cheap low precision
PEs. The feasibility on this cascade depends on the available hardware accel-
erated precisions, and the minimal precision necessary to gain relative accuracy
reasonably fast on a defect problem of given condition.

4 Acceleration scenarios

There are several parallel architectures which are particularly suitable for the
mixed precision iterative refinement algorithms presented in this paper. The
idea is to use the parallel low precision hardware to quickly gain relative digits
of accuracy and accumulate these gains in high precision. The accumulation
and the residual computation, that must be performed in high precision, may
either be executed on a general purpose processor (typically the CPU of the
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host system), in a more expensive high precision configuration of the parallel
device, or with an emulation on the parallel device. Despite the high resource
usage, a high precision configuration is preferable to the slow emulation (cf.
section 2.2) and should be used if available. Therefore, we use this distinction
in the following discussion of parallel co-processors, and classify them into two
categories:

S Devices that can only compute in single floating point precision. For the
double precision computation they have to utilise the CPU or emulate them.

SD Devices that can compute both in single and double precision. Thereby, the
single performance is usually much higher than the double performance.

For one representative from each class, we give more details on the config-
uration for the mixed precision iterative refinement in sections 4.2 and 4.3,
and present concrete implementations of a mixed precision solver and results
in sections 6 and 7. The sections also examine the resulting advantages under
different aspects. The evaluation of the GPU demonstrates which speedups can
be achieved with this approach, the FPGA implementation concentrates on
the possible resource savings assuming unchanged accuracy and performance
requirements. In other words, we first examine the savings in time and then
in space.

4.1 Parallel co-processors

This section offers a glimpse on the diversified field of parallelism on a chip. By
discussing several important classes of parallel architectures along with some
representatives we hope to convey the lurking possibilities of such hardware
configurations in the context of mixed precision methods. Overviews of parallel
computing systems, focusing especially on data-stream-based processing, are
provided by Hartenstein [22, 23]. Sankaralingam et al., Guo et al. and Taylor
et al. discuss the various types of parallelism and their advantages and dis-
advantages [24–26], and Suh et al. and Strzodka compare the performance of
different parallel architectures on scientific kernels and PDE problems [27,28].

Field Programmable Gate Array (FPGA). FPGAs (class SD) allow to config-
ure any hardware design and run it as though such a chip had been fabricated.
This is very practical for the testing of future chips but is also widely exploited
to map problem solvers into a hardware configuration, generating a processor
designed specifically for the application in mind.

FPGAs have been integrated on a wide variety of boards. For use in a PC one
obtains a PCI, PCI-X (PCI Extended) or PCIe (PCI Express) board with one
or more FPGAs and usually additional local memory and a micro-controller.
There exist also stand-alone FPGA boards that connect to a PC for example
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via USB, but due to the low bandwidth connection these are obviously less
suitable for an interleaved CPU-FPGA computation. In the mixed precision
iterative refinement algorithm one can then configure the FPGA to perform
many parallel low precision computations of the inner solver and accumulate
the corrections on the CPU or reconfigure the FPGA for high precision com-
putations. However, the latter option is only feasible if special configuration
techniques such as partial or compressed configurations are available, minimis-
ing the configuration overhead. In case of the CPU utilisation, the overhead
comes from the transportation of the data back and forth to the card, which
can be large for the PCI bus, but should be much smaller on the newer PCIe
bus. Systems which connect the FPGA directly to a wide system bus such
as the Cray XD1 or the SGI Altix offer additional advantages concerning the
available bandwidth to the parallel co-processor.

Since the FPGA allows the configuration of any number format, one can fur-
ther cascade the mixed precision approach and use several different precision
formats within the FPGA. In particular, it is easy to generate fused operations
that apply only one rounding to the final result of a composed operation, e.g.
a dot product. Large accumulators can also simply use a higher intermediate
precision for better accuracy.

Processor Array / Multi-core Processor. Both terms describe chips com-
prising many PEs that operate in parallel. Processor arrays usually refer to
architectures with simple PEs that communicate with each other directly, have
a common control unit that assigns data to them, or simply share local mem-
ory for data exchange. The term multi-core processors describes architectures
with more complex PEs, that often themselves contain multiple elementary
PEs. Beside the registers, both classes of processors typically feature small,
very fast, local PE memories and larger inter chip memory accessible from all
PEs. In contrast to caches, this three-level memory hierarchy is under full con-
trol of the programmer, which enables the design of highly efficient application
specific data-flow, but also significantly increases the program complexity, es-
pecially as even more memory levels may be present and the communication
over a bus with the host must also be taken into account. A framework specif-
ically dedicated to a more portable and reusable exploitation of these memory
hierarchies has been presented by Fatahalian et al. [29].

The Clearspeed CSX architectures [30] are examples of processor arrays. A
board with several CSX chips can be integrated into a workstation via the
PCI-X bus. The PEs in the CSX architecture (class SD) support single and
double precision arithmetic at basically the same speed. However in favour of
a reduction of internal and external bandwidth requirements it is still more
advantageous to utilise the numerous parallel PEs for single float computations
and apply the iterative refinement algorithms described in this paper. Smaller
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number formats also allow to fit more data words into the very restricted PE
memories, which is highly beneficial for many algorithms which have to store
local state in addition to the processed data streams. So there are multiple
reasons for using single float arithmetic even when the peak double precision
performs is equal, but the transition from a pure double precision FPU to a
dual-mode FPUs costs relatively few transistors, so that in future Clearspeed
might decide to offer architectures that perform twice the number of single
float than double float operations.

A representative of the multi-core processors is the Cell BE processor (Sony,
Toshiba, IBM) [31]. It is available as a blade server or a PCIe accelerator
board for the PC [32]. The Cell BE (class SD) also offers single and double
float arithmetic, but the peak single float performance is more than ten times
higher than the peak double performance. In common scientific computing
applications this discrepancy results in a slowdown by a factor of 5 to 20 for
double precision [33]. Moreover, similar to the CSX chips, a smaller number
format increases the word throughput and local storage of the PEs in the Cell
BE.

The general purpose CPU is quickly developing towards a multi-core pro-
cessor. After the double-core versions both Intel and AMD already announced
quad-core processors for the near future. Although current CPUs still offer
little parallelism in comparison to the other architectures discussed here, with
the growing number of cores and a possible widening of the SSE unit the
situation might change in the future.

Application specific hardware. Some application specific hardware products
expose a lot of parallel PEs that are well suited for the solution of PDEs.
Two examples from the world of graphics applications are the AGEIA PhysX
processor [34] and modern graphics processor units (GPUs). Little is known
about the internal structure of the PhysX processor. But one knows that it
is a highly parallel architecture and the company claims that the computing
model is particularly well suited for FEM simulations of physical phenomena.
Allegedly the computation units use single float (class S?), which in view of the
mixed precision methods would actually give better hardware efficiency. How-
ever, it is not clear how the data-flow for the mixed precision approach could
be organised on the PhysX processor and whether a high precision emulation
or corrections on the CPU were more efficient. In the latter case the low band-
width of the connecting PCI bus could be a problem for a fast CPU-PhysX
mixed precision configuration.

Modern graphics cards contain mainly one GPU and video memory. The
seldom exceptions are cards that implement the different parts of the graphics
pipeline in different chips rather than one GPU, and cards with two GPUs on
one card. Graphics cards are connected to the PC via the AGP or the faster
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PCIe bus. Most low cost GPUs are integrated directly into the chipset. GPUs
offer single float computations throughout the graphics pipeline (class S). Al-
though the numerical access to the parallel PEs is obscured by the graphics
specific API, the wide availability and cost efficiency of the hardware makes
them very attractive candidates for mixed precision methods. The GPU con-
sists of independent groups of PEs. Within each group there is implicit (in-
struction level parallelism) and explicit data exchange (4 vector components)
through registers. Above the registers GPUs have no user controllable local
PE memory where local state could be stored, instead they feature dedicated
cache arrangements optimised for 2D coherent memory access patterns. This
means that intra group communication happens through high level memory
that resides on the graphics card outside the GPU. For the GPU this implies
many memory transfers to a much higher memory level than for the other
architectures, including a lower bandwidth for these transfers. On large data
sets the GPU can still compete with the other parallel chips, because the ex-
ternal bandwidth is pushed to the limit with dedicated graphics memory chips
and the entire system is optimised for latency minimisation. But the lack of
intermediate local memories leads more often to bandwidth bound algorithms
on the GPU and considerable effort must be devoted to trading computation
for bandwidth with special, often application specific algorithmic reformula-
tions [35].

4.2 Graphics Processor Unit (GPU)

Since 2003 graphics processors (GPUs) offer programmable floating point
arithmetic. Together with the high memory bandwidth and tremendous
computational performance GPUs have emerged as powerful numerical co-
processors. A new field of research commonly called general purpose compu-
tation on graphics hardware (GPGPU) has evolved. We refer the reader to
the survey paper by Owens et al. [36], and to the GPGPU community web
site [37] for online material with introductions, paper archive, course notes,
tutorial codes and further information. For a GPGPU introduction without
any graphics terminology see Strzodka et al. [38].

Although GPUs are just one representative among the many powerful par-
allel computing devices discussed in the previous section, they attract addi-
tional attention because of their ubiquitous availability and excellent price-
performance ratio. Graphics processors built into PC chipsets usually offer
only very limited computational performance, but buying and installing a
more powerful graphics card off the shelf is an easy and comparably inexpen-
sive procedure. Therefore, many users would consider upgrading their GPU if
they could gain significant speedups for their applications.

GPUs natively support a quasi-IEEE s23e8 floating point format which lacks
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denormalisation and always rounds to zero. For a detailed analysis of the
differences between the standard IEEE single precision and the format on
the GPU, refer to Hillesland and Lastra [39] and Daumas et al. [40]. These
differences are however minor in the context of this paper.

Da Graca and Defour analyse the applicability of double-single emulation
techniques and conclude that because of faithful rounding and guard bits,
the emulated precision arithmetic is well suited for GPUs [41]. Extension of
this technique to complex and quad-precision numbers has been presented by
Hitz and Payne [42], and a residue based number representation with variable
precision is discussed by Thall [43].

The emulated high precision multiplication (cf. section 2.2) requires less in-
structions if a fused multiply-add operation is present. This is true for GPUs,
but the composed MAD (multiply-add) instruction is not necessarily fused
with respect to floating point rounding, i.e. the computed result must be the
rounded exact result of the composed operation. ATI GPUs (X1K series) of-
fer a fused multiply-add with respect to rounding, so that here the shorter
emulation of the multiplication can be used, while NVIDIA GPUs (GeForce
6 and 7 series) apply intermediate rounding/truncation and thus require the
longer emulation for the multiplication (according to the vendors’ respective
developer support).

In contrast to emulation, Dale et al. [44] suggest to equip GPUs with dual-
mode PEs, realised through small-scale reconfigurability. As discussed in the
introduction (cf. section 1.1), this improves double precision performance over
emulation but lowers the transistor efficiency for single float arithmetic, so the
decision depends on how often double precision arithmetic is indispensable
for the GPU. In view of our mixed precision results (cf. section 6) we rather
discourage the overall integration of double precision PEs into GPUs, as they
are not needed in high numbers to achieve accurate results in PDE based
physical simulations, i.e. the application area in which computer games have
probably the highest demand for better accuracy. But adding some dual-mode
PEs, e.g. only the moderately large double precision adders, might be useful
to enable a fast execution of the high precision corrections on the GPU itself,
rather than always delegating these tasks to the CPU.

The double-single emulation on the GPU is not always sufficient, as the dou-
ble format has a clearly larger mantissa and exponent range than the emulated
format: 52/46 = 1.13, 211/28 = 8, and three term emulations become truly
expensive. Therefore, we perform the high precision corrections on the CPU
rather than emulating them on the GPU (cf. section 6). Moreover, for com-
plex applications the corrections on the GPU do not eliminate the necessity of
data transfers with the host. For complex applications it is infeasible and also
unnecessary to reimplement thousands of lines of performance uncritical code
on the GPU. Instead, the GPU accelerates the more regular, most demanding



Hardware-oriented native-, emulated- and mixed precision solvers 19

parts of the algorithms, and leaves the subsequent processing of the results to
the well tested, higher abstraction code on the CPU.

4.3 Field Programmable Gate Array (FPGA)

Hardwired processors operate on fixed-width formats and thus usually have
dedicated single or double precision FPUs. They also have fixed data paths and
synchronised scheduling. FPGAs have fully configurable memory and logic el-
ements, data paths and clock generators, and thus a lot of freedom in adapting
the hardware to the application.

• The input and output data formats depend on the application and not on
the hardware, e.g. some imaging devices deliver data with 12 bit precision
which is stored in 16-bit shorts for CPU processing.

• FPGAs are natural mixed precision processors, there is no need to utilise the
same number format throughout the algorithm, or even the same operation,
e.g. for a more accurate accumulation of s23e8 data we may configure a s23e8
+ s36e11 → s36e11 accumulator.

• We can generate more efficient custom fused operators, e.g. redundant num-
ber representations allow to evaluate a sum of multiple addends

∑
i ai

much faster with the successive computation of b, c, such that b + c =
ai + ai+1 + ai+2, rather than the repeated reduction b = ai + ai+1.

• There are many options to trade latency, throughput and area in operations,
e.g. an n×n-bit adder can have O(1) area and O(1/n) throughput or O(n)
area and O(1) throughput.

• While FPGAs have dedicated logic and memory elements, some also have
configuration elements which can be used as logic or memory. Thus addi-
tional tradeoffs between computation- and lookup-based operators are pos-
sible, e.g. a 4 input 1 output Boolean operator is realised through a 24-bit
configuration table, which can alternatively be used to store 16-bit.

• The freedom in the design of custom operators makes alternative number
representations sometimes feasible on the FPGA, e.g. in the logarithmic
number representation we store log(a) instead of a and obtain the big advan-
tage that multiplications translate into additions log(a · b) = log(a)+ log(b).

• All PEs operate concurrently in a FPGA, so the maximum efficiency is
obtained when all PEs contribute to the solution and never stall. Thus to
avoid areas with idle operators which are not required all the time, one can
reuse parts of these operators in a modular design for other computations,
e.g. a float adder can reuse the adder of the mantissas for integer operations.

• When reusage of a configuration is difficult because of very different opera-
tors, reconfiguration overhead can be minimised with special reconfiguration
techniques, e.g. with partial reconfigurability we can replace only a part of
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the circuit and thus require a much smaller configuration bitstream.

The application of these techniques from scratch requires intrinsic know-
ledge of a hardware description language (HDL). However, HDLs now offer
many levels of abstraction and although floating point numbers are not part of
the language, parameterised libraries are available [45,46]. Automatic a-priori
analysis can be performed to determine the necessary precision in composed
operations [47]. The tradeoffs between latency, throughput and area for float-
ing point formats have been studied in detail [48–50]. Analysis of logarithmic
number systems has also revealed under which conditions this representation
is advantageous [51,52]. For more background and additional information we
refer to general surveys of reconfigurable hardware presented by Bondalapati
and Prasanna, and Compton and Hauck [53,54].

The above optimisations reduce the area consumption locally on the level of
individual and composed operations. The mixed precision iterative refinement
applied to the FPGA allows to save resources globally by reducing the preci-
sion of most intermediate operations. Although the FPGA can be configured
with double precision FPUs, this consumes so many resources, that we rather
use it similar to the GPU, as a fast parallel, low precision processor and per-
form the double precision corrections on the CPU or a micro-controller on the
FPGA board. In case of the FPGA we examine the dual aspect of the reduced
precision and analyse the savings in area rather than time (cf. section 7).

5 Test procedure and algorithmic properties

Before we present results of the proposed schemes on actual hardware config-
urations in the next two sections, we want to discuss several properties of the
approaches in more detail and describe our test procedure in general.

5.1 General test procedure

For a given test function, we solve several variants of the Poisson equation
−∆u = f prescribing zero Dirichlet boundary conditions. Such variants of
the Poisson problem are common building blocks in CFD or CSM and numer-
ical simulation in general. For instance, projection type schemes in Navier-
Stokes simulations [55] lead to Pressure-Poisson problems, often the most time-
consuming step at the core of the computation (especially in non-stationary
simulations). Another example are grid deformation techniques [56] that move
grid points towards regions in the simulation domain with high errors, and
which calculate the new positions with one Poisson problem in each deforma-
tion step.
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Conforming bilinear finite elements (Q1) are used for the spatial discretisa-
tion of the exemplary domain Ω = [0,X] × [0, Y ] ⊆ R

2 for different levels of
refinement of an underlying generalised tensorproduct mesh, leading to prob-
lem sizes of N = 32 to N = 10252 unknowns (levels 2–10 respectively). In this
section and in the discussion of actual acceleration scenarios in the following
sections, all results are based on a uniform refinement of the unit square, and
we do not employ a stencil but assemble the matrix fully. In section 8 we will
extend the results on anisotropic discretisations and more realistic domains,
but the matrix structure and hence the cost for a matrix-vector multiplication
remains the same. The discretisation scheme yields a band matrix with nine
bands which we store as separate vectors with appropriate zero padding.

We define a test function u0 : Ω → R analytically as u0(x, y) = x(X −
x)y(Y − y), (x, y) ∈ Ω. With zero Dirichlet boundary conditions, neither
additional data approximation errors nor cubature errors in the right hand side
are introduced which would obfuscate the accuracy issues we want to examine.
The function and its analytically known derivatives are used to predefine a
right hand side f = −∆u0, yielding a Poisson problem with analytically known
solution. During our experiments we successfully evaluated many additional
test functions, but throughout this paper, we present all results based on the
above test function to provide better comparability of our results.

We employ the following solvers for the numerical tests:

Conjugate gradients (CG) as an example of a basic iterative Krylov space
solver. We use the standard formulation of the solver, without precondition-
ing or damping.
Multigrid with Jacobi smoother (MG JAC) as an example of a more ad-
vanced solver, capable of dealing with small grid distortions while being
unbeatably fast for Cartesian meshes. We employ an F-cycle and vary the
damping factor and the number of pre- and postsmoothing steps as neces-
sary.

We compute two quality measures in each test case, the L2 error and the
number of iterations until solution. The L2 error (integrated over Ω) of the
computed solution against the analytically known reference result should be-
have like O(h2) (mesh width h = 1/

√
N), yielding an error reduction factor of

four in each refinement step. The conjugate gradient solver should double the
amount of iterations per refinement level while the multigrid solvers should
converge independent of the level.

5.2 Influence of the input data precision

In the first test series, we analyse the influence of the input data precision
on the overall error. The right hand side for the Poisson problem is therefore
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Table 1. Errors caused by reduced input data precision for a double

precision solver (cf. section 5.2).

Level Half precision Single precision Double precision

8 2.333E-6 7.718E-10 2.750E-13
9 1.008E-6 7.726E-10 1.051E-12

precomputed in double precision as the discrete Laplacian f = −∆hu0 to
avoid discretisation errors and then truncated to double, single or half [57] float
precision, while the solver itself is executed in double precision. The computed
results are then compared (again in double precision) with the known reference
solution. This test is performed on a uniform subdivision of the unit square.
Table 1 subsumes the impact of reducing the input data precision, exemplarily
for the problem sizes N = 2572 and N = 5132.

We observe that representing all vectors in double precision is essential.
Although the matrix assembly and the computation are always performed in
double precision, the reduction (clamping) of the right hand side to single
precision already costs approximately three digits of accuracy in the result.
The furthergoing reduction to half precision costs additional three digits. In
view of the targeted co-processor scenario, these results support our claim
that it does not make sense to improve the internal computational precision
without introducing a higher precision format for input and output.

5.3 Accuracy in single and double precision

In this test series, we compare how the computational precision in the solu-
tion process influences the accuracy of the result. In particular we want to
emphasise the highly non-monotonic relation between them.

We perform the matrix assembly and the error calculations in double preci-
sion. The arising systems are solved in single and double precision respectively.
For the solution in single precision, we cast the matrix and vectors to single
precision. Table 2 lists the number of multigrid cycles, the error compared
to the reference solution and the reduction factor in the error for refinement
levels 2 to 10 (32 to 10252 unknowns). The stopping criterion for all tests is
identically set to εouter = 10−3. This threshold suffices to achieve the expected
error reduction by a factor of four and thus avoids the potential accumulation
of roundoff errors by performing too many inner solver iterations.

We observe that the double precision solver exhibits the expected error re-
duction by a factor of four per refinement. The single precision solver however
does not. From levels 5 to 7, the error reduction degrades slowly to a mere
factor of 1.5, and for levels 8 and 9, the error even increases again, thus wasting
the additional work and memory requirements for these levels of refinement.
Note that this behaviour cannot be detected based on evaluating only the
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Table 2. Influence of solver precision on solution accuracy with increasing problem

size (level of refinement), cf. section 5.3.

single precision double precision

Level Cycles Error Reduction Cycles Error Reduction

2 1 2.391E-3 1 2.391E-3
3 2 5.950E-4 4.02 2 5.950E-4 4.02
4 2 1.493E-4 3.98 2 1.493E-4 3.99
5 2 3.750E-5 3.98 2 3.728E-5 4.00
6 2 1.021E-5 3.67 2 9.304E-6 4.01
7 2 6.691E-6 1.53 2 2.323E-6 4.01
8 2 2.012E-5 0.33 2 5.801E-7 4.00
9 2 7.904E-5 0.25 2 1.449E-7 4.00
10 2 3.593E-4 0.22 2 3.626E-8 4.00

defects during the solution process. In both cases, the reduction rate of the
residuals is identical. This is especially critical in practical scenarios where a
reference solution is naturally not available. The consistent reduction of resid-
uals on finer levels misguides one to believe that also the overall accuarcy is
improved, but in fact the opposite is the case.

We examined other causes of the accuracy degradation. Neither performing
more nor performing less iterations of the inner single precision solver improves
the accuracy, indicating that the issue is really the lack of precision and not a
side effect of accumulated roundoff errors.

In our experiments, we encountered many examples that, although perform-
ing worse from the point of view of accuracy, behaved much better from a
practical point of view. For higher levels of refinement (i.e. worse matrix con-
dition), the single precision solvers simply stopped to converge properly, which
can be detected in practice by monitoring the convergence rate of the solvers.

In summary, single precision solvers for certain examples fail to gain accuracy
upon further refinement. In some cases, they diverge or just slowly degrade
their rate of convergence, until no further error reduction can be achieved. In
other cases, instead of degrading accuracy, they increase the error again. This
is especially critical as there is no straightforward means to detect this last
case during the solution process.

5.4 Influence of the stopping criteria in iterative refinement

We evaluated two stopping criteria for the mixed precision iterative refinement
algorithm, executing the inner solver for a fixed number of iterations or until
the norms of the residuals have been reduced by a predefined number of digits.
Our first result is quite obvious: As long as not too much work is demanded
of the inner solver with respect to precision (e.g. gaining less than four digits
in one outer iteration), the choice of the termination criterion does not dis-
turb convergence or the accuracy of the final result. The latter is effectively
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Table 3. Influence of the stopping criterion (cf. section 5.4).

Mixed precision iterative refinement solver based on multigrid

executing 1, 2 or 3 cycles (i1, i2, i3), or gaining 1,2 or 3 digits

(δ1, δ2, δ3) in each outer iteration respectively. The column la-

belled ’double’ lists reference values obtained in native double

precision. Notation: Colon separates outer and sum of all inner

iterations.

Level double i1 i2 i3 δ1 δ2 δ3

8 8 8:8 4:8 4:12 8:8 5:9 4:11
9 8 8:8 4:8 4:12 8:8 5:9 4:11
10 8 8:8 5:10 5:15 8:8 5:9 4:11

Table 4. Influence of the stopping criterion (cf. section 5.4). Mixed precision itera-

tive refinement solver based on conjugate gradients executing 100, 250 or 500 iterations

(i100, i250, i500), or gaining 1,2 or 3 digits (δ1, δ2, δ3) in each outer iteration respectively.

The column labelled ’double’ lists reference values obtained in native double precision.

Notation: Colon separates outer and sum of all inner iterations.

Level double i100 i250 i500 δ1 δ2 δ3

8 342 13:1300 4:1000 4:2000 10:1047 5:861 4:944
9 676 68:6800 9:2250 5:2500 10:2002 6:2256 5:2380
10 1357 264:26400 40:10000 12:6000 10:4504 6:4501 6:5242

determined by the number of outer iterations, which we always control by
monitoring global defects in double precision.

Moreover, we experienced that the choice of the inner solver has the greatest
impact on the performance of the iterative refinement scheme. In the following
paragraphs, we present numerical results for both the unpreconditioned con-
jugate gradient solver as well as the multigrid solver with Jacobi smoother.
Like all results in this section, the measurements are based on a uniform re-
finement of the unit square and the solver is iterated until the global residuals
have been reduced by 10 digits.

Table 3 lists the number of iterations for the iterative refinement scheme
using multigrid (with 2+2 Jacobi smoothing steps) as inner solver.

We observe that this type of solver only leads to a mild increase in overall
iteration count, if any. A more detailed analysis of the convergence history
reveals that the increase can be attributed to our choice of convergence control.
When demanding too much error reduction per outer update step, it might
happen that the system is not solved until the predefined ten digit reduction,
but further. We conclude that the multigrid solver is very well suited to be
used within a mixed precision iterative refinement solution procedure.

The conjugate gradient solver however shows an entirely different conver-
gence behaviour, as shown in table 4. Note that the overall iteration count
increases dramatically. We first assumed that this is caused by the lack of
precision, namely due to roundoff errors and cancellation, subsequent steps
in the algorithm fail to compute orthogonal search directions. We therefore
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Table 5. Influence of the stopping criterion (cf. section 5.4). Fixed precision iterative

refinement solver based on conjugate gradients executing 100, 250 or 500 iterations

(i100, i250, i500), or gaining 1,2 or 3 digits (δ1, δ2, δ3) in each outer iteration respec-

tively. The inner solver uses double precision as well, and an immediate global con-

vergence check after each inner iteration is applied. The column labelled ’double’ lists

reference values obtained in native double precision. Notation: Colon separates outer

and sum of all inner iterations.

Level double i100 i250 i500 δ1 δ2 δ3

8 342 10:970 2:368 1:342 10:859 5:673 4:544
9 676 66:6588 8:1802 2:763 10:1648 5:1363 4:1098
10 1357 261:26013 38:9470 8:3629 10:3472 5:2379 4:2233

implemented a variation of our proposed scheme, a fixed precision iterative
refinement algorithm executing the inner conjugate gradient solver in double
precision. To avoid distractions by performing superfluous iterations due to
the less frequent convergence control of the outer solver, we also computed
the global defect after each inner iteration and thus could terminate the solu-
tion process as soon as it fell below εouter.

As we see from the numbers in table 5, the lack of computational precision
is only one reason for the dramatic increase in iterations. We clearly see that
the conjugate gradient solver reacts very delicately to frequent restarts. The
reason for it is that the conjugate gradient algorithm builds up a search space
with its utility vectors, and this information is lost when the solver is restarted.

This problem can be partly alleviated by reusing the utility vectors. Obvi-
ously this is only possible if the inner solver operates always with the same
right hand side, i.e. we cannot use the standard iterative refinement formula-
tion. But the conjugate gradient algorithm already contains an accumulation
of the solution vector, and therefore we can integrate the iterative refinement
method directly into the core of the algorithm. The high precision correction
is then performed on the residual directly and not on the solution vector, for
details see the residual guided conjugate gradient variant [58]. In the limit,
when the inner precision is exactly the same as the outer precision we simply
obtain the original conjugate gradient algorithm. The reuse of the utility vec-
tors is particularly helpful when the inner precision is very low (below single
float) and many outer solver iterations are necessary to ensure convergence.
Therefore, we have studied this variant in the context of reconfigurable hard-
ware, where the inner precision is not limited by fixed hardware functionality
but can be chosen arbitrarily [58].

5.5 Implementation on the CPU

Targeting the outstanding parallel compute power, we first used parallel de-
vices for performance gains with mixed precision methods [58,59]. Recent work
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of Langou et al. [19], showing speedups for a direct LU solver in the mixed
precision iterative refinement setting on the CPU, encouraged us to also im-
plement a CPU version of the mixed precision iterative solvers. However, due
to the sparsity of the matrix we cannot benefit from readily available opti-
mised BLAS and LAPACK implementations such as GotoBLAS, ATLAS or
vendor-tuned packages. Benchmarking reveals that approximately 85% of the
time is spend in the sparse matrix-vector multiplication, for which no BLAS or
LAPACK routines are available: For the banded matrix structure and storage
as individual vectors, we would require a ’saxpy v’ operation (yi = yi + aixi

instead of yi = yi + αxi) to implement the multiplication (cf. section 5.1).
Without such a SSE-optimised matrix-vector multiplication, speedups of the
refinement scheme over a full double precision format are not achievable. In
contrast to the direct LU solver, we would not benefit from the different com-
plexity order of the solution steps in case of iterative solvers, but based on
the iteration numbers of the schemes (cf. section 5.2) we believe that a fully
optimised SSE variant would at least execute the mixed precision multigrid
solver faster than a full double precision implementation.

6 Solver speedups with GPUs as co-processors

We have previously published first results of the GPU-CPU mixed precision
iterative refinement algorithm [59]. Here, we use a slightly modified defect
correction procedure as described in section 3.2 and improve performance by
implementing the optimisations discussed in our initial publication. The per-
formance numbers are directly comparable as we continue to use the same
test problem, namely the Poisson problem on the unit square with uniform
refinement, cf. section 5.1. Furthermore, we add the emulated double-single
floating point format and a multigrid solver with Jacobi smoothing to our
GPU framework.

6.1 GPU-CPU configuration

For the solution of a linear equation system with an iterative refinement tech-
nique, the GPU executes the low precision (single float) inner solver (cf. sec-
tion 3.2) as a co-processor to the general purpose CPU which accumulates the
corrections and computes new defects in high precision (double float). For op-
timal performance of the inner solver the involved matrices and vectors must
be stored locally and thus duplicated into the video memory of the graphics
card. During this transfer, the conversion from double to single float is per-
formed. The computed single precision correction is transferred back to main
memory and later implicitly converted to double precision by the CPU in the
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process of accumulating it to the current double precision solution vector.
Analogously, the computation is performed on the GPU alone when using

the emulated double-single floating point format without any transfers of in-
termediate results. Again, the data is stored locally and the double precision
values are split into their high- and low-order components during the transfer
of the initial matrix and data. After the solution on the GPU, the two compo-
nents of the result vector are read back and combined on the CPU in double
precision to form the final high precision result.

The multigrid solver employs F-cycles and we configure it to perform 2+2
and 4+4 pre- and postsmoothing steps respectively. In our tests, we compare
execution time (including all required transfers and setup times of the co-
processor) and accuracy of the solution against a carefully optimised version
of the corresponding solver, taken from the Feast package (cf. section 8.1).

We execute all performance tests on a high-end workstation PC with the
following hardware details:

• CPU: AMD Athlon64 X2 4400+, 2.2 GHz, 2MB cache

• GPU: NVIDIA GeForce 7800 GTX, 24 fragment pipelines, 430 MHz, con-
nected via PCIe x16 to an NFORCE4 chipset

• CPU memory: 2 GB DDR400, PC3200

• GPU memory: 256 MB DDR3, 600 MHz, memory interface 256 bit

Note that all tests are performed as single-threaded, serial jobs, and only
benefit from the dual-core architecture in that other threads on the machine
do not interfere with the computation.

We have also performed all tests on a comparable system with two Intel
Xeon EM64T 3.6 GHz processors and a NVIDIA Quadro FX 4500 graphics
card, and achieved similar results. We conclude that no high-end graphics
card is required (the Quadro boards cost about four times as much as the
mainstream GeForce models) for good performance, though this might be an
issue in a cluster environment where reliability is of much higher importance
than in a single workstation.

In the following paragraphs, we compare absolute performance of a double-
single solver and the iterative refinement scheme as speedup against the CPU
which computes in double precision. We also analyse relative performance and
report on the actual iterations required until solution. All solvers are iterated
until the norms of the residuals have been reduced by ten digits, and the
iterative refinement schemes perform the high precision update step every two
digits.



28 D. Göddeke, R. Strzodka and S. Turek

5e-4

5e-5

5e-6
6 7 8 9 10

CG CPU

♦

♦

♦

♦

♦

♦
CG DS-GPU+

+

+
+

+

+
MG2+2 CPU

�

�

�
� �

�
MG2+2 DS-GPU

×

×

×
MG4+4 CPU

△

△
△

△ △

△
MG4+4 DS-GPU

⋆

⋆

⋆

Figure 1. Normalised time until solution for the emulated double-single format (DS) with three
different solvers (CG and MG with different number of smoothing steps) on the CPU and the

GPU, for levels 6–10 (cf. section 6.3).

6.2 Emulation vs. CPU: Accuracy

We first confirm that the conjugate gradient solver delivers exactly the same
accuracy as the CPU reference solver. Each level of refinement translates to
the expected error reduction by a factor of four. The multigrid solver, however,
cannot deliver the required precision and stalls for higher levels. Recall that
during the multigrid cycles, the coarse grid correction term is computed, pro-
longated and then accumulated to the defect on finer levels. A detailed analysis
of our implementation and the test problem reveals that at some point during
the multigrid cycles (when the norm of the defect has dropped below 1e-12
(absolute values) already), very small corrections are added to a comparatively
large (with respect to absolute values) intermediate approximation of the so-
lution. The emulated floating point format is not able to capture these large
differences properly, and the solution process stalls. We refer to the appendix
for tables A1, A2 and A3 with the exact numbers.

6.3 Emulation vs. CPU: Performance

Figure 1 shows the absolute performance of the three solvers implemented in
double precision on the CPU and the emulated double-single format on the
GPU. The values are normalised to show the time until solution per unknown.
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In view of the dramatic increase in iterations that the conjugate gradient
solver performs in the iterative refinement context (cf. sections 5.4 and 6.5),
we first observe that the number of iterations is identical to the double pre-
cision reference solvers for both multigrid and conjugate gradient. Due to the
overhead associated with executing code on the GPU and transferring initial
data and the result vector, we see a significant slowdown compared to the CPU
for small problem sizes. However, for the two largest problem sizes (levels 9
and 10 respectively), we note a speedup of more than a factor of two. Given
the fact that for a multiplication, the operation count is increased by a factor
of 32 (cf. section 2.2), this speedup shows that the raw compute performance
of the GPU is remarkable, since the doubled memory requirements are easily
hidden because of its high arithmetic intensity. We again refer to the appendix
for tables A1, A2 and A3 with the exact numbers.

6.4 Iterative refinement vs. CPU: Accuracy

We confirm that all variants of the solvers deliver exactly the same accuracy
as the CPU reference solver. Since the multigrid solvers are only demanded
to reduce local defects by two digits in each outer iteration, they converge
smoothly and do not stall as we experienced in the emulated double-single
implementation. Refer to the appendix for tables A4, A5 and A6 with the
exact numbers.

6.5 Iterative refinement vs. CPU: Performance

Timings for the iterative refinement solvers are shown in figure 2. The values
are normalised and show time until solution per unknown. As before, the exact
numbers are tabulated in the appendix (tables A4, A5 and A6).

Compared to the reference implementation on the CPU and especially to
the double-single emulated precision results from the previous subsection, we
observe a promising speedup of both the conjugate gradient and the multigrid
implementation. As expected, the CPU outperforms the GPU for small prob-
lem sizes. Although multigrid executing F-cycles is not particularly suited for
the GPU since the majority of work is performed on small levels which makes
it hard to saturate the parallel PEs, we observe a notable factor of more than
four in speedup, with only a small negligible increase in cycle count.

On the other hand, the conjugate gradient solver performs on average 3.3
times more iterations than the reference implementation (cf. section 5.4) and
still executes more than four times faster than the CPU.

Looking at the multigrid timings in more detail, we observe that the speedup
factor increases much faster when more smoothing steps are performed. In
summary we conclude that in order to adapt the multigrid to the GPU in a
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Figure 2. Normalised time until solution for the mixed precision iterative refinement scheme with
three different solvers on the CPU and the GPU, for levels 6–10 (cf. section 6.5).

better way, the solver might have to be reformulated to increase smoothing
and interpret a medium level as the final coarse grid instead of restricting all
the way to level 1 where execution is highly inefficient as not all pipelines are
saturated. The tradeoff might be slightly worse convergence rates per cycle,
but this should not pose too much of a problem since we are interested in the
overall time to solution.

Another aspect is the utilisation of the devices. Currently, the CPU is ef-
fectively idle when the GPU computes (except minor work orchestrating the
GPU) and also the other way round. This is an artifact of our testing pro-
cedure where we deliberately solve only one linear system at a time. In the
domain-decomposition context of Feast (cf. section 8.1) we have implemented
a streaming version of solving linear systems associated with the refinement of
several macro elements. Thus, we concurrently compute on the GPU for one
system, update on the CPU for another, and use DMA transfers for a third
one. In this way, we achieve a much better utilisation of the resources than
solving all systems sequentially [60].

7 Resource savings on FPGAs

On the FPGA the benefits from using low-precision formats translate directly
into resource savings. We summarise our results for a conjugate gradient (CG)
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core synthesised with different precisions. The pipelined CG version that we use
is based on ideas from parallel computing, where vector-vector and reduction
operations are grouped together to reduce the deteriorating effects of global
communication. The authors have evaluated this and another CG version un-
der various parameters on the FPGA [58]. Here we extend the discussion of
the resource consumption.

7.1 Iterative refinement with the FPGA

The FPGA is configured with a low precision pipelined CG core. In contrast
to hardwired architectures, we can vary the precision bitwise, e.g. reducing
the inner precision below the s23e8 single float format. Then the expensive
inner solver can be performed with low precision components in parallel on
the FPGA, while the few high precision operations of the outer solver could
run on a small micro-processor on the FPGA board or the CPU of the host. As
the iterative refinement technique is very flexible in the choice of the number
of iterations in the inner solver, it may for example be derived from the perfor-
mance ratio of the FPGA and the micro-processor/CPU and the bandwidth
between them. The outer solver can in principle also be implemented on the
FPGA, but since it is executed only infrequently and requires a high precision
matrix-vector multiplication it is doubtful if these resources were wisely spent,
after all the idea of mixed precision methods is to replace the expensive cores
with many parallel simple ones. One possible approach would be to configure
dual-mode arithmetic units which could be used as either one high precision
or many low precision adders/multipliers.

We list the area consumption and maximum frequency of the pipelined CG
core under different precisions (table 6). The core includes all vector-vector
and reduction operations but no further combinations of the scalar values nor
anything from the outer solver. The resource numbers are obtained with the
Xilinx 7.1 ISE optimising for speed. For a clearer comparison we exclude the
much smaller savings resulting from smaller exponents and therefore use 11
bit exponents in all the formats. For the double precision core we need a lot
of resources in terms of slices and Input/Output Blocks (IOB) and therefore
the large Xilinx xc2v8000 (46,592 slices, 1,108 IOBs) is used for all designs,
otherwise we would have to use different chips for different precisions, which
would make the numbers less comparable. In addition the Xilinx xc2v8000
contains 168 hardwired 18× 18-bit multipliers (MUL18x18), that are inserted
in increasing numbers into new FPGAs to save configurable logic elements (cf.
section 4.3). We generate results with automatic selection of the MUL18x18
multipliers and with purely logic based pipelined LUT multipliers.

If the entire core is implemented in logic the area consumption is quadratic
in the size of the number format as expected (table 6). Utilisation of the
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Table 6. Estimated area consumption and maximum fre-

quency of the pipelined CG core on the Xilinx xc2v8000ff1517-

5 FPGA.

precision slices MUL18x18s IOBs frequency

PipeLUT multiplier

s17e11 4517 0 498 71 MHz
s20e11 5102 0 549 67 MHz
s23e11 5812 0 600 66 MHz
s28e11 6976 0 685 64 MHz
s36e11 9391 0 821 53 MHz
s44e11 11458 0 957 51 MHz
s52e11 14545 0 1093 49 MHz

MUL18x18 multiplier

s17e11 4449 12 498 134 MHz
s20e11 4902 48 549 87 MHz
s23e11 5412 57 600 85 MHz
s28e11 6257 60 685 82 MHz
s36e11 7611 60 821 65 MHz
s44e11 8946 135 957 61 MHz
s52e11 10271 135 1093 59 MHz

hardwired multipliers reduces the growth to linear, but then the multipliers
themselves are consumed rapidly. Moreover, we see a significant drop in the
frequency and very high IO requirements for the high precision core.

7.2 Analysis of results

Figures 3a-d visualise the data from table 6 and additional associated infor-
mation. If the multipliers are configured with logic resources then figure 3a
clearly shows the resulting quadratic area consumption. The quadratic coeffi-
cient of the growth of the number of slices is smaller than for the number of 4
input LUTs because the number of flip flops grows only linearly. In figure 3c
we see the effect of the automatic utilisation of the block MUL18x18 multipli-
ers on the area consumption. The growth of the number of slices is reduced to
linear at the cost of many MUL18x18 multipliers. The graph of the number of
MUL18x18s is less smooth because of granularity effects, e.g. even where a 12
bit multiplier would suffice a MUL18x18 is consumed. This explains the com-
parably low number of MUL18x18s for the s36e11 format, where 36 = 2 · 18
splits very well under the given granularity and allows optimal utilisation of
the hardwired resources.

Figures 3b and 3d show the IO requirements and estimated frequencies.
In the logic based design the frequency drops fairly smoothly, while the
MUL18x18 design reveals a more volatile behaviour, that can again be at-
tributed to the granularity of the hardwired multipliers. In any case the smaller
cores are clearly in advantage. The number of required user IO obviously grows
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Figure 3. Resource consumption and frequency of the pipelined CG core on the Xilinx
xc2v8000ff1517-5 FPGA, on the left with PipeLUT, on the right with MUL18x18 multipliers (cf.

table 6).

linearly, but the overall costs for production of a board connecting the FPGA
with such wide buses to on-board memory supersede the linear growth. There-
fore, the reduction from the 1093 IO blocks necessary for a double precision
core to the 600 of a s23e11 core are a greater relief than the ratio of the number
suggests.

Similar reasoning also applies to the required area, as prices of high-end
devices do not scale linearly with their capacity. So the overall cost savings
scale superlinearly on top of the quadratic area savings from the design. One
possibility that opens up with the smaller low precision cores is to implement
them on small FPGAs and employ several of them in parallel on the board
rather than using an equivalently large single FPGA.

As FPGAs are available in various sizes, it turns out that the above re-
source savings quickly translate into concrete economic advantages. A s23e8
single precision pipelined CG core fits into a xc2v1500 (7,680 slices), whereas
a double precision core requires a xc2v4000 (23,040 slices). Given the addi-
tional frequency gains and the exact slowdown [58] in the convergence process
of the mixed precision CG solver, the much smaller chip would be approxi-
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mately 1.25 slower in obtaining the final result (plus the costs of the outer
solver). If this is acceptable then the economic impact would be huge as the
xc2v1500 costs only one third of the xc2v4000. Moreover, in an integrated
solution other components could also be downsized as the smaller chip con-
sumes less energy and has fewer pins. If we are willing to sacrifice some of
the resource savings for speedup, we can simply use a larger device than the
xc2v1500 and implement several of the low precision cores in parallel. Effec-
tively, the mixed precision iterative refinement method on the FPGA allows a
continuous design space exploration between smallest area consumption and
highest parallelism/speedup.

8 Mixed precision schemes on anisotropic grids

8.1 Goals and test design

As shown in section 6, the proposed adaption of iterative refinement tech-
niques to fast, parallel low-precision co-processors yields promising speedups
compared to a CPU implementation without sacrificing any accuracy in the
final result. In this section, we want to expand this work and analyse the nu-
merical behaviour of the iterative refinement scheme with very ill-conditioned
matrices. In theory the iterative refinement scheme converges as long as the
matrices are ’not too ill-conditioned’ (cf. section 3), and we want to quantify
this in the practical FEM context.

Most publications discussing mixed precision iterative refinement techniques
utilise carefully constructed specialised test cases to examine the impact of
insufficient precision. For instance, defining problems based on the Hilbert
matrix is a common technique to directly influence the condition number of
the system matrix. In the FEM context and the implied matrix structure
our work aims at, such test cases are not feasible. We propose to introduce
anisotropies instead.

Since the ’simple’ Jacobi smoother is not robust enough to cope with
anisotropies, we decided to use a powerful multigrid solver with sophisticated
alternating linewise smoother (MG ADITRIGS, [61]), capable of dealing
with almost arbitrarily deformed meshes. This solver is very robust, and we
have to apply neither damping nor more than two pre- and postsmoothing
steps. Again, we employ an F-cycle. We did not implement the advanced
ADI-TRIGS multigrid solver on fast co-processor hardware yet, because this
is a non-trivial task due to the complex data flow and data dependencies. In-
stead, all numerical tests in this section (i.e. all three solvers) are performed
with a simulation tool we implemented on top of Feast, a powerful (par-
allel) hardware–oriented PDE solver toolkit, actively under development at
Dortmund University. The results from this section however allow us to ana-
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Figure 4. Illustration of various degrees of anisotropy in a complex CFD simulation using Feast.

lyse the applicability of the proposed schemes for real-world situations and we
will work towards adapting more powerful solver schemes to the co-processor
hardware.

The core approach of Feast is to exploit local structures with fast but
simple numerical components while hiding anisotropies and globally unstruc-
tured parts of the discretisation through a hierarchical domain-decomposition
approach called ScaRC [62]. The ultimate goal of our work is to include the
co-processors as evaluated in this paper into Feast, taking advantage of its
domain decomposition approach to offload the compute-intensive smoothing
parts of the solution process. For more details about Feast, we refer to Turek
et al. [63]. Figure 4 depicts an example of various fine-grain mesh details em-
bedded in a global domain decomposition.

Apart from using different solvers, the test procedure remains identical to
the one described in section 5.1.

8.2 Anisotropies

One concern with mixed precision methods is the achieved accuracy in case
of matrices with strongly varying coefficients. Rather than analysing artificial
cases with randomly varying coefficients we utilise test matrices arising from
anisotropic mesh refinements as they typically appear in FEM applications
(cf. figure 4):

Uniform anisotropies: Using rectangular instead of square elements al-
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Figure 5. Example for different mesh anisotropies on levels 1–3. Left: Uniform subdivision of an
anisotropic coarse mesh. Right: Anisotropic subdivision of the rightmost and bottommost element

layer in each refinement step.

lows us to specify the aspect ratio of each element in the refined discreti-
sation. We refine the mesh uniformly (cf. figure 5) which leads to the same
degree of anisotropy in each entry of the matrix.
Anisotropic refinement: In this strategy, we start with the unit square
and in each refinement step, we subdivide the bottommost and rightmost
layer of cells anisotropically (cf. figure 5). This refinement scheme is often
used to accurately resolve boundary layers in real simulations. For each
refined cell in these layers, the new midpoint xc is calculated by recursively
applying the formula xc = xl + ν · xr−xl

2 with a given anisotropy factor ν
(ν = 1.0 yields uniform refinement) and xl and xr denoting the coordinates
of the left and right edge of a cell before subdividing (analogously for the y-
component). All other cells are refined uniformly. This leads to matrices with
locally condensed anisotropies instead of uniform ones. We refer to Kilian
for a comprehensive overview of anisotropies in the FEM context [62].

We note that the above cases generate matrices which also occur when dis-
cretising anisotropic operators. For example, operators of the type −div(G∇u)
for a diagonal matrix G lead to the same matrix entries as introducing a corre-
sponding degree of anisotropy directly on the coarse mesh level. Consequently,
our test results also apply to these problems of operator anisotropy.

For each test case, we list the maximum aspect ratio ARmax and the length
of the smallest edge hmin in the maximum refinement level as indicators of the
condition of the arising systems.

8.3 Reference values

In this section, we present the reference values of the three solver configurations
executing in native double precision on several test cases, incorporating both
uniform anisotropies as well as anisotropic refinement.

Table 7 lists the number of iterations or multigrid F-cycles (#Iter), the rate
of convergence (ρ) and the L2 error against the analytically known reference
solution for the following test cases:
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Table 7. Convergence history for three solvers: Uniform anisotropies (cf. section 8.3).

CG MG JAC MG ADITRIGS
Test Level #Iter ρ #Iter ρ #Iter ρ Error

A 8 342 0.9349 8 0.0604 6 0.0135 5.7816E-7
A 9 676 0.9665 8 0.0606 6 0.0132 1.4454E-7
B 8 859 0.9735 8 0.0468 8 0.0413 1.7652E-8
B 9 1731 0.9868 8 0.0529 7 0.0351 4.4131E-9
C 8 1568 0.9854 31 0.4715 8 0.0541 5.4048E-10
C 9 3198 0.9928 31 0.4688 8 0.0519 1.3512E-10
D 8 1570 0.9854 n/a n/a 6 0.0182 1.7387E-34
D 9 2810 0.9918 n/a n/a 6 0.0154 4.3450E-35

A No anisotropies: Ω = [0, 1]2, uniform refinement, ARmax = 1.0,
hmin = 1.93 · 10−1.

B Weak uniform anisotropy: Ω = [0, 0.25] × [0, 1], uniform refinement,
ARmax = 4.0, hmin = 4.88 · 10−4.

C Medium uniform anisotropy: Ω = [0, 0.0625] × [0, 1], uniform refinement,
ARmax = 16.0, hmin = 1.22 · 10−4. While this system can be represented
well in single precision (by converting it from a double precision format), a
direct assembly of the matrix in single precision fails on higher levels due
to Jacobian determinants evaluating to zero.

D Very high uniform anisotropy: Ω = [0, 10−11] × [0, 1], uniform refinement,
ARmax = 1.0 ·1011, hmin = 1.95 ·10−14. This test case is complicated further
by the fact that the solution is zero almost everywhere and the system can
barely be assembled even in double precision.

We tabulate only levels 8 and 9 (N = 2572 and N = 5132 unknowns) to
improve clarity of the presentation.

As shown in table 7, all solvers perform as expected. The conjugate gradi-
ent solver doubles the number of iterations in each refinement, and the two
multigrid solvers converge independently of the level. The results for the multi-
grid with Jacobi smoother require some further explanation. Even for weak
anisotropies (test case B), the Jacobi smoother necessitates the impractical
amount of 64+64 pre- and postsmoothing steps despite strong damping. In
test case B, level 9 for instance, the number of necessary cycles approximately
doubles if the number of smoothing steps is cut in half: 4+4 results in 121
cycles (ρ = 0.83), 8+8 in 61 cycles (ρ = 0.68), 16+16 in 31 cycles (ρ = 0.47)
and 32+32 in 16 cycles (ρ = 0.23).

Table 8 summarises the convergence behaviour in the case of anisotropically
refined coarse meshes, again for levels 8 and 9. Five test cases are evaluated:

E Weak anisotropic refinement: ν = 0.75, ARmax = 16.6, hmin = 1.47 · 10−4.
F Medium anisotropic refinement: ν = 0.5, ARmax = 7.68 · 102,

hmin = 3.81·10−6. We expect the multigrid with Jacobi smoother to exhibit
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Table 8. Convergence history for three solvers: Anisotropic refinement (cf. section 8.3).

CG MG JAC MG ADITRIGS
Test Level #Iter ρ #Iter ρ #Iter ρ Error

E 8 804 0.9718 5 0.0046 6 0.0199 7.5197E-7
E 9 1647 0.9861 5 0.0053 6 0.0210 1.8799E-7
F 8 829 0.9726 6 0.0150 7 0.0361 1.1224E-6
F 9 1683 0.9864 10 0.0939 7 0.0372 2.8059E-7
G 8 901 0.9746 29 0.4457 8 0.0428 1.6354E-6
G 9 1828 0.9875 63 0.6930 8 0.0433 4.0886E-7
H 8 1079 0.9787 n/a n/a 7 0.0372 2.1218E-6
H 9 2224 0.9897 n/a n/a 8 0.0463 5.3045E-7
I 8 1129 0.9797 n/a n/a 9 0.0705 8.8600E-6
I 9 n/a n/a n/a n/a n/a n/a n/a

massive problems.
G Hard anisotropic refinement: ν = 0.25, ARmax = 4.59 · 105,

hmin = 7.45 · 10−9. This test case yields a problem which cannot be assem-
bled in single precision.

H Hard anisotropic refinement: ν = 0.0625, ARmax = 1.33 · 1011,
hmin = 2.84 · 10−14. This test case also yields a problem which cannot be
assembled in single precision.

I Extremely hard anisotropic refinement: ν = 0.03125, ARmax = 2.16 · 1012,
hmin = 3.55 · 10−15. This test case yields a problem which cannot be as-
sembled in double precision for levels greater than 8. This test is therefore
extremely challenging for our mixed precision solver.

We observe that the ADI-TRIGS smoother can handle all degrees of
anisotropy without a substantial increase in the number of required iterations.
The conjugate gradient solver performs surprisingly well. Multigrid with Ja-
cobi smoothing again fails to work properly even for moderate anisotropies,
test cases E–G required 32+32, 128+128 and 128+128 pre- and postsmoothing
steps respectively.

8.4 Performance of the mixed precision schemes with anisotropies

In this test series, we evaluate the mixed precision solver. The main target of
our experiments is accuracy, so we are especially interested in the hard cases
C, D and H, I of the previous test series. In table 9 we summarise the perfor-
mance and the errors compared to the reference solution of the mixed precision
algorithm for all previous test cases (cf. tables 7 and 8), using ADI-TRIGS-
multigrid as inner solver. We note that the achieved accuracy is independent
of the choice of the inner solver, only the convergence behaviour differs, but
we need to apply the robust ADI-TRIGS solver to treat the anisotropies prop-
erly. In this test series, the inner solution process is terminated once two dig-
its are gained, inspired by the fact that the multigrid solver with ADI-TRIGS
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Table 9. Convergence history and accuracy comparison for the mixed precision solver

using multigrid with ADI-TRIGS as smoother on levels 8 and 9 (cf. section 8.4). Columns

labelled ’Errorref ’ reproduce the values from tables 7 and 8 for reference. Notation: Colon

separates number of outer from sum of all inner iterations.

Level 8 Level 9
Test #Iter Errormix Errorref #Iter Errormix Errorref

A 4:6 5.7816E-7 5.7816E-7 4:6 1.4454E-7 1.4454E-7
B 5:8 1.7652E-8 1.7652E-8 5:8 4.4131E-9 4.4131E-9
C 5:8 5.4048E-10 5.4048E-10 5:8 1.3512E-10 1.3512E-10
D 4:5 1.7387E-34 1.7387E-34 4:5 4.3450E-35 4.3450E-35
E 4:6 7.5197E-7 7.5197E-7 4:6 1.8799E-7 1.8799E-7
F 4:7 1.1224E-6 1.1224E-6 4:7 2.8059E-7 2.8059E-7
G 4:7 1.6354E-6 1.6354E-6 4:7 4.0886E-7 4.0886E-7
H 5:8 2.1218E-6 2.1218E-6 5:8 5.3045E-7 5.3045E-7
I 5:10 2.2149E-6 8.8600E-6 n/a n/a n/a

smoother generally gains more than one digit per cycle. As a scaling heuristics,
we normalise the defect with its l2-norm in each outer iteration.

Most importantly, we note that the mixed precision solver is able to deliver
exactly the same results regarding accuracy as a direct solution in double
precision, even for problems that cannot be assembled in single precision. The
convergence behaviour of the mixed precision iteration is remarkably good
compared to the direct iteration using multigrid with ADI-TRIGS smoothing.
In most test cases, the iteration counts are identical, occasionally the mixed
precision approach performs one inner iteration more or less than the direct
solver. We conclude that the only additional numerical work required by our
approach is the calculation of few defects in the outer loop. Even for very hard
problems, the mixed precision algorithm does not get stalled by the lack of
precision in the inner solver.

9 Summary and future work

We have presented fast algorithms for the solution of large linear equation
systems as they typically arise in finite element discretisations. Our analysis
is hardware-motivated, we focus on techniques that can exploit the enormous
compute power of single precision parallel devices to achieve highly accurate
results.

Based on a common PDE example, we show that low precision in the compu-
tation alone can lead to highly inaccurate solutions, although the convergence
behaviour of the solver does not hint at this at all. Knowing about the error
propagation during the solution process, however, enables us to concentrate
the high precision to the few places where it is necessary, instead of using high
precision throughout the algorithm.

The combined double-single precision format can be used to emulate higher
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precision on hardware which only supports native low precision, but the em-
ulation is very expensive in the number of operations. The mixed precision
iterative refinement technique makes it feasible to offload up to 99% of the
arithmetic work to a fast low-precision co-processor without sacrificing the
accuracy of the final result. We have discussed several hardware combinations
that are particularly suitable for such techniques.

We have demonstrated the applicability of these approaches on two particu-
lar hardware combinations: Using the GPU as a fast, parallel co-processor for
the general purpose CPU, we have shown that the emulation technique is sig-
nificantly slower for our PDE problem than the iterative refinement technique.
On FPGAs, we have highlighted the resource savings that can be obtained by
changing the core of the solver to a lower precision and executing the high
precision corrections on a different resource, e.g. CPU, micro-controller.

Our numerical tests are based on a conjugate gradient and a multigrid solver
with Jacobi smoothing. As the Jacobi smoother is not suitable to solve systems
arising from the discretisation of realistic, complex domains, we have evaluated
the stability of the iterative refinement techniques for ill-conditioned matrices
using a simulation tool that provides stronger smoothers. Instead of using ma-
trices with randomly varying coefficients, we introduce strong anisotropies into
the discretisation to mimic ill-conditioned systems while keeping the practical
applicability in mind. Our results confirm that the techniques are very robust
up to impractical degrees of anisotropy.

In the future, we will work towards adding more robust solvers to our GPU
toolkit to make more realistic simulation domains feasible. We will improve
our currently prototypical realisation of incorporating the parallel devices as
co-processors into the finite element package Feast. Finally, we want to pro-
ceed with the development of the iterative refinement procedure towards other
problems, e.g. for generalised convergent iterative schemes [64].
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Appendix A: Detailed GPU results

This appendix contains detailed tables with timing and performance results
on the GPU (cf. section 6).

Table A1. Timings and speedup factors for different problem sizes of a conjugate gradient solver:

CPU in native double precision, GPU in emulated double-single floating point format (cf. section

6.3).

CPU GPU

Level #Iter Time Error #Iter Time Error Speedup

5 42 0.02 2.607000747E-5 42 1.33 2.607000747E-5 0.02
6 85 0.04 6.613757931E-6 85 1.37 6.613757928E-6 0.03
7 171 0.24 1.666003669E-6 171 1.53 1.666003655E-6 0.16
8 342 1.93 4.181054493E-7 342 2.36 4.181054014E-7 0.82
9 676 17.34 1.047283078E-7 676 8.09 1.047281043E-7 2.14
10 1357 131.63 2.620418257E-8 1357 53.28 2.620376988E-8 2.47

Table A2. Timings and speedup factors for different problem sizes of a multigrid solver performing

2+2 Jacobi smoothing steps: CPU in native double precision, GPU in emulated double-single

floating point format (cf. section 6.3).

CPU GPU

Level #Iter Time Error #Iter Time Error Speedup

5 8 0.07 2.607000747E-5 8 2.16 2.607000747E-5 0.03
6 8 0.11 6.613757930E-6 8 2.21 6.613757960E-6 0.05
7 8 0.19 1.666003671E-6 8 2.28 1.666003788E-6 0.08
8 8 0.47 4.181054499E-7 8 2.41 4.181059363E-7 0.2
9 8 1.56 1.047283072E-7 max max 6.734639345E-7 n/a
10 8 5.93 2.620418261E-8 max max 3.573254856E-7 n/a

Table A3. Timings and speedup factors for different problem sizes of a multigrid solver performing

4+4 Jacobi smoothing steps: CPU in native double precision, GPU in emulated double-single

floating point format (cf. section 6.3).

CPU GPU

Level #Iter Time Error #Iter Time Error Speedup

5 7 0.1 2.607000747E-5 7 2.17 2.607000747E-5 0.05
6 7 0.16 6.613757934E-6 7 2.24 6.613757966E-6 0.07
7 7 0.28 1.666003670E-6 7 2.37 1.666003775E-6 0.12
8 7 0.69 4.181054493E-7 7 2.6 4.181059399E-7 0.27
9 6 1.95 1.047283071E-7 max max 6.739087494E-7 n/a
10 6 7.07 2.620418265E-8 max max 3.587387658E-7 n/a
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Table A4. Timings and speedup factors for different problem sizes of a conjugate gradient solver:

CPU in native double precision, GPU executing the mixed precision iterative refinement strategy

with support from the CPU (cf. section 6.5).

CPU GPU

Level #Iter Time Error #Iter Time Error Speedup

5 42 0.02 2.607000747E-5 5:99 0.17 2.607000756E-5 0.12
6 85 0.04 6.613757931E-6 5:190 0.25 6.613757931E-6 0.16
7 171 0.24 1.666003669E-6 5:412 0.46 1.666003870E-6 0.52
8 342 1.93 4.181054493E-7 5:861 0.91 4.181055132E-7 2.12
9 676 17.34 1.047283078E-7 6:2256 4.36 1.047281051E-7 3.98
10 1357 131.63 2.620418257E-8 6:4500 29.9 2.620347100E-8 4.40

Table A5. Timings and speedup factors for different problem sizes of a multigrid solver with

2+2 Jacobi smoothing steps: CPU in native double precision, GPU executing the mixed precision

iterative refinement strategy with support from the CPU (cf. section 6.5).

CPU GPU

Level #Iter Time Error #Iter Time Error Speedup

5 8 0.07 2.607000747E-5 5:10 0.16 2.607000747E-5 0.44
6 8 0.11 6.613757930E-6 5:9 0.19 6.613757928E-6 0.58
7 8 0.19 1.666003671E-6 5:9 0.24 1.666003655E-6 0.79
8 8 0.47 4.181054499E-7 5:9 0.33 4.181054014E-7 1.42
9 8 1.56 1.047283072E-7 5:9 0.53 1.047281043E-7 2.94
10 8 5.93 2.620418261E-8 5:9 1.42 2.620376988E-8 4.18

Table A6. Timings and speedup factors for different problem sizes of a multigrid solver with

4+4 Jacobi smoothing steps: CPU in native double precision, GPU executing the mixed precision

iterative refinement strategy with support from the CPU (cf. section 6.5).

CPU GPU

Level #Iter Time Error #Iter Time Error Speedup

5 7 0.1 2.607000747E-5 4:7 0.17 2.607000747E-5 0.59
6 7 0.16 6.613757934E-6 4:7 0.21 6.613757928E-6 0.76
7 7 0.28 1.666003670E-6 4:7 0.26 1.666003655E-6 1.08
8 7 0.69 4.181054493E-7 4:7 0.33 4.181054014E-7 2.09
9 6 1.95 1.047283071E-7 4:7 0.56 1.047281043E-7 3.48
10 6 7.07 2.620418265E-8 5:8 1.69 2.620376988E-8 4.18


