GPU Cluster Computing

for Finite Element Applications

Dominik Gdddeke, Hilmar Wobker,
Sven H.M. Buijssen and Stefan Turek

Applied Mathematics
TU Dortmund
dominik.goeddeke@math.tu-dortmund.de
http://www.mathematik.tu-dortmund.de/~goeddeke

38th SPEEDUP Workshop on High-Performance Compua'n
EPF Lausanne, Switzerland, September 7, 2009 °q_

8

dominik.goeddeke@math.tu-dortmund.de
http://www.mathematik.tu-dortmund.de/~goeddeke

The free ride is over

I Best
100 HH Average

10

Speedup (log)

93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08

m FeatFlow benchmark 1993-2008 (single-threaded CFD code)
m 80x speedup in 16 years for free

m But: More than 1000x improvement in peak processor performance

Serial (legacy) codes no longer run faster automatically

QOutline

FEAST — hardware-oriented numerics

N

B Precision and accuracy
Co-processor integration
Results

Conclusions

FEAST -

Hardware-oriented Numerics

Serial FEM: Data structures

Fully adaptive grids
Maximum flexibility
‘Stochastic’ numbering
Unstructured sparse matrices
Indirect addressing, very slow.

Structured grids

Logical tensor product structure
Fixed banded matrix structure
Direct addressing (high perf.)
Not limited to const. operators

[1S
=

unstructured mesh

[17~
7

“window” for
matrix-vector
multiplication,
per macro

/7
1177

9

hierarchically
refined subdomain
(= “macro’),

fowwise numbered

T

sttt

LUNN DU
LU LD DL DD,

I

!
4

I~

it

4 i aNAs

Example: SpMV on TP grid

3000 L L
CSR, 2-leve| m—
CSR, Cuthill-McKee mmmm
SR, XYZ =
2500 CSR, Stochastic m— |
CSR, Hierarchical

Banded mmmm—
Banded-const

>

i> 2000 [
==
£5
Q.
Qo
2, 1500 +
So
20
sz
A= 1000 -

500 -

652 129° 2572 5127 10252

= Opteron 2214 dual-core, 2.2 GHz, 2x1 MB L2 cache, one thread
m 50 vs. 550 MFLOP/s for interesting large problem size

Cache-aware implementation = 90% of memory throughput

m const: Stencil-based computation

Serial FEM: Solvers

Speedup (log)

2000
1000

2000
41000

Il Stochastic

F| E XYZ
| Ml Banded

CG (simple) CG (advanced) MG (simple) MG (advanced)

More than 1300x faster due to hardware-oriented numerics

~

Parallel FEM: ScaRC

ScaRC - Scalable Recursive Clustering
Unstructured macro mesh of tensor product subdomains
Minimal overlap by extended Dirichlet BCs
Hybrid multilevel domain decomposition method

Inspired by parallel MG (" best of both worlds")

Multiplicative vertically (between levels), global coarse grid problem
(MG-like)
Additive horizontally: block-Jacobi / Schwarz smoother (DD-like)

Hide local irregularities by MGs within the Schwarz smoother

Embed in Krylov to alleviate Block-Jacobi character

Parallel FEM: Solver template

Generic ScaRC solver template for scalar elliptic PDEs

global BiCGStab
preconditioned by
global multigrid (V 1+1)
additively smoothed by

for all Q;: local multigrid

coarse grid solver: UMFPACK

7

7
1
2Z:
2z

=
Z

=

7

77

2
7=
7
2

=

57

7

Z

77
Z
72
7

Z

=7
Z

7
57

ZZz

72777
Z
ZZ
7
27
=7

77

Multivariate problems

Block-structured systems

Guiding idea: Tune scalar case once per architecture instead of over
and over again per application

Equation-wise ordering of the unknowns

Block-wise treatment enables multivariate ScaRC solvers
Examples

Linearised elasticity with compressible material

Saddle point problems: Stokes, elasticity with (nearly)
incompressible material, Navier-Stokes with stabilisation

A A u Au 0 Bi1\ w1 A A Bi\ /w1
(All AlZ) (Ul) =f,| O A Bz vo | =f,[A21 Az B> vo | =f
2 nz)\w2 Bl Bl 0/ \p Bl BJ] Cc/\p
A11 and Ay correspond to scalar elliptic operators
= Tuned linear algebra (and tuned solvers)

Precision vs. accuracy

Mixed precision methods

Cool example

S.M. Rump (1988), updated by Loh and Walster (2002) for IEEE-754
round-to-nearest: Evaluating (with powers as multiplications)

(333.75 — x2)y® + x?(11x%y? — 121y* — 2) + 5.5y% +x/(2y)

for X = 77617 and yp = 33096 gives

Cool example

S.M. Rump (1988), updated by Loh and Walster (2002) for IEEE-754
round-to-nearest: Evaluating (with powers as multiplications)

(333.75 — x2)y® + x?(11x%y? — 121y* — 2) + 5.5y% +x/(2y)

for X = 77617 and yp = 33096 gives

single precision (s23e8) 1.172604

Cool example

S.M. Rump (1988), updated by Loh and Walster (2002) for IEEE-754
round-to-nearest: Evaluating (with powers as multiplications)

(333.75 — x2)y® + x?(11x%y? — 121y* — 2) + 5.5y% +x/(2y)

for X = 77617 and yp = 33096 gives

single precision (s23e8) 1.172604
double precision (s52el1) 1.1726039400531786

Cool example

S.M. Rump (1988), updated by Loh and Walster (2002) for IEEE-754
round-to-nearest: Evaluating (with powers as multiplications)

(333.75 — x2)y® + x?(11x%y? — 121y* — 2) + 5.5y% +x/(2y)
for X = 77617 and yp = 33096 gives
single precision (s23e8) 1.172604

double precision (s52el1) 1.1726039400531786
quad precision (s112e15) 1.1726039400531786318588349045201838

Cool example

S.M. Rump (1988), updated by Loh and Walster (2002) for IEEE-754
round-to-nearest: Evaluating (with powers as multiplications)

(333.75 — x2)y® + x?(11x%y? — 121y* — 2) + 5.5y% +x/(2y)
for X = 77617 and yp = 33096 gives
single precision (s23e8) 1.172604

double precision (s52el1) 1.1726039400531786
quad precision (s112e15) 1.1726039400531786318588349045201838

Not even the sign is correct:
Exact result —0.8273...

Computational precision # Result accuracy
Cancellation promotes small round-off errors, impossible to avoid a priori

FEM example

single precision double precision
Level Error Reduction Error Reduction

2 2.391E-3 2.391E-3
3 5.950E-4 4.02 5.950E-4 4.02
4 1.493E-4 3.98 1.493E-4 3.99
5 3.750E-5 3.98 3.728E-5 4.00
6 1.021E-5 3.67 9.304E-6 4.01
7 6.691E-6 1.53 2.323E-6 4.01
8 2.012E-5 0.33 5.801E-7 4.00
9 7.904E-5 0.25 1.449E-7 4.00
10 3.593E-4 0.22 3.626E-8 4.00

Poisson —Au = f on [0,1]? with Dirichlet BCs, MG solver
Bilinear conforming quadrilateral elements (Qj) on cartesian mesh
Lo error against analytical reference solution

Residuals indicate convergence, but results are completely off

Mixed precision motivation

Bandwidth bound algorithms
64 bit = 1 double = 2 floats
More variables per bandwidth (comp. intensity up)
More variables per storage (data block size up)

Applies to all memory levels:
disc = main = device = cache = register

Compute bound algorithms
1 double multiplier = 4 float multipliers (quadratic)
1 double adder = 2 float adders (linear)

Multipliers are much bigger than adders
= Quadrupled computational efficiency

Mixed precision schemes

Mixed precision iterative refinement to solve Ax =D

Compute d b—Ax in high precision
Solve Ac = d approximately in low precision
Update X X+cC in high precision and iterate

Low precision solution is used as preconditioner in a high precision
iterative method

A is small and dense: Compute and apply LU factorisation in low
precision

A is large and sparse: Approximately solve Ac = d with an iterative
method itself

Co-processor integration
into FEAST

Bandwidth in a CPU/GPU node

CO-processor

20-160 GB/s

6-15 GB/s

1-2 GB/s 1-8 GB/s

Infiniband to
next node

Example: SpMV on TP grid

50000
CSR, 2-level mmm—
45000 CSR, Cuthill-McKee mmm—
CSR, XYZ wm—m
CSR, Stochastic mmmm
40000 - CSR, Hierarchical
Banded mm—
o 35000 Banded-const
i E Banded-GPU single s
o) Banded-GPU double
£5 30000 -
25
% 25000 [
ga
25 20000 -
ST
NE
i 15000
10000 |-
5000
0 ‘J : -— e
652 120° 257° 5122 1025

Sufficiently tuned CUDA implementation of band-MV
NVIDIA GeForce GTX 280

46.5 GFLOP/s (compare 1 GFLOP/s on Opteron 2214)
16.2 GFLOP/s vs. 550 MFLOP/s in double

PlayStation 3: 3 GFLOP/s single precision

Example: Multigrid on TP grid

Core2Duo (double) GTX 280 (mixed)

Level time(s) MFLOP/s time(s) MFLOP/s speedup
7 0.021 1405 0.009 2788 2.3x
8 0.094 1114 0.012 8086 7.8x
9 0.453 886 0.026 15179 17.4x
10 1.962 805 0.073 21406 26.9x

Poisson on unitsquare, Dirichlet BCs, not only a matrix stencil
1M DOF, multigrid, FE-accurate in less than 0.1 seconds!

27x faster than CPU

1.7x faster than pure double on GPU

8800 GTX (double correction on CPU): 0.44 seconds on level 10

Minimally invasive integration

global BiCGStab
preconditioned by
global multilevel (V 1+1)
additively smoothed by
for all Q;: local multigrid

coarse grid solver: UMFPACK

All outer work: CPU, double
Local MGs: GPU, single

GPU performs smoothing or
preconditioning

Not limited to GPUs

User
Application
Code

Generalised
MG/DD
Solver

Smoother Local CPU
_..Interface___. Smoother
Task + Data (MG)
Scheduling

Heterogeneous Hardware Resources

Minimally invasive integration

General approach
Balance acceleration potential and integration effort

Accelerate many different applications built on top of one central FE
and solver toolkit

Diverge code paths as late as possible
No changes to application code!
Retain all functionality

Do not sacrifice accuracy

Challenges
Heterogeneous task assignment to maximise throughput
Limited device memory (modeled as huge L3 cache)
Overlapping CPU and GPU computations

Building dense accelerated clusters

Some results

Linearised elasticity

global multivariate BiCGStab
block-preconditioned by
Au Ar) (ul) Global multivariate multilevel (V 1+1)
Axr Ao us additively smoothed (block GS) by

for all Q;: solve A11¢1 =d; by
local scalar multigrid

(2“ +/\)0XX+“ayy (“ +A)% update RHS: dy; =d; — Az
(H+A)ayx Haxx+(2l1+)\)ayy for all Q;: solve AxC, =dy by

local scalar multigrid
coarse grid solver: UMFPACK

NN ’m\\
— dm X2

Accuracy (1)

le-4
1le-5[
v
g
o
as
o5
&9
[
£
« A
] L7(CPU) =
v le7fl L7(GPU) b
L8(CPU) —F—
L8(GPU) £\
L9(CPU) —O—
L9(GPU) ———
L10(CPU) ——
le-8 1| |10(GPU) 1
.
16 64 256

number of subdomains

Same results for CPU and GPU
Lo error against analytically prescribed displacements

Tests on 32 nodes, 512M DOF

Accuracy (Il)

=

Cantilever beam, aniso 1:1, 1:4, 1:16
Hard, ill-conditioned CSM test

CG solver: no doubling of iterations
GPU-ScaRC solver: same results as CPU

aniso0l ——
256 aniso0d
anisol6 —¥—

128
21K BAKI 332K 132K 528Ki 2IMi

number of DOF

8.4Mi

aniso04 Iterations Volume y-Displacement
refinement L CPU GPU CPU GPU CPU GPU
8 4 4 1.6087641E-3 1.6087641E-3 -2.8083499E-3 -2.8083499E-3
9 4 4 1.6087641E-3 1.6087641E-3 -2.8083628E-3 -2.8083628E-3
10 4.5 4.5 1.6087641E-3 1.6087641E-3 -2.8083667E-3 -2.8083667E-3
anisol16
8 6 6 6.7176398E-3 6.7176398E-3 -6.6216232E-2 -6.6216232E-2
9 6 5.5 6.7176427E-3 6.7176427E-3 -6.6216551E-2 -6.6216552E-2

10 5.5 5.5 6.7176516E-3 6.7176516E-3

-6.6217501E-2 -6.6217502E-2

Weak scalability

<e-w- smaller is better <

sec

160

140

120

14
a3
(8 30
VE
E
2
Ll 2c8m_Cn 110 const ——
1g8m_Cn_L10_const CPU ——
1c8m_Cn_L10_const —=— GPU
20
96 128 160 a 8 16 32 64 128
Number of nodes Number of nodes

Outdated cluster, dual Xeon EM64T

one NVIDIA Quadro FX 1400 per node (one generation behind the
Xeons, 20 GB/s BW)

Poisson problem (left): up to 1.3B DOF, 160 nodes
Elasticity (right): up to 1B DOF, 128 nodes

Absolute performance

250

CPU-single
CPU-dual =3
GPU-single

<---- smaller is better <----
time (sec)

BLOCK CRACK PIPE STEELFRAME

16 nodes, Opteron 2214 dualcore

NVIDIA Quadro FX 5600 (76 GB/s BW), OpenGL
Problem size 128 M DOF

Dualcore 1.6x faster than singlecore

GPU 2.6x faster than singlecore, 1.6x than dual

Acceleration analysis

Speedup analysis
Addition of GPUs increases resources
= Correct model: strong scalability inside each node
Accelerable fraction of the elasticity solver: 2/3

Remaining time spent in MPI and the outer solver

Accelerable fraction R,.c: 66%
Local speedup Soca: Ox
Total speedup Sotal: 2.6x .]
Theoretical limit Syax: 3x s]

> larger i better >
Stotal

Stokes and Navier-Stokes

A Az Bi\ [fur 1
A Axp Ba||ux|=|f
Bl Bl cC p g

4-node cluster
Opteron 2214 dualcore

GeForce 8800 GTX

(86 GB/s BW), CUDA
Driven cavity and channel
flow around a cylinder

fixed point iteration
solving linearised subproblems with

global BiCGStab (reduce initial residual by 1 digit)

Block-Schurcomplement preconditioner

1) approx. solve for velocities with
global MG (V 1+0), additively smoothed by
for all Q;: solve for u; with
local MG

for all Qj: solve for uy with
local MG
2) update RHS: d3 = —d3 + BT(Cl.,Cz)T
3) scale ¢z = (M})~*ds

pressure + isolines
. clevation plot)

magnitude of velocity + coarse grid

Stokes results

Setup

Driven Cavity problem
Remove convection part = linear problem

Measure runtime fractions of linear solver

Accelerable fraction Rycc: 75%
Local speedup Socal: 11.5x

Total speedup Sotal: 3.8x
Theoretical limit S;ax: 4x

Navier-Stokes results

Speedup analysis

Racc Socal Sotal
L9 L10 L9 L10 L9 L10
DC Rel00 41% 46% 6x 12x 1.4x 1.8x
DC Re250 56% 58% 5.5x 11.5x 1.9x 2.1x
Channel flow 60% - 6x - 19x -

Important consequence: Ratio between assembly and linear solve
changes significantly

DC Rel00 DC Re250 Channel flow
plain accel. plain accel. plain accel.
29:71 50:48 11:89 25:75 13:87 26:74

Conclusions

Conclusions

Hardware-oriented numerics prevents existing codes being worthless
in a few years

Mixed precision schemes exploit the available bandwidth without
sacrificing accuracy

GPUs as local preconditioners in a large-scale parallel FEM package
Not limited to GPUs, applicable to all kinds of hardware accelerators
Minimally invasive approach, no changes to application code

Excellent local acceleration, global acceleration limited by
‘sequential’ part

Future work: Design solver schemes with higher acceleration
potential without sacrificing numerical efficiency

Acknowledgements

Collaborative work with

FEAST group (TU Dortmund)
Robert Strzodka (Max Planck Institut Informatik)
Jamaludin Mohd-Yusof, Patrick McCormick (Los Alamos)

= | Al
'Q — ﬁ
N CF Max Planck Center Los Alamos
Y N :»-' 4 for visual computing and communication vty fivrtandcd
o
K i

Supported by

DFG, projects TU 102/22-1, 22-2, 27-1, 11-3

BMBF, HPC Software fiir skalierbare Parallelrechner. SKALB project
(011H08003D / SKALB)

	Motivation
	The free ride is over
	Outline

	FEAST -- hardware-oriented numerics
	Serial FEM: Data structures
	Example: SpMV on TP grid
	Serial FEM: Solvers
	Parallel FEM: ScaRC
	Parallel FEM: Solver template
	Multivariate problems

	Precision and accuracy
	Cool example
	FEM example
	Mixed precision motivation
	Mixed precision schemes

	Co-processor integration
	Bandwidth in a CPU/GPU node
	Example: SpMV on TP grid
	Example: Multigrid on TP grid
	Minimally invasive integration
	Minimally invasive integration

	Results
	Linearised elasticity
	Accuracy (I)
	Accuracy (II)
	Weak scalability
	Absolute performance
	Acceleration analysis
	Stokes and Navier-Stokes
	Stokes results
	Navier-Stokes results

	Conclusions
	Conclusions
	Acknowledgements

