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1 INTRODUCTION

While high-end HPC systems continue to be specialised
solutions, price/performance and power/performance con-
siderations lead to an increasing interest in HPC systems
built from commodity components. In fact, such clus-
ters have been dominating the TOP500 list of supercom-
puters in the number of deployed installations for several
years (Meuer et al., 2007).

Meanwhile, because thermal restrictions have put an
end to frequency scaling, codes no longer automatically
run faster with each new commodity hardware generation.
Now, parallelism and specialisation are considered as the
most important design principles to achieve better perfor-
mance. Soon, CPUs will have tens of parallel cores; future
massively parallel chip designs will probably be heteroge-
neous with general and specialised cores and non-uniform
memory access (NUMA) to local storage/caches on the
chip.

Currently available specialised co-processors are forerun-
ners of this development and a good testbed for future sys-
tems. The GRAPE series clusters (Genomic Sciences Cen-
ter, RIKEN, 2006), the upgrade of the TSUBAME cluster
with the ClearSpeed accelerator boards (Tokyo Institute of
Technology, 2006; ClearSpeed Technology, Inc., 2006), or
the Maxwell FPGA supercomputer (FPGA High Perfor-
mance Computing Alliance, 2007) have demonstrated the
power efficiency of this approach.

Multimedia processors such as the Cell BE processor or
graphics processor units (GPUs) are also considered as po-
tent co-processors for commodity clusters. The absolute
power consumption of the corresponding boards is high,
because, in contrast to the GRAPE or ClearSpeed boards,
they are optimised for high bandwidth data movement,
which is responsible for most of the power dissipation.
However, the power consumption relative to the magni-
tude of the data throughput is low, so that these boards do
improve the power/performance ratio of a system for data
intensive applications such as the Finite Element simula-
tions considered in this paper.

Unfortunately, different co-processors are controlled by
different languages and integrated into the system with
different APIs. In practice, application programmers are
not willing to deal with the resulting complications, and
co-processor hardware can only be deployed in the market,
if standard high level compilers for the architecture are
available or if hardware accelerated libraries for common
sub-problems are provided.

1.1 Main Hypothesis

Obviously, not all applications match the specialisation of
a given co-processor, but in many cases hardware accel-
eration can be exploited without fundamental restructur-
ing and reimplementation, which is prohibitively expensive
for established codes. In particular, we believe that each
co-processor should have at least one parallel language to
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efficiently utilise its resources, and some associated run-
time environment enabling the access to the co-processor
from the main code. However, the particular choice of the
co-processor and language are of subordinated relevance
because productivity reasons limit the amount of code
that may be reimplemented for acceleration. Most impor-
tant are the abstraction from the particular co-processor
hardware (such that changes of co-processor and parallel
language become manageable) and a global computation
scheme that can concentrate resource utilisation in inde-
pendent fine-grained parallel chunks. Consequently, the
main task does not lie in the meticulous tuning of the co-
processor code as the hardware will soon be outdated any-
way, but rather in the abstraction and global management
that remain in use over several hardware generations.

1.2 Contribution

We previously suggested an approach – tailored to the so-
lution of PDE problems – which integrates co-processors
not on the kernel level, but as local solvers for local sub-
problems in a global, parallel solver scheme (Göddeke
et al., 2007a). This concentrates sufficient fine-grained
parallelism in separate tasks and minimises the overhead
of repeated co-processor configuration and data transfer
through the relatively narrow PCIe/PCI-X bus. The ab-
straction layer of the suggested minimally invasive inte-
gration encapsulates heterogeneities of the system on the
node level, so that MPI sees a globally homogeneous sys-
tem, while the local heterogeneity within the node interacts
cleverly with the local solver components.

We assessed the basic applicability of this approach for
the scalar Poisson problem, using GPUs as co-processors.
They are attractive because of very good price/perfor-
mance ratios, fairly easy management, and very high mem-
ory bandwidth. We encapsulated the hardware specifics of
GPUs such that the general application sees only a generic
co-processor with certain parallel functionality. Therefore,
the focus of the project does not lie in new ways of GPU
programming, but rather in algorithm and software design
for heterogeneous co-processor enhanced clusters.

In this paper, we use an extended version of this
hardware-aware solver toolkit and demonstrate that even
a fully developed non-scalar application code can be sig-
nificantly accelerated, without any code changes to either
the application or the previously written accelerator code.
The application specific solver based on these components
has a more complex data-flow and more diverse CPU/co-
processor interaction than the Poisson problem. This al-
lows us to perform a detailed, realistic assessment of the
accuracy and speed of co-processor acceleration of unmod-
ified code within this concept. In particular, we quan-
tify the strong scalability effects within the nodes, caused
by the addition of parallel co-processors. Our application
domain in this paper is Computational Solid Mechanics
(CSM), but the approach is widely applicable, for example
to the important class of saddlepoint problems arising in
Computational Fluid Dynamics (CFD).
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1.3 Related Work

We have surveyed co-processor integration in commodity
clusters in more detail in Section 1 of a previous publica-
tion (Göddeke et al., 2007b).

Erez et al. (2007) present a general framework and eval-
uation scheme for irregular scientific applications (such as
Finite Element computations) on stream processors and
architectures like ClearSpeed, Cell BE and Merrimac. Se-
quoia (Fatahalian et al., 2006) presents a general frame-
work for portable data parallel programming of systems
with deep, possibly heterogeneous, memory hierarchies,
which can also be applied to a GPU-cluster. Our work
distribution is similar in spirit, but more specific to PDE
problems and more diverse on the different memory levels.

GPU-enhanced systems have traditionally been de-
ployed for parallel rendering (Humphreys et al., 2002;
van der Schaaf et al., 2006) and scientific visualisa-
tion (Kirchner et al., 2003; Nirnimesh et al., 2007). One
of the largest examples is ‘gauss’, a 256 node cluster in-
stalled by GraphStream at Lawrence Livermore National
Laboratory (GraphStream, Inc., 2006). Several parallel
non-graphics applications have been ported to GPU clus-
ters. Fan et al. (2004) present a parallel GPU implementa-
tion of flow simulation using the Lattice Boltzmann model.
Their implementation is 4.6 times faster than an SSE-
optimised CPU implementation, and in contrast to FEM,
LBM typically does not suffer from reduced precision.
Stanford’s Folding@Home distributed computing project
has deployed a dual-GPU 16 node cluster achieving speed-
ups of 40 over highly tuned SSE kernels (Owens et al.,
2008). Recently, GPGPU researchers have started to inves-
tigate the benefits of dedicated GPU-based HPC solutions
like NVIDIA’s Tesla (2008) or AMD’s FireStream (2008)
technology, but published results usually do not exceed
four GPUs (see for example the VMD code by Stone et
al. in the survey paper by Owens et al. (2008)).

An introduction to GPU computing and programming
aspects is clearly beyond the scope of this paper. For more
details, we refer to excellent surveys of techniques, appli-
cations and concepts, and to the GPGPU community web-
site (Owens et al., 2008, 2007; GPGPU, 2004–2008).

1.4 Paper Overview

In Section 2 the theoretical background of solid mechanics
in the context of this paper is presented, while our math-
ematical and computational solution strategy is described
in Section 3. In Section 4 we revisit our minimally inva-
sive approach to integrate GPUs as co-processors in the
overall solution process without changes to the application
code. We present our results in three different categories:
In Section 5 we show that the restriction of the GPU to
single precision arithmetic does not affect the accuracy of
the computed results in any way, as a consequence of our
solver design. Weak scalability is demonstrated on up to
64 nodes and half a billion unknowns in Section 6. We
study the performance of the accelerated solver scheme in

Section 7 in view of absolute timings and the strong scal-
ability effects introduced by the co-processor. Section 8
summarises the paper and briefly outlines future work.

For an accurate notation of bandwidth transfer rates
given in metric units (e.g. 8 GB/s) and memory capacity
given in binary units (e.g. 8 GiB) we use the International
standard IEC60027-2 in this paper: G= 109, Gi= 230 and
similar for Ki, Mi.

2 COMPUTATIONAL SOLID MECHANICS

In Computational Solid Mechanics (CSM) the deforma-
tion of solid bodies under external loads is examined.
We consider a two-dimensional body covering a domain
Ω̄ = Ω ∪ ∂Ω, where Ω is a bounded, open set with bound-
ary Γ = ∂Ω. The boundary is split into two parts: the
Dirichlet part ΓD where displacements are prescribed and
the Neumann part ΓN where surface forces can be applied
( ΓD ∩ ΓN = ∅ ). Furthermore the body can be exposed to
volumetric forces, e. g. gravity. We treat the simple, but
nevertheless fundamental, model problem of elastic, com-
pressible material under static loading, assuming small de-
formations. We use a formulation where the displacements

u(x) =
(

u1(x), u2(x)
)T

of a material point x ∈ Ω̄ are the
only unknowns in the equation. The strains can be defined

by the linearised strain tensor εij = 1
2

(

∂ui

∂xj
+

∂uj

∂xi

)

, i, j =

1, 2, describing the linearised kinematic relation between
displacements and strains. The material properties are re-
flected by the constitutive law, which determines a relation
between the strains and the stresses. We use Hooke’s law
for isotropic elastic material, σ = 2µε + λ tr(ε)I, where
σ denotes the symmetric stress tensor and µ and λ are
the so-called Lamé constants, which are connected to the
Young modulus E and the Poisson ratio ν as follows:

µ =
E

2(1 + ν)
, λ =

Eν

(1 + ν)(1 − 2ν)
(1)

The basic physical equations for problems of solid me-
chanics are determined by equilibrium conditions. For a
body in equilibrium, the inner forces (stresses) and the
outer forces (external loads f) are balanced:

−divσ = f , x ∈ Ω.

Using Hooke’s law to replace the stress tensor, the problem
of linearised elasticity can be expressed in terms of the
following elliptic boundary value problem, called the Lamé
equation:

−2µ div ε(u) − λ grad div u = f , x ∈ Ω (2a)

u = g, x ∈ ΓD (2b)

σ(u) · n = t, x ∈ ΓN (2c)

Here, g are prescribed displacements on ΓD, and t are given
surface forces on ΓN with outer normal n. For details on
the elasticity problem, see for example Braess (2001).
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3 SOLUTION STRATEGY

To solve the elasticity problem, we use FeastSolid, an
application built on top of Feast, our toolkit providing Fi-
nite Element discretisations and corresponding optimised
parallel multigrid solvers for PDE problems. In Feast, the
discretisation is closely coupled with the domain decompo-
sition for the parallel solution: The computational domain
Ω̄ is covered with a collection of quadrilateral subdomains
Ω̄i. The subdomains form an unstructured coarse mesh
(cf. Figure 8 in Section 7), and are hierarchically refined
so that the resulting mesh is used for the discretisation
with Finite Elements. Refinement is performed such as to
preserve a logical tensorproduct structure of the mesh cells
within each subdomain. Consequently, Feast maintains a
clear separation of globally unstructured and locally struc-
tured data. This approach has many advantageous prop-
erties which we outline in this Section and Section 4. For
more details on Feast, we refer to Turek et al. (2003) and
Becker (2007).

3.1 Parallel Multigrid Solvers in FEAST

For the problems we are concerned with in the (wider) con-
text of this paper, multigrid methods are obligatory from
a numerical point of view. When parallelising multigrid
methods, numerical robustness, numerical efficiency and
(weak) scalability are often contradictory properties: A
strong recursive coupling between the subdomains, for in-
stance by the direct parallelisation of ILU-like smoothers,
is advantageous for the numerical efficiency of the multi-
grid solver. However, such a coupling increases the com-
munication and synchronisation requirements significantly
and is therefore bound to scale badly. To alleviate this
high communication overhead, the recursion is usually re-
laxed to the application of local smoothers that act on each
subdomain independently. The contributions of the sepa-
rate subdomains are combined in an additive manner only
after the smoother has been applied to all subdomains,
without any data exchange during the smoothing. The
disadvantage of such a (in terms of domain decomposi-
tion) block-Jacobi coupling is that typical local smoothers
are usually not powerful enough to treat, for example, lo-
cal anisotropies. Consequently, the numerical efficiency of
the multigrid solver is dramatically reduced (Smith et al.,
1996; Turek et al., 2003).

To address these contradictory needs, Feast employs a
generalised multigrid domain decomposition concept. The
basic idea is to apply a global multigrid algorithm which
is smoothed in an additive manner by local multigrids act-
ing on each subdomain independently. In the nomencla-
ture of the previous paragraph, this means that the ap-
plication of a local smoother translates to performing few
iterations – in the experiments in this paper even only
one iteration – of a local multigrid solver, and we can use
the terms local smoother and local multigrid synonymously.
This cascaded multigrid scheme is very robust as local ir-
regularities are ‘hidden’ from the outer solver, the global

multigrid provides strong global coupling (as it acts on all
levels of refinement), and it exhibits good scalability by
design. Obviously, this cascaded multigrid scheme is pro-
totypical in the sense that it can only show its full strength
for reasonably large local problem sizes and ill-conditioned
systems (Becker, 2007).

Global Computations

Instead of keeping all data in one general, homogeneous
data structure, Feast stores only local FE matrices and
vectors, corresponding to the subdomains. Global matrix-
vector operations are performed by a series of local oper-
ations on matrices representing the restriction of the ‘vir-
tual’ global matrix on each subdomain. These operations
are directly followed by exchanging information via MPI
over the boundaries of neighbouring subdomains, which
can be implemented asynchronously without any global
barrier primitives. There is only an implicit subdomain
overlap, the domain decomposition is implemented via spe-
cial boundary conditions in the local matrices (Becker,
2007). Several subdomains are typically grouped into one
MPI process, exchanging data via shared memory.

To solve the coarse grid problems of the global multigrid
scheme, we use a tuned direct LU decomposition solver
from the UMFPACK library (Davis, 2004) which is exe-
cuted on the master process while the compute processes
are idle.

Local Computations

Finite Element codes are known to be limited in perfor-
mance by memory latency in case of many random memory
accesses, and memory bandwidth otherwise, rather than
by raw compute performance. This is in general known
as the memory wall problem. Feast tries to alleviate this
problem by exploiting the logical tensorproduct structure
of the subdomains. Independently on each grid level, we
enumerate the degrees of freedom in a line-wise fashion
such that the local FE matrices corresponding to scalar
equations exhibit a band structure with fixed band off-
sets. Instead of storing the matrices in a CSR-like for-
mat which implies indirect memory access in the compu-
tation of a matrix-vector multiplication, we can store each
band (with appropriate offsets) individually, and perform
matrix-vector multiplication with direct access to memory
only. The asymptotic performance gain of this approach
is a factor of two (one memory access per matrix entry
instead of two), and usually higher in practice as block
memory transfers and techniques for spatial and temporal
locality can be employed instead of excessive pointer chas-
ing and irregular memory access patterns. The explicit
knowledge of the matrix structure is analogously exploited
not only for parallel linear algebra operations, but also,
for instance, in the design of highly tuned, very powerful
smoothing operators (Becker, 2007).

The logical tensorproduct structure of the underlying
mesh has an additional important advantage: Grid transfer
operations during the local multigrid can be expressed as
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matrices with constant coefficients (Turek, 1999), and we
can directly use the corresponding stencil values without
the need to store and access a matrix expressing an arbi-
trary transfer function. This significantly increases perfor-
mance, as grid transfer operations are reduced to efficient
vector scaling, reduction and expansion operations.

The small local coarse grid problems are solved by per-
forming few iterations of a preconditioned conjugate gra-
dient algorithm.

In summary, Figure 1 illustrates a typical solver
in Feast. The notation ‘local multigrid (V 4+4, S,
CG)’ denotes a multigrid solver on a single subdo-
main, configured to perform a V cycle with 4 pre- and
postsmoothing steps with the smoothing operator S ∈
{Jacobi, Gauss-Seidel, ILU, . . .}, using a conjugate gradi-
ent algorithm on the coarsest grid. To improve solver ro-
bustness, the global multigrid solver is used as a precon-
ditioner to a Krylov subspace solver such as BiCGStab
which executes on the global fine grid. As a precondi-
tioner, the global multigrid performs exactly one iteration
without convergence control.

Everything up to the local multigrid executes on the
CPUs in double precision. The computational precision of
the local multigrid may vary depending on the architec-
ture.

global BiCGStab

preconditioned by
global multigrid (V 1+1)
additively smoothed by

for all Ω̄i: local multigrid (V 4+4, S, CG)

coarse grid solver: LU decomposition

Figure 1: Illustration of the family of cascaded multigrid
solver schemes in Feast. The accelerable parts of the
algorithm (cf. Section 4) are highlighted.

We finally emphasise that the entire concept – com-
prising domain decomposition, solver strategies and data
structures – is independent of the spatial dimension of the
underlying problem. Implementation of 3D support is te-
dious and time-consuming, but does not pose any principal
difficulties.

3.2 Scalar and Vector-Valued Problems

The guiding idea to treating vector-valued problems with
Feast is to rely on the modular, reliable and highly op-
timised scalar local multigrid solvers on each subdomain,
in order to formulate robust schemes for a wide range of
applications, rather than using the best suited numerical
scheme for each application and go through the optimisa-
tion and debugging process over and over again. Vector-
valued PDEs as they arise for instance in solid mechan-
ics (CSM) and fluid dynamics (CFD) can be rearranged
and discretised in such a way that the resulting discrete
systems of equations consist of blocks that correspond to

scalar problems (for the CSM case see beginning of Sec-
tion 3.3). Due to this special block-structure, all opera-
tions required to solve the systems can be implemented
as a series of operations for scalar systems (in particular
matrix-vector operations, dot products and grid transfer
operations in multigrid), taking advantage of the highly
tuned linear algebra components in Feast. To apply a
scalar local multigrid solver, the set of unknowns corre-
sponding to a global scalar equation is restricted to the
subset of unknowns that correspond to the specific subdo-
main.

To illustrate the approach, consider a matrix-vector mul-
tiplication y = Ax with the exemplary block structure:

(

y1

y2

)

=

(

A11 A12

A21 A22

) (

x1

x2

)

As explained above, the multiplication is performed as a
series of operations on the local FE matrices per subdo-
main Ω̄i, denoted by superscript (·)(i). The global scalar
operators, corresponding to the blocks in the matrix, are
treated individually:

For j = 1, 2, do

1. For all Ω̄i, compute y
(i)
j = A

(i)
j1 x

(i)
1 .

2. For all Ω̄i, compute y
(i)
j = y

(i)
j + A

(i)
j2 x

(i)
2 .

3. Communicate entries in yj corresponding to the
boundaries of neighbouring subdomains.

3.3 Solving the Elasticity Problem

In order to solve vector-valued linearised elasticity prob-
lems with the application FeastSolid using the Feast

intrinsics outlined in the previous paragraphs, it is essen-
tial to order the resulting degrees of freedom correspond-
ing to the spatial directions, a technique called separate
displacement ordering (Axelsson, 1999). In the 2D case
where the unknowns u = (u1, u2)

T correspond to displace-
ments in x and y-direction, rearranging the left hand side
of equation (2a) yields:

−
(

(2µ + λ)∂xx + µ∂yy (µ + λ)∂xy

(µ + λ)∂yx µ∂xx + (2µ + λ)∂yy

)(

u1

u2

)

=
(

f1

f2

)

(3)

We approximate the domain Ω̄ by a collection of sev-
eral subdomains Ω̄i, each of which is refined to a logical
tensorproduct structure as described in Section 3.1. We
consider the weak formulation of equation (3) and apply a
Finite Element discretisation with conforming bilinear ele-
ments of the Q1 space. The vectors and matrices resulting
from the discretisation process are denoted with upright
bold letters, such that the resulting linear equation system
can be written as Ku = f . Corresponding to represen-
tation (3) of the continuous equation, the discrete system
has the following block structure,

(

K11 K12

K21 K22

) (

u1

u2

)

=

(

f1
f2

)

, (4)
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where f = (f1, f2)
T is the vector of external loads and

u = (u1,u2)
T the (unknown) coefficient vector of the

FE solution. The matrices K11 and K22 of this block-
structured system correspond to scalar elliptic operators
(cf. Equation (3)). It is important to note that (in the
domain decomposition sense) this also holds for the re-
striction of the equation to each subdomain Ω̄i, denoted

by K
(i)
jj u

(i)
j = f

(i)
j , j = 1, 2. Consequently, due to the

local generalised tensor-product structure, Feast’s tuned
solvers can be applied on each subdomain, and as the sys-
tem as a whole is block-structured, the general solver (see
Figure 1) is applicable. Note, that in contrast to our previ-
ous work with the Poisson problem (Göddeke et al., 2007a),
the scalar elliptic operators appearing in equation (3) are
anisotropic. The degree of anisotropy aop depends on the
material parameters (see Equation (1)) and is given by

aop =
2µ + λ

µ
=

2 − 2ν

1 − 2ν
. (5)

We illustrate the details of the solution process with a
basic iteration scheme, a preconditioned defect correction
method:

uk+1 = uk + ωK̃−1
B

(f − Kuk) (6)

This iteration scheme acts on the global system (4) and
thus couples the two sets of unknowns u1 and u2. The
block-preconditioner K̃B explicitly exploits the block struc-
ture of the matrix K. We use a block-Gauss-Seidel precon-
ditioner K̃BGS in this paper (see below). One iteration of
the global defect correction scheme consists of the following
three steps:

1. Compute the global defect (cf. Section 3.2):
(

d1

d2

)

=

(

K11 K12

K21 K22

) (

uk
1

uk
2

)

−

(

f1
f2

)

2. Apply the block-preconditioner

K̃BGS :=

(

K11 0

K21 K22

)

by approximately solving the system K̃BGSc = d. This
is performed by two scalar solves per subdomain and
one global (scalar) matrix-vector multiplication:

(a) For each subdomain Ω̄i, solve K
(i)
11 c

(i)
1 = d

(i)
1 .

(b) Update RHS: d2 = d2 − K21c1.

(c) For each subdomain Ω̄i, solve K
(i)
22 c

(i)
2 = d

(i)
2 .

3. Update the global solution with the (eventually
damped) correction vector: uk+1 = uk + ωc

Instead of the illustrative defect correction scheme out-
lined above, our full solver is a multigrid iteration in a
(V 1+1) configuration. The procedure is identical: Dur-
ing the restriction phase, global defects are smoothed by
the block-Gauss-Seidel approach, and during the prolonga-
tion phase, correction vectors are treated analogously. Fig-
ure 2 summarises the entire scheme. Note the similarity to

global BiCGStab

preconditioned by
global multigrid (V 1+1)
additively smoothed (block-Gauss-Seidel) by

for all Ω̄i: solve K
(i)
11 c

(i)
1 = d

(i)
1 by

local multigrid (V 4+4, Jacobi, CG)

update RHS: d2 = d2 − K21c1

for all Ω̄i: solve K
(i)
22 c

(i)
2 = d

(i)
2 by

local multigrid (V 4+4, Jacobi, CG)

coarse grid solver: LU-decomposition

Figure 2: Our solution scheme for the elasticity equations.
The accelerable parts of the algorithm (cf. Section 4) are
highlighted.

the general template solver in Figure 1, and that this spe-
cialised solution scheme is entirely constructed from Feast

intrinsics.

4 CO-PROCESSOR INTEGRATION

4.1 Minimally Invasive Integration

Figure 3: Interaction between FeastSolid, Feast and
FeastGPU.

Figure 3 illustrates how the elasticity application
FeastSolid, the core toolbox Feast and the GPU ac-
celerated library FeastGPU interact. The control flow
of the global recursive multigrid solvers (see Figure 2)
is realised via one central interface, which is responsible
for scheduling both tasks and data. FeastGPU adds
GPU support, by replacing the local multigrid solvers (see
Figure 2) that act on the individual subdomains, with a
GPU implementation. Then, the GPU serves as a local
smoother to the outer multigrid (cf. Section 3.1). The
GPU smoother implements the same interface as the ex-
isting local CPU smoothers, consequently, comparatively
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few changes in Feast’s solver infrastructure were required
for their integration, e.g. changes to the task scheduler and
the parser for parameter files. Moreover, this integration is
completely independent of the type of accelerator we use,
and we will explore other types of hardware in future work.
For more details on this minimally invasive hardware in-
tegration into established code we refer to Göddeke et al.
(2007a).

Assigning the GPU the role of a local smoother means
that there is a considerable amount of work on the GPU,
before data must be transferred back to the host to be sub-
sequently communicated to other processes via MPI. Such
a setup is very advantageous for the application of hard-
ware accelerators in general, because the data typically
has to travel through a bandwidth bottleneck (1-4 GB/s
PCIe compared to more than 80 GB/s video memory) to
the accelerator, and this overhead can only be amortised
by a faster execution time if there is enough local work.
In particular, this bottleneck makes it impossible to ac-
celerate the local portions of global operations, e. g. de-
fect calculations. The impact of reduced precision on the
GPU is also minimised by this approach, as it can be in-
terpreted as a mixed precision iterative refinement scheme,
which is well-suited for the kind of problems we are deal-
ing with (Göddeke et al., 2007c). We analyse the achieved
accuracy in detail in Section 5.

4.2 Process Scheduling

In a homogeneous cluster environment like in our case
where each node has exactly the same (potentially inter-
nally heterogeneous) specification, the assignment of MPI
processes to the nodes is easy to manage. In the heteroge-
neous case where the configuration of the individual nodes
differs, we are faced with a complicated multidimensional
dynamic scheduling problem which we have not addressed
yet. For instance, jobs can be differently sized depending
on the specification of the nodes, the accumulated transfer
and compute performance of the graphics cards compared
to the CPUs etc. For the tests in this paper, we use static
partitions and only modify Feast’s scheduler to be able
to distribute jobs based on hard-coded rules.

An example of such a hard-coded rule is the dynamic
rescheduling of small problems (less than 2000 unknowns),
for which the configuration overhead would be very high,
from the co-processor back to the CPU, which executes
them much faster from its cache. For more technical details
on this rule and other tradeoffs, we refer to our previous
publication (Göddeke et al., 2007a).

4.3 FeastGPU - The GPU Accelerated Library

While the changes to Feast that enable the co-processor
integration are hardware independent, the co-processor li-
brary itself is hardware specific and has to deal with the
peculiarities of the programming languages and develop-
ment tools. In case of the GPU being used as a scientific
co-processor in the cluster, FeastGPU implements the

data transfer and the multigrid computation.
The data transfer from the CPU to the GPU and vice

versa seems trivial at first sight. However, we found this
part to be most important to achieve good performance. In
particular it is crucial to avoid redundant copy operations.
For the vector data, we perform the format conversion from
double to single precision on the fly during the data trans-
fer of the local right hand side vector (the input to the
smoother); and from single to double precision during the
accumulation of the smoothing result from the GPU with
the previous iterate on the CPU. This treatment minimises
the overhead and in all our experiments we achieved best
performance with this approach. For the matrix data, we
model the GPU memory as a large L3 cache with either
automatic or manual prefetching. For graphics cards with
a sufficient amount of video memory (≥512MiB), we copy
all data into driver-controlled memory in a preprocessing
step and rely on the graphics driver to page data in and
out of video memory as required. For older hardware with
limited video memory (≤128MiB), we copy all matrix data
associated with one subdomain manually to the graphics
card, immediately before using it. Once the data is in video
memory, one iteration of the multigrid solver can execute
on the GPU without further costly transfers to or from the
main memory.

The implementation of the multigrid scheme relies
on various operators (matrix-vector multiplications, grid
transfers, coarse grid solvers, etc.) collected in the GPU
backend. We use the graphics-specific APIs OpenGL and
Cg for the concrete implementation of these operators. In
case of a basic V-cycle with a simple Jacobi smoother this
is not a difficult task on DirectX9c capable GPUs, for de-
tails see papers by Bolz et al. (2003) and Goodnight et al.
(2003). In our implementation we can also use F- and
W-cycles in the multigrid scheme, but this is a feature of
the control flow that executes on the CPU and not the
GPU. It is a greater challenge to implement complex local
smoothers, like ADI-TRIGS that is used in Section 5.3 on
the CPU, because of the sequential dependencies in the
computations. The new feature of local user-controlled
storage in NVIDIA’s G80 architecture accessible through
the CUDA programming environment (NVIDIA Corpora-
tion, 2007), will help in resolving such dependencies in par-
allel. But before designing more optimised solutions for a
particular GPU-generation, we want to further evaluate
the minimally invasive hardware integration into existing
code on a higher level.

5 ACCURACY STUDIES

On the CPU, we use double precision exclusively. An im-
portant benefit of our solver concept and corresponding in-
tegration of hardware acceleration is that the restriction of
the GPU to single precision has no effect on the final accu-
racy and the convergence of the global solver. To verify this
claim, we perform three different numerical experiments
and increase the condition number of the global system
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and the local systems. As we want to run the experiments
for the largest problem sizes possible, we use an outdated
cluster named DQ, of which 64 nodes are still in operation.
Unfortunately, this is the only cluster with enough nodes
available to us at the time of writing. Each node contains
one NVIDIA Quadro FX 1400 GPU with only 128MiB
of video memory; these boards are three generations old.
As newer hardware generations provide better compliance
with the IEEE 754 single precision standard, the accuracy
analysis remains valid for better GPUs.

GPUs that support double precision in hardware are al-
ready becoming available (AMD Inc., 2008). However, by
combining the numerical experiments in this Section with
the performance analysis in Section 7.2, we demonstrate
that the restriction to single precision is actually a per-
formance advantage. In the long term, we expect single
precision to be 4x faster for compute-intensive applications
(transistor count) and 2x faster for data-intensive applica-
tions (bandwidth).

Unless otherwise indicated, in all tests we configure the
solver scheme (cf. Figure 2) to reduce the initial residu-
als by 6 digits, the global multigrid performs one pre- and
postsmoothing step in a V cycle, and the inner multigrid
uses a V cycle with four smoothing steps. As explained in
Section 4.1, we accelerate the plain CPU solver with GPUs
by replacing the scalar, local multigrid solvers with their
GPU counterparts, otherwise, the parallel solution scheme
remains unchanged. We statically schedule 4 subdomains
per cluster node, and refine each subdomain 7-10 times. A
refinement level of L yields 2(2L+1)2 DOF (degrees of free-
dom) per subdomain, so the maximum problem size in the
experiments in this Section is 512Mi DOF for refinement
level L = 10.

5.1 Analytic Reference Solution

This numerical test uses a unitsquare domain, covered by
16, 64 or 256 subdomains which are refined 7 to 10 times.
We define a parabola and a sinusoidal function for the
x and y displacements, respectively, and use these func-
tions and the elasticity equation (2) to prescribe a right
hand side for the global system, so that we know the exact
analytical solution. This allows us to compare the L2 er-
rors (integral norm of the difference between computed FE
function and analytic solution), which according to FEM
theory are reduced by a factor of 4 (h2) in each refinement
step (Braess, 2001).

Figure 4 illustrates the main results. We first note that
all configurations require exactly four iterations of the
global solver. Most importantly, the differences between
CPU and GPU runs are in the noise, independent of the
level of refinement or the size of the problem. In fact, in the
figure the corresponding CPU and GPU results are plot-
ted directly on top of each other. We nevertheless prefer
illustrating these results with a figure instead of a table,
because it greatly simplifies the presentation: Looking at
the graphs vertically, we see the global error reduction by
a factor of 4 with increasing level of refinement L. The
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Figure 4: Error reduction of the elasticity solver in the L2

norm.

independence of the subdomain distribution and the level
of refinement can be seen horizontally, for instance 16 sub-
domains on level 8 are equivalent to 64 level-7 subdomains.

5.2 Global Ill-conditioning: Cantilever Beam

Configuration

Figure 5: Computed displacements and von Mises stresses
for the BEAM configuration with anisotropy 1:16 (top) and
1:4 (bottom).

The cantilever beam test (BEAM) is a standard bench-
mark configuration in CSM, and is known to be difficult
to solve numerically (Braess, 2001; Ovtchinnikov and Xan-
this, 1998). A long, thin beam is horizontally attached at
one end and the gravity force pulls it uniformly in the y-
direction (see Figure 5). We partition the geometry in such
a way that the number of compute nodes is proportional
to the length of the beam, and test two configurations:
one consisting of 8 × 2 square subdomains (distributed
to 4 nodes), the other of 32 × 2 square subdomains (16
nodes), resulting in a global domain anisotropy of 4:1 and
16:1, respectively, and a maximum problem size of 32Mi
and 128Mi DOF, respectively. This high degree of domain
anisotropy in conjunction with the large ratio between free
Neumann boundary and fixed Dirichlet boundary (only
the narrow side at one end is fixed) and the high level
of refinement results in a very ill-conditioned global sys-
tem (Ovtchinnikov and Xanthis, 1998; Axelsson, 1999). To
illustrate this, we first use a simple unpreconditioned con-
jugate gradient method whose iteration count grows with
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aniso04 Iterations Volume y-Displacement
refinement L CPU GPU CPU GPU CPU GPU

8 4 4 1.6087641E-3 1.6087641E-3 -2.8083499E-3 -2.8083499E-3
9 4 4 1.6087641E-3 1.6087641E-3 -2.8083628E-3 -2.8083628E-3
10 4.5 4.5 1.6087641E-3 1.6087641E-3 -2.8083667E-3 -2.8083667E-3

aniso16

8 6 6 6.7176398E-3 6.7176398E-3 -6.6216232E-2 -6.6216232E-2
9 6 5.5 6.7176427E-3 6.7176427E-3 -6.6216551E-2 -6.6216552E-2
10 5.5 5.5 6.7176516E-3 6.7176516E-3 -6.6217501E-2 -6.6217502E-2

Table 1: Iterations and computed results for the BEAM configuration with anisotropy of 1:4 (top) and 1:16 (bottom).
Differences are highlighted in bold face.

the condition number of the system and is thus a suitable
indicator thereof.

For small problem sizes we solve the two beam configu-
rations described above, as well as a third variant – a very
short ‘beam’ with global ‘anisotropy’ of 1:1. The latter
configuration is used exclusively in this test to emphasise
the dependency on the global anisotropy. Figure 6 shows
the iteration numbers of the conjugate gradient solver for
varying degrees of freedom. Reading the graphs vertically
(for a fixed number of DOF), shows a significant rise of iter-
ation numbers due to the increasing degree of anisotropy
(note that the y-axis is scaled logarithmically). For the
isotropic and mildly anisotropic beam we can clearly ob-
serve that one grid refinement doubles the number of it-
erations, which is the expected behaviour of CG. For the
strongly anisotropic beam, however, this is no longer true
on the highest refinement levels, where the precise itera-
tion counts are 8389, 21104 and 47522, showing a factor
which is clearly greater than 2.
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Figure 6: Illustration of the ill-conditioning: BEAM configu-
ration with a simple CG solver. Note: Logscale on y-axis.

Table 1 contains the results we achieved with our multi-
grid solver for the cantilever beam configuration. The
fractional iteration count is a consequence of the global
BiCGStab solver permitting an ‘early exit’ after the first of
the two applications of the preconditioner (an entire par-
allel multigrid iteration), if the scheme has already con-
verged. As there exists no analytic reference solution in
this case, we use the displacement (in y-direction) of the
midpoint of the free side of the deformed beam and its vol-

ume as features of the solutions to compare the computed
CPU and GPU results, for increasing levels of refinement
L and corresponding problem sizes.

We see no accuracy difference except for floating point
noise between the CPU and the GPU configurations, al-
though the CPU configuration uses double precision every-
where and the GPU configuration solves the local multigrid
in single precision. This is a very important advantage of
our minimally invasive co-processor acceleration and cor-
responding solver concept: As the global anisotropies and
ill-conditioning are entirely hidden from the local multi-
grids (which see locally isotropic problems on their respec-
tive subdomains), the potentially negative impact caused
by the limited precision of the GPUs does not come into
play.

Overall, we see the expected rise of iteration numbers
when elongating the beam and thus increasing the sys-
tem’s condition number. But apart from some granularity
effects that are inevitable within our solver concept, we
see good level independence and, in particular, identical
convergence of the CPU and the GPU variants.

5.3 Local Anisotropies: Towards Incompressible

Material

While the previous subsection examined how our solver
concept performs for ill-conditioned system matrices due
to global domain anisotropies, we now analyse the im-
pact of local anisotropies. For this test we use a stan-
dard benchmark configuration in CSM which is often used
for testing Finite Element formulations in the context of
finite deformations (Reese et al., 1999): A rectangular
block is vertically compressed by a surface load. To in-
duce local anisotropies, we increase the Poisson ratio ν
of the material, which according to Equation (5) changes
the anisotropy of the elliptic operators in Equation (3).
Physically, this means that the material becomes more in-
compressible. Since we use a pure displacement FE for-
mulation, the value of ν must be bounded away from 0.5,
otherwise the effect of volume locking would hinder conver-
gence to the correct solution (Braess, 2001). Equation (1)
shows that the critical parameter λ tends to infinity for
ν → 0.5. As we only have a simple Jacobi smoother avail-
able on the GPU, we have to increase the number of Jacobi
smoothing steps of the inner solver (the outer solver’s con-
figuration remains unchanged) to ensure convergence. All
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L V-4+4 Jacobi V-8+8 Jacobi V-2+2 ADI-TRIGS

nu=0.40 Iters. Time/Iters. Iters. Time/Iters. Iters. Time/Iters.
aop = 6 CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU

8 4 4 3.3 4.9 3.5 3.5 4.5 5.7 3.5 n/a 3.6 n/a
9 4 4 11.1 11.2 3.5 3.5 15.9 13.4 3.5 n/a 12.0 n/a
10 4 4 48.2 41.2 3.5 3.5 69.7 52.2 3.5 n/a 49.3 n/a

nu=0.45 Iters. Time/Iters. Iters. Time/Iters. Iters. Time/Iters.
aop = 11 CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU

8 4.5 4.5 3.2 4.9 4.5 4.5 4.3 5.5 4.5 n/a 3.4 n/a
9 5 5 11.0 11.1 4.5 4.5 15.6 13.2 4 n/a 11.8 n/a
10 5 5 48.1 41.1 4.5 4.5 69.3 52.1 4 n/a 49.4 n/a

nu=0.48 Iters. Time/Iters. Iters. Time/Iters. Iters. Time/Iters.
aop = 26 CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU

8 7.5 7.5 3.0 4.6 6.5 6.5 4.1 5.5 6.5 n/a 3.1 n/a
9 7.5 7.5 10.8 11.0 6.5 6.5 15.4 13.5 6.5 n/a 11.5 n/a
10 7 7 47.9 42.1 6.5 6.5 69.2 52.4 6.5 n/a 49.0 n/a

Table 2: Convergence behaviour of the CPU and the GPU solver with increasing degree of operator anisotropy. To
concentrate on general tendencies, the timings are normalised by the number of iterations.

experiments are again performed on 64 nodes of the DQ
cluster, yielding a maximum problem size of 512Mi DOF
for the highest refinement level (L = 10). As this cluster
is outdated and its GPUs come from an even older tech-
nology generation than its CPUs, only changes in relative
timings (CPU/GPU) are relevant.

For clarity, Table 2 does not contain accuracy results,
but we have confirmed that in this series of tests we get
identical results (up to numerical noise) for the CPU and
the GPU just as in the previous two experiments.

Several important observations can be made from the
data listed in Table 2. First, as the increasing value of
ν affects the complete system (3), the number of solver
iterations rises accordingly. Second, the number of itera-
tions required to solve the system is reduced by increased
local smoothing (the anisotropy of the elliptic operators is
hidden better from the outer solver), and occasional granu-
larity effects disappear. Finally, the accelerated solver be-
haves identically to the unaccelerated one, in other words,
even if there are effects due to the GPU’s reduced pre-
cision, they are completely encapsulated from the outer
solver and do not influence its convergence. Looking at the
(normalised) timings in detail, we see that on the CPU,
performing twice as many smoothing steps in the inner
multigrid results in a 40-50% increase in runtime for the
highest level of refinement, while on the GPU, only 20-
25% more time is required. There are two reasons for this
behaviour: On the CPU, the operations for high levels of
refinement are performed completely out of cache, while on
the GPU, full bandwidth is only available to the applica-
tion for large input sizes, as the overhead costs associated
with launching compute kernels is less dominant. Second,
as the amount of video memory on these outdated GPUs is
barely large enough to hold all matrix data associated with
one subdomain, the high cost of paging data in and out of
memory is amortised much better when more operations
are performed on the same data.

To verify that our test results are not influenced by the
weakness of the Jacobi smoother, we perform all tests again
with a very powerful alternating directions tridiagonal
Gauss-Seidel smoother (ADI-TRIGS, see Becker (2007)),
for which two smoothing steps (one in each direction) suf-

fice. This powerful smoother is currently only available on
the CPU. Table 2 shows the expected results: The type of
the inner smoother has no effect on the outer convergence
behaviour, as long as the inner smoother is strong enough
to resolve the local operator anisotropy. This justifies our
‘emulation’ of a stronger smoother on the GPU by per-
forming eight smoothing steps with the Jacobi. Since in
general not all local problems can be resolved with more
smoothing steps of the Jacobi, the GPU will also need to
be enhanced with more powerful smoothers in the future
(cf. Section 4.3).

We finally note that a similar type of anisotropy occurs
in fluid dynamics simulations, where it is often necessary
to resolve boundary layers more accurately than the inside
of the flow domain. The resulting high element aspect ra-
tios typically influence the condition number of the system
matrix comparably to anisotropies in the elliptic operators.

6 WEAK SCALABILITY

In this Section, we analyse weak scalability of our GPU-
enhanced solver in comparison to the unaccelerated case.
The configurations used in these tests comprise two varia-
tions of the standard benchmark test case in CSM (see Sec-
tion 5.3), modified so that each subdomain remains square
when doubling the number of subdomains. We increase the
number of nodes (and hence, DOFs) from 4, 8, 16, 32 to
64 (32Mi to 512Mi, L = 10). As we do not have access to
enough nodes with modern GPUs, we had to execute the
runs on the outdated DQ cluster described in the previous
Section.

Figure 7 demonstrates good weak scalability of our ap-
proach for both the accelerated and the unaccelerated
solver. The relatively poor performance gain of the GPUs
is attributed to the outdated GPUs in the DQ cluster, in
particular, their small amount of local memory can only
hold the data associated with a single subdomain, and con-
sequently, the entire matrix data is paged out from video
memory for each subdomain.

As mentioned in Section 3.1, the parallel computation is
completely decoupled, data is exchanged asynchronously
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Figure 7: Weak scalability

only between neighbouring subdomains. The only excep-
tion is the solution of the global coarse grid problem of
the data-parallel multigrid solver, which we perform on
the master node while the compute nodes are idle. The
size of this coarse grid problem depends only on the num-
ber of subdomains (to be more precise, on the number of
DOF implied by the coarse grid formed by the collection of
subdomains) and is in particular independent of the level
of refinement and the number of parallel processes. Due
to the robustness of our solver, comparatively few global
iterations suffice. In accordance with similar approaches
(see, for example, Bergen et al. (2005)), we can safely con-
clude that the global coarse grid solver, which is the only
sequential part of the otherwise parallel execution, is not
the bottleneck in terms of weak scalability. As a concrete
example, the solution of the global coarse grid problems in
the scalability tests in Figure 7 contributes at most 3% to
the total runtime.

As previous experiments with the prototypical scalar
Poisson equation on up to 160 nodes resulted in equally
good scalability (Göddeke et al., 2007b), combining these
results we may argue that our heterogeneous solution ap-
proach for the more demanding application discussed in
this paper would also scale very well beyond 100 GPU
nodes.

7 PERFORMANCE STUDIES

We use 16 nodes of an advanced cluster – USC – to com-
pare the performance of the accelerated solver with the
unaccelerated case. Table 3 lists the relevant hardware
details.

We employ four configurations that are prototypical for
practical applications. Figure 8 shows the coarse grids,
the prescribed boundary conditions and the partitioning
for the parallel execution of each configuration. The BLOCK
configuration (Figure 8 (a)), as introduced in Section 5.3,
is a standard test case in CSM, a block of material is ver-
tically compressed by a surface load. The PIPE configu-

Node Graphics Card

AMD Opteron Santa Rosa NVIDIA Quadro FX5600
dual-core, 1.8 GHz 600 MHz,
2 MiB L2 cache max. 171 W

800 W power supply

8 GiB DDR2 667 1.5 GiB GDDR3
12.8 GB/s bandwidth 76.8 GB/s bandwidth

4x DDR InfiniBand PCIe bus
1.6 GB/s peak 4 GB/s peak

(0.8–1.2 GB/s benchmarked) (0.8–1.5 GB/s benchmarked)

Table 3: Hardware configuration of each node in the USC
cluster.

ration (Figure 8 (b)) represents a circular cross-section of
a pipe clamped in a bench vise. It is realised by loading
two opposite parts of the outer boundary by surface forces.
With the CRACK configuration (Figure 8 (c)) we simulate
an industrial test environment for assessing material prop-
erties. A workpiece with a slit is torn apart by some device
attached to the two holes. In this configuration the defor-
mation is induced by prescribed horizontal displacements
at the inner boundary of the holes, while the holes are
fixed in the vertical direction. For the latter two configu-
rations we exploit symmetries and consider only sections of
the real geometries. Finally, the STEELFRAME configuration
(Figure 8 (d)) models a section of a steel frame, which is
fixed at both ends and asymmetrically loaded from above.

Figure 8: Coarse grids, boundary conditions and static
partition into subdomains for the configurations (a) BLOCK,
(b) PIPE, (c) CRACK and (d) STEELFRAME.

In all tests we configure the solver scheme (cf. Figure 2)
to reduce the initial residuals by 6 digits, the global multi-
grid performs one pre- and postsmoothing step in a V
cycle, and the inner multigrid uses a V cycle with four
smoothing steps. We consider only the refinement level
L = 10 (128Mi DOF), and statically assign four subdo-
mains per node, such as to balance the amount of video
memory on the USC cluster with the total amount of mem-
ory available per node. The four subdomains per node are
either collected in one MPI process (called single), leaving
the second core of the Opteron CPUs idle, or distributed
to two MPI processes per node, each of which comprises
two subdomains (called dual). As we only have one GPU
per node, we perform GPU tests in a single configuration.
We could also run one large GPU process and one small
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Figure 9: Computed displacements and von Mises stress for the configurations used in the speed-up tests.

CPU process per node in parallel, but previous experiences
show that this is only feasible with a more advanced sched-
uler (Göddeke et al., 2007a). As explained in Section 4.1,
we accelerate the plain CPU solver with GPUs by replac-
ing the scalar, local multigrid solvers with their GPU coun-
terparts. Otherwise, the parallel solution scheme remains
unchanged. All computations on the CPUs are executed
in double precision.

7.1 Absolute Performance

Figure 9 shows the computed deformations of the four ge-
ometries and the von Mises stresses, which are an impor-
tant measure for predicting material failure in an object
under load. Both the accelerated and the unaccelerated
solver compute identical results, according to a compar-
ison of the displacement of selected reference points and
the volume of the deformed bodies.

Figure 10 depicts time measurements for the four con-
figurations. We measure the absolute time to solution for
the three scheduling schemes CPU-single, CPU-dual and
GPU-single. Consistently for all four configurations, the
accelerated solver is roughly 2.6 times faster than the un-
accelerated solver using only one MPI process per node,
and the speed-up reaches a factor of 1.6 if we schedule two
half-sized MPI processes per node. The Opterons in the
USC cluster have a very efficient memory subsystem, so
that the dual configuration runs 1.6 times faster than the
single configuration. But these absolute timings do not
tell the whole story, and favour the CPU in the CPU-dual

vs. GPU-single comparison. We investigate this effect fur-
ther in the following subsection.

7.2 Performance Analysis

One important benefit of our minimally invasive integra-
tion of hardware acceleration is that the heterogeneity is
encapsulated within the nodes, and the coarse-grained par-
allelism on the MPI level remains unchanged. Therefore,
the correct model to analyse the speed-up achieved by the
GPU is strong scalability within the node, as the addi-
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Figure 10: Execution times for the elasticity solver with
and without GPU acceleration.

tion of GPUs increases the available compute resources.
Consequently, the portions of the application dealing with
the coarse-grained parallelism constitute the ‘fixed’ part
of the solution process, as they are not accelerated. In
other words, the fraction of the execution time that can be
accelerated limits the achievable speed-up.

As the measured acceleration factors are consistent for
all four test configurations in the previous section, we per-
form the analysis only with the BLOCK configuration. To
separate the accelerable from the unaccelerable portions
of the local solution process, we instrumented the code
with a special timer Tlocal that measures the local multi-
grid solvers on each subdomain independently. Tlocal does
not include any stalls due to communication, but it does
include all data transfers between host and co-processor.
Table 4 additionally lists the total time to solution Ttotal

and the difference C := Ttotal − Tlocal, i. e.the time spent
in the outer solver, including MPI communication. This
data allows us to calculate the fraction Racc := Tlocal/Ttotal

of the accelerable part of the code. We see that for the
larger subdomains (L = 9, L = 10) approximately 66% of
the overall time can be accelerated with fine-grained paral-
lelism. Consequently, the estimated maximally achievable
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Ttotal Tlocal C := Ttotal − Tlocal Racc := Tlocal/Ttotal Slocal := TCPU
local /TGPU

local Stotal

L single dual GPU single dual GPU single dual GPU single dual single dual single dual

8 8.3 5.3 6.8 5.1 3.1 3.5 3.2 2.2 3.3 61% 58% 1.5 0.9 1.3 0.9
9 33.8 20.7 16.9 22.4 13.5 5.5 11.4 7.2 11.4 66% 65% 4.1 2.5 2.0 1.6
10 133.9 83.3 52.4 90.2 55.8 10.0 43.7 27.5 42.4 67% 67% 9.0 5.6 2.5 2.2

Table 4: For subdomains of different size (L = 8, 9, 10) and different configurations (CPU-single, CPU-dual, GPU)
the table lists the total and local execution time, their difference, the accelerable fraction, and local and total GPU
speed-ups.

total speed-up is 1/(1 − 2/3) = 3.
The comparison of the local CPU and GPU solution time

gives us the local GPU speed-up Slocal := T CPU
local /T GPU

local .
In the context of Finite Element simulations these num-
bers are impressive: For large subdomains (L = 10) we
achieve a GPU speed-up factor 9.0 against a single core
and a factor 5.6 against two cores. These factors decrease
quickly for smaller subdomains, because of the overhead
of co-processor configuration and data transport through
the narrow (in comparison to the bandwidth on the co-
processor board) PCIe bus.

Given the local GPU speed-up factor Slocal and the ac-
celerable fraction Racc we can deduce the total GPU speed-
up again as

Stotal :=
1

(1 − Racc) + (Racc/Slocal)

Note the similarity of the formula to Amdahl’s Law. Fig-
ure 11 illustrates the relation between Racc, Slocal and
Stotal.
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Figure 11: Relation between Slocal and Stotal for three dif-
ferent accelerable fractions Racc. The labels X mark the
estimated speed-up of a mixed-precision SSE implemen-
tation on the CPU, and the measured speed-up by our
GPU-enhanced solver.

For the application presented in this paper on the high-
est level of refinement (L = 10) with the accelerable frac-
tion Racc = 2/3, we obtain the total GPU speed-ups of
2.5 for single and 2.2 for dual-core (3.0 is the estimated
maximum). The first number differs only slightly from the
measured factor 2.6 in the previous section, because the
unaccelerable portions differ only slightly (C = 43.7 to

C = 42.4). But the estimated total GPU speed-up against
the dual-core of 2.2 differs greatly from the measured fac-
tor 1.6. We attribute this to the larger difference in the C
numbers (27.5 against 42.4): The dual-core version has the
unfair advantage of a much faster execution of the global
solver. For a fair comparison the GPU solver would have to
utilise all the resources within the node instead of leaving
one core idle. Consequently, once we design an advanced
scheduler and a hybrid communication model that incor-
porates parallelism among the resources within the node,
this problem will no longer be present: All processes will
benefit in the same way from interleaved communication
and computation.

This analysis allows us to estimate the effectiveness of
our approach for other hardware configurations. To illus-
trate this, we assess the maximum achievable performance
gain for a mixed precision solver running entirely on the
CPU, by using single precision in all local multigrid solvers,
analogously to the GPU implementation. As the perfor-
mance of the solver is mostly bound by the memory band-
width and latency (see Section 3.1) we optimistically as-
sume single precision calculations to be performed twice as
fast as double precision, at least for a fully SSE-optimised
implementation. Substituting the values Racc = 2/3 and
Slocal = 2 in the above formula results in an estimated
ideal acceleration of Stotal = 1.5, which is still far away
from the estimated maximum of 3.0. In particular, the
gradient of the curve relating Slocal to the achievable ac-
celeration Stotal (see Figure 11) is steep at Slocal = 2, such
that further acceleration by GPUs significantly improves
the achievable speed-up. The speed-up factors of the GPU
for L = 10, however, are already very close to the theo-
retical maximum. Consequently, the gradient of the curve
in Figure 11 is small and further local acceleration would
give only small returns. Instead, we will have to concen-
trate on the increase of the accelerable fraction Racc. Fig-
ure 11 also illustrates – for three different values of Racc

– that the performance difference between the mixed pre-
cision CPU approach and GPU acceleration grows rapidly
for increasing Racc.

Note, that 2/3 is already a good value when operating
within a minimally invasive co-processor integration with-
out any modification of the user code. Since the increase
of Racc has a much bigger impact now, we will aim at fur-
ther improvement in future work. For instance, stronger
smoothing operators require more time and consequently
improve both numerical robustness and the accelerable
fraction Racc at the same time.
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8 CONCLUSIONS AND FUTURE WORK

Feast reduces complex, vector-valued problems to block-
wise scalar operations. This allows to optimise data struc-
tures, linear algebra operators, multigrid smoothers and
even entire local solvers once on the intrinsic Feast ker-
nel level. These components are then used to design robust
schemes that perform well out of the box, without much
further application-specific performance tuning. The re-
duction of different problems onto the same global solver
scheme also allows a minimally invasive integration of the
extension FeastGPU, which thus adds GPU acceleration
to all applications based on Feast.

Using the unmodified application FeastSolid, we have
conducted a thorough evaluation of this hardware acceler-
ation approach with respect to accuracy and performance.
Because of the hierarchical solver concept, the final ac-
curacy of the results does not suffer from the local com-
putations in single precision on the GPUs, even in case of
very ill-conditioned problems. Therefore, despite emerging
double precision co-processors, our approach favours the
local single precision computation because it offers per-
formance advantages without accuracy limitations. New
extensions to Feast will enable the use of different types
of co-processors in the future.

Our performance analysis reveals that the local compu-
tations are accelerated by a factor of 9 against a single-core
CPU. This acceleration applies to 2/3 of the total solu-
tion time and thus translates into a 2.5-fold performance
improvement. Future work will seek to increase the accel-
erable part, so that the local acceleration translates into
larger overall gains and the unaccelerable part does not
dominate the solution process.

We can conclude that it is possible to significantly ac-
celerate unmodified applications with existing co-processor
technology, if the underlying solver concept follows
hardware-oriented design principles and the local subprob-
lems for the co-processor are sufficiently large.
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