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Why Grid Deformation?

main reason: building block for r-adaptivity




Why r-Adaptivity?

1. reason: flexibility
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2. reason: SPEED
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for lexicographical ordering: 9 nonzero bands
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observation: AFEM: MFlop/s-Rate « peak performance
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peak performance: 4.3 GFlop/s
peak memory bandwidth: 5.96 GB/s
= peak performance, if ~ 6 flops per memory access
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Why r-Adaptivity?

Reference machine: AMD Opteron 852
peak performance: 4.3 GFlop/s
peak memory bandwidth: 5.96 GB/s
= peak performance, if ~ 6 flops per memory access

y = Ax, N unknowns:

classical CSR | FEAST (bands)
flops 17 N 17 N
loads 27 N 18 N
stores 1N 1N

arithmetic intensity:
CSR: 17/28 < 1 = ~ 9% of peak performance
FEAST: 17/19 < 1 = ~ 15% of peak performance

Avoid unstructured meshes!




FEAST-Concept (Grid-Related Part)

global grid: “many” local generalised tensor product meshes
(“macros”).
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FEAST-Concept (Grid-Related Part)

global grid: “many” local generalised tensor product meshes
(“macros”).
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Derivation

domain
triangulation 7', quads T

“monitor function” 0 < e < f € C1(Q): desired area
distribution

“weighting function” 0 < £ < g € C}(Q2): current area
distribution

goal: transformation ¢ : 2 — Q with
g(@)|J@(z)| = f(®(z)) Vze

and




Derivation

- [ 170G@)ds

m(®(T)) := L(T) 1 dz




Derivation

m(®(T)) := [I)(T) ldx = /T |JP(x)|dx,

1 x 1 Gauss-formula:

@) _ o
glae) ™ o = F(2(x0) + O(h)
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Grid Deformation Method

Deformation(f, 7)

!

compute f —g, fi=c/f,§=Clg.[f=[3

solve )

—div(v(x)) = f(z) — g(x), = € Q, v(z) -n=0, z € 0
DO FORALL z € T

solve (o))
. v(p(x,t),t
Orp(z,t) = tf(e(z,)+(1—t)g(p(z,t))’

ENDDO

0<t<1, p(z,0) ==z

END Deformation




Theoretical Results

Theorem(Moser) Let0 > k € N, a > 0. Let 2 C R" a domain
with C****-smooth boundary. Let f, g € C**(Q) with [, f = [, g.
Then there is a Ckth-diffeomorphism @ : O — R™ with

g(@)|JO(z)| = f(P(x)) Vze

and
¢(zx) =x Ve 0.




Theoretical Results

Theorem(Moser) Let0 > k € N, a > 0. Let 2 C R" a domain
with C****-smooth boundary. Let f, g € C**(Q) with [, f = [, g.
Then there is a Ckth-diffeomorphism @ : O — R™ with

g(@)|JO(z)| = f(P(x)) Vze

and
¢(zx) =x Ve 0.

Theorem Let be 2 as above. If ® : () — Q exists, it fulfills the
aforementioned conditions.




Measuring the Error and Convergence

situation: Let (7;);er, N; < N;y1 with

hi = max le| = O(N;"?) Vi e I (edge-length regularity)
ecc;

30 < ¢,C : ch? <m(T) < Ch? VT € T;Vi € I (size regularity)




Measuring the Error and Convergence

situation: Let (7;);er, N; < N;y1 with

hi = max le| = O(N;"?) Vi e I (edge-length regularity)
ecc;

30 < ¢,C : ch? <m(T) < Ch? VT € T;Vi € I (size regularity)

similarity condition: 30 < gmin < 9 < gmax < 00 With

1

—cm(T) = g(x)+O(hi) Vo €T VT e€TViel, ci<e<Cs

g

?
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|®p — @[] — 0
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Measuring the Error and Convergence

1. approach: comparison with “reference deformation™:
|®p — @[] — 0

problems:

® unique only by curlv 20
| Py, — @] difficult to compute

2. approach: q(x) = % 1RO

Qo == llallr2@), Qoo = llal[r=(q)

convergence & (g — 0,Qs — 0,h — 0




Convergence Theorem

Let (7;);cr be edge-length regular and fulfill the similarity
condition, 0 < ¢ < f € C1(Q). Furthermore,
IVw — Grwp||oo = O(RM?), 6 > 0and || X, — X|| = O(h!T0).

Then:

a) (7;):cr is edge-length regular.

~

b) (7;)ics IS Size regular.

c) dc > 0:
Qo < Chmin{l,(S}’ Qoo < Chmin{l,(S}.




Test Problem

Q = [0, 1]%, tensor product mesh

f(a) = min {1, max

d — 0.25]

0.25




Test Problem

Q = [0, 1]%, tensor product mesh

f(z) = min {1,max< ’dg.;);{)’,e} >, d = \/(331 — %)2 + (5132 — %)2

\ /




Convergence of ODE-Solvers
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ODE-error: O(At?)




convergence for the Test Problem

Corollary Let us assume that
|[Vw — Grws||r = O(R?), At = O(h).

= Qo=0(h), Qo =0(h)
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convergence for the Test Problem

Corollary Let us assume that
|[Vw — Grws||r = O(R?), At = O(h).

= Qo=0(h), Qo =0(h)
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Runtime

convergence: time step size At = O(h) = O(N~Y/?)

complexity: O(N?3/2)




Runtime

convergence: time step size At = O(h) = O(N~Y/?)

complexity: O(N?3/2)
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Multilevel Deformation

goal: fixed time step size + convergence

In practical computations: sequence of grids by successive
regular refinement
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goal: fixed time step size + convergence

In practical computations: sequence of grids by successive
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Multilevel Deformation

goal: fixed time step size + convergence

In practical computations: sequence of grids by successive
regular refinement

7;_1 ’7; .dz
O,
T
<v,::<7;1) VAT
T, T T




Multilevel Deformation

Idea:
deformation on coarse grid
regular refinement
deformation on fine grid (correction step)
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Idea:

deformation on coarse grid

regular refinement

deformation on fine grid (correction step)
assumption 1.

dj, == max ||z — ®(z)|| = O(h?)
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assumption 2:
X - X _
|z — @(z)]]




Multilevel Deformation

Idea:

deformation on coarse grid

regular refinement

deformation on fine grid (correction step)
assumption 1.

dj, == max ||z — ®(z)|| = O(h?)

rTEX)

assumption 2:
X - X _
z — ®(2)]

= || X, — X|| = O(h?)
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Multilevel Deformation
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Multilevel Deformation (Algorithm)

MultilevelDef(f, T, Npre) : 7
’]E =R (T, imin)

DO I = 4min, tmax; tiner
7; := PreSmooth( 7;, Npe (7))
7, .= Deformation(f, 7;)
IF (4 <imax) Ziv1 = V(T;)
ENDDO

T :: Zmax

RETURN 7
END MultilevelDef




Multilevel Deformation

0.1}

0.01 ¢

0.001 + -
| Qo, onelev ——
| Qo, multiley ——
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convergence despite of fixed time step size
Z'min = 3, Z'incr — 17 NPre =2




Runtime Comparison

- | onelevel def ——
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almost optimal complexity




Test Problem: L-domain

Poisson equation

Q = [-0.5,0.5]%/[0,0.5]?

u(r, ) = r2/3 sin(2/3¢)

f(r) = min {1, max{coh, vV 2|r|}

H,_/

desired: gradient error




Grid at Reentrant Corner

-0.025 0.025




Discretisation Error

regular ——
r-adaptive —— |
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optimal convergence rate by deformed grids




Conclusion

HPC: locally structured mesh
Deformation method: derivation and convergence aspects

Multilevel deformation

L-domain: r-adaptivity




Thank you for your attention!
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