Eine robuste, genaue und effiziente Methode zur Gitterdeformation im Kontext von r-Adaptivität

Matthias Grajewski

Matthias.Grajewski@math.uni-dortmund.de

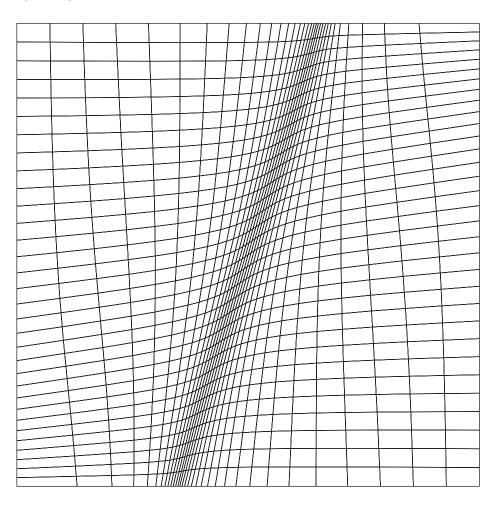
Universität Dortmund

Gliederung

- Motivation
- Gitterkonzepte f

 ür HPC
- Gitterdeformation: Herleitung und Konvergenz
- Mehrgitterdeformation
- r-Adaptivität

1. Grund: Flexibilität



2. Grund: SPEED

2. Grund: SPEED

Beobachtung: AFEM: MFlop/s-Rate ≪ peak performance

2. Grund: SPEED

Beobachtung: AFEM: MFlop/s-Rate ≪ peak performance

Beispiel: MV-Multiplikation in **FEATFLOW** (F77-code):

	NEQ	SP-MOD	SP-STO	SBB-V
AMD Opteron 852	4.225	557	561	1805
2,6 Ghz	66.049	395	223	660
4280 MFLOP/s	1.050.625	391	75	591

aus: Dissertation Chr. Becker 2007

Warum dieser Einbruch?:

- CPU speed ≫ memory speed
- 2. aktuelle FEM-codes verwenden
 - indirekte Adressierung : viele (ungeordnete)
 Speicherzugriffe
 - globale Datenstrukturen verhindern effektives caching

Warum dieser Einbruch?:

- CPU speed ≫ memory speed
- 2. aktuelle FEM-codes verwenden
 - indirekte Adressierung : viele (ungeordnete)
 Speicherzugriffe
 - globale Datenstrukturen verhindern effektives caching

Problem:

Elementweise unstrukturierte Gitter ermöglichen Adaptivität, aber verhindern direkte Adressierung;

Tensorproduktgitter **ermöglichen direkte Adressierung**, aber **verhindern Adaptivität** (scheinbar).

Warum dieser Einbruch?:

- CPU speed ≫ memory speed
- 2. aktuelle FEM-codes verwenden
 - indirekte Adressierung : viele (ungeordnete)
 Speicherzugriffe
 - globale Datenstrukturen verhindern effektives caching

Problem:

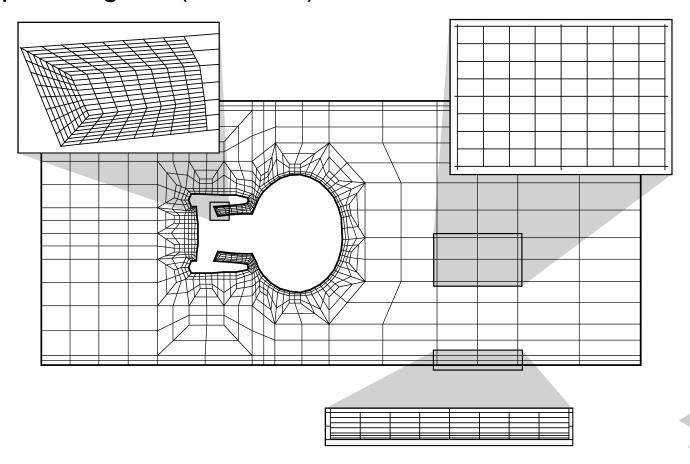
Elementweise unstrukturierte Gitter ermöglichen Adaptivität, aber verhindern direkte Adressierung;

Tensorproduktgitter **ermöglichen direkte Adressierung**, aber **verhindern Adaptivität** (scheinbar).

Synthese: FEAST

FEAST-Konzept (der gitterrelevante Teil)

globales Gitter: "viele" lokale verallgemeinerte Tensorproduktgitter ("macros").



Vorgabe: erhalte die lokale Tensorproduktstruktur

Vorgabe: erhalte die lokale Tensorproduktstruktur

Ansatz 1: macroweise h-Adaptivität ('hanging nodes')

Vorgabe: erhalte die lokale Tensorproduktstruktur

Ansatz 1: macroweise h-Adaptivität ('hanging nodes')

Ansatz 2: r-Adaptivität (erhält die logische Struktur des Gitters)

Vorgabe: erhalte die lokale Tensorproduktstruktur

Ansatz 1: macroweise h-Adaptivität ('hanging nodes')

Ansatz 2: r-Adaptivität (erhält die logische Struktur des Gitters)

Ansatz 3: kombiniere 1 und 2

Vorgabe: erhalte die lokale Tensorproduktstruktur

Ansatz 1: macroweise h-Adaptivität ('hanging nodes')

Ansatz 2: r-Adaptivität (erhält die logische Struktur des Gitters)

Ansatz 3: kombiniere 1 und 2

r-Adaptivität

- Gebiet Ω
- Triangulierung T, Vierecke T
- "Monitorfunktion" $0<\varepsilon< f\in \mathcal{C}^1(\bar{\Omega})$: gewünschte Flächenverteilung
- "Gewichtsfunktion" $0 < \varepsilon < g \in \mathcal{C}^1(\bar{\Omega})$: vorhandene Flächenverteilung

Ziel: Transformation $\Phi:\Omega\to\Omega$ mit

$$|g(x)|J\Phi(x)| = f(\Phi(x)) \quad \forall x \in \Omega$$

und

$$\Phi: \partial\Omega \to \partial\Omega.$$

$$\mathcal{T}^d = \Phi(\mathcal{T}), \quad X := \Phi(x)$$

$$m(\Phi(T)) := \int_{\Phi(T)} 1 \, dx = \int_{T} |J\Phi(x)| dx,$$

$$m(\Phi(T)) := \int_{\Phi(T)} 1 \, dx = \int_{T} |J\Phi(x)| dx,$$

1×1 Gauss-Formel:

$$g(x_c)\frac{m(\Phi(T))}{m(T)} = f(\Phi(x_c)) + \mathcal{O}(h).$$

$$m(\Phi(T)) := \int_{\Phi(T)} 1 \, dx = \int_{T} |J\Phi(x)| dx,$$

1×1 Gauss-Formel:

$$g(x_c)\frac{m(\Phi(T))}{m(T)} = f(\Phi(x_c)) + \mathcal{O}(h).$$

Wenn nun

$$g(x) = c(h) m(T) + \mathcal{O}(h), x \in T$$

gilt, dann



$$m(\Phi(T)) := \int_{\Phi(T)} 1 \, dx = \int_{T} |J\Phi(x)| dx,$$

1×1 Gauss-Formel:

$$g(x_c)\frac{m(\Phi(T))}{m(T)} = f(\Phi(x_c)) + \mathcal{O}(h).$$

Wenn nun

$$g(x) = c(h) m(T) + \mathcal{O}(h), x \in T$$

gilt, dann

$$c(h) m(\Phi(T)) = f(\Phi(x_c)) + \mathcal{O}(h)$$



Konsistenzbedingung:

$$\int_{\Phi(\Omega)} \frac{1}{f(x)} dx = \int_{\Omega} \frac{1}{f(\Phi(x))} |J(\Phi(x))| dx$$
$$= \frac{1}{f(\Phi(x))} \cdot \frac{f(\Phi(x))}{g(x)} dx$$
$$= \int_{\Omega} \frac{1}{g(x)} dx$$



Konsistenzbedingung:

$$\int_{\Phi(\Omega)} \frac{1}{f(x)} dx = \int_{\Omega} \frac{1}{f(\Phi(x))} |J(\Phi(x))| dx$$
$$= \frac{1}{f(\Phi(x))} \cdot \frac{f(\Phi(x))}{g(x)} dx$$
$$= \int_{\Omega} \frac{1}{g(x)} dx$$

$$\Rightarrow c(h) = ch^{-2} \Rightarrow$$

$$m(\Phi(T)) = ch^2 f(\Phi(x_c)) + \mathcal{O}(h^3), x \in T.$$

Deformationsverfahren

Deformation(f, T)

berechne
$$ilde{f}- ilde{g}, \quad ilde{f}:=c/f, ilde{g}=C/g, \int ilde{f}\stackrel{!}{=}\int ilde{g}$$

löse

$$-\operatorname{div}(v(x)) = \tilde{f}(x) - \tilde{g}(x), \ x \in \Omega, \qquad v(x) \cdot \mathfrak{n} = 0, \ x \in \partial \Omega$$

DO FORALL $x \in \mathcal{T}$

löse

$$\partial_t \varphi(x,t) = \frac{v(\varphi(x,t),t)}{t\tilde{f}(\varphi(x,t)) + (1-t)\tilde{g}(\varphi(x,t))}, \quad 0 \le t \le 1, \ \varphi(x,0) = x$$

$$\Phi(x) := \varphi(x, 1)$$

ENDDO

END Deformation

Theorie

Theorem(Moser) Sei $0 \ge k \in \mathbb{N}$, $\alpha > 0$. Sei $\Omega \subset \mathbb{R}^n$ ein Gebiet mit $\mathcal{C}^{3+k,\alpha}$ -glattem Rand. Sei weiter $f,g \in \mathcal{C}^{k,\alpha}(\bar{\Omega})$ mit $\int_{\Omega} f = \int_{\Omega} g$. Dann existiert ein $\mathcal{C}^{k+1,\alpha}$ -Diffeomorphismus $\Phi: \bar{\Omega} \to \mathbb{R}^n$ mit

$$|g(x)|J\Phi(x)| = f(\Phi(x)) \quad \forall x \in \Omega$$

und

$$\Phi(x) = x \quad \forall x \in \partial \Omega.$$

Theorie

Theorem(Moser) Sei $0 \ge k \in \mathbb{N}$, $\alpha > 0$. Sei $\Omega \subset \mathbb{R}^n$ ein Gebiet mit $\mathcal{C}^{3+k,\alpha}$ -glattem Rand. Sei weiter $f,g \in \mathcal{C}^{k,\alpha}(\bar{\Omega})$ mit $\int_{\Omega} f = \int_{\Omega} g$. Dann existiert ein $\mathcal{C}^{k+1,\alpha}$ -Diffeomorphismus $\Phi: \bar{\Omega} \to \mathbb{R}^n$ mit

$$|g(x)|J\Phi(x)| = f(\Phi(x)) \quad \forall x \in \Omega$$

und

$$\Phi(x) = x \quad \forall x \in \partial \Omega.$$

Theorem Sei Ω wie oben. Wenn die Deformationsabbildung $\Phi: \Omega \to \Omega$ existiert, erfüllt sie die obigen Bedingungen.

numerische Realisierung

Deformation(f, T)

berechne
$$\tilde{f} - \tilde{g}$$
, $g = g(\mathcal{T})$

löse
$$(\nabla w_h, \nabla \varphi_h) = (\tilde{f} - \tilde{g}, \varphi_h) \quad \forall \varphi_h \in \mathcal{Q}_1(\mathcal{T})$$

$$v_h := G_h(w_h)$$

DO FORALL $x \in \mathcal{T}$

löse

$$\partial_t \varphi(x,t) = \frac{v_h(\varphi(x,t),t)}{t\tilde{f}(\varphi(x,t)) + (1-t)\tilde{g}(\varphi(x,t))}, \quad 0 \le t \le 1, \ \varphi(x,0) = x$$

$$\Phi_h(x) = \varphi(x, 1)$$

ENDDO

END Deformation

Situation: geg. $(\mathcal{T}_i)_{i \in I}, N_i < N_{i+1}$, mit

$$h_i := \max_{e \in \mathcal{E}_i} |e| = \mathcal{O}(N_i^{-0.5}) \quad \forall i \in I \ (\mathsf{Kantenregularit"at})$$

$$\exists 0 < c, C : ch_i^2 \le m(T) \le Ch_i^2 \quad \forall T \in \mathcal{T}_i \forall i \in I(\mathsf{Flächenregularit"at})$$

Situation: geg. $(\mathcal{T}_i)_{i \in I}, N_i < N_{i+1}$, mit

$$h_i := \max_{e \in \mathcal{E}_i} |e| = \mathcal{O}(N_i^{-0.5}) \quad \forall i \in I \text{ (Kantenregularität)}$$

$$\exists 0 < c, C: ch_i^2 \leq m(T) \leq Ch_i^2 \quad \forall T \in \mathcal{T}_i \forall i \in I(\mathsf{Fl\"{a}chenregularit\"{a}t})$$

Flächenähnlichkeit: $\exists 0 < g_{\min} < g < g_{\max} < \infty$ mit

$$\frac{1}{h_i^2}c_im(T) = g(x) + \mathcal{O}(h_i) \quad \forall x \in T \quad \forall T \in \mathcal{T}_i \forall i \in I, \quad c_s \le c_i \le C_s.$$

1. Ansatz: Vergleich mit "Referenzdeformation": $||\Phi_h - \Phi|| \to 0$

1. Ansatz: Vergleich mit "Referenzdeformation": $||\Phi_h - \Phi|| \to 0$ Probleme:

- Φ eindeutig nur durch $\operatorname{rot} v \stackrel{!}{=} 0$
- $||\Phi_h \Phi||$ schwierig zu berechnen

1. Ansatz: Vergleich mit "Referenzdeformation": $||\Phi_h - \Phi|| \rightarrow 0$ Probleme:

- Φ eindeutig nur durch $\operatorname{rot} v \stackrel{!}{=} 0$
- $||\Phi_h \Phi||$ schwierig zu berechnen

2. Ansatz:
$$q(x) = \frac{f(x)}{g(x)} - 1 \stackrel{!}{\approx} 0 \Rightarrow$$

$$Q_0 := ||q||_{L^2(\Omega)}, \quad Q_\infty := ||q||_{L^\infty(\Omega)}$$



1. Ansatz: Vergleich mit "Referenzdeformation": $||\Phi_h - \Phi|| \rightarrow 0$ Probleme:

- Φ eindeutig nur durch $\operatorname{rot} v \stackrel{!}{=} 0$
- $||\Phi_h \Phi||$ schwierig zu berechnen

2. Ansatz:
$$q(x) = \frac{f(x)}{g(x)} - 1 \stackrel{!}{\approx} 0 \Rightarrow$$

$$Q_0 := ||q||_{L^2(\Omega)}, \quad Q_\infty := ||q||_{L^\infty(\Omega)}$$

Konvergenz : $\Leftrightarrow Q_0 \to 0, Q_\infty \to 0, h \to 0$

 $(\mathcal{T}_i)_{i \in I}$ sei stets kantenregulär.

 $(\mathcal{T}_i)_{i \in I}$ sei stets kantenregulär.

Lemma 1 $(\mathcal{T}_i)_{i \in I}$ flächenähnlich $\Rightarrow (\mathcal{T}_i)_{i \in I}$ flächenregulär

 $(\mathcal{T}_i)_{i \in I}$ sei stets kantenregulär.

Lemma 1 $(\mathcal{T}_i)_{i \in I}$ flächenähnlich $\Rightarrow (\mathcal{T}_i)_{i \in I}$ flächenregulär

Lemma 2 $(\mathcal{T}_i)_{i \in I}$ flächenähnlich $\Rightarrow (\mathcal{T}_i^d)_{i \in I}$ kantenregulär

 $(\mathcal{T}_i)_{i \in I}$ sei stets kantenregulär.

Lemma 1 $(\mathcal{T}_i)_{i \in I}$ flächenähnlich $\Rightarrow (\mathcal{T}_i)_{i \in I}$ flächenregulär

Lemma 2 $(\mathcal{T}_i)_{i \in I}$ flächenähnlich $\Rightarrow (\mathcal{T}_i^d)_{i \in I}$ kantenregulär

Lemma 3 Sei $0 < \varepsilon < f \in \mathcal{C}^1(\overline{\Omega})$, $(\mathcal{T}_i)_{i \in I}$ flächenähnlich $\Rightarrow (\mathcal{T}_i^d)_{i \in I}$ flächenregulär.

Konvergenzsatz

 $(\mathcal{T}_i)_{i\in I}$ sei kantenregulär und flächenähnlich, $0<\varepsilon< f\in \mathcal{C}^1(\bar{\Omega})$. Weiterhin gelte $||\nabla w-G_hw_h||_{\infty}=\mathcal{O}(h^{1+\delta})$, $\delta>0$ und $||X_h-\tilde{X}||=\mathcal{O}(h^{1+\delta})$.

Dann:

- a) $(\tilde{\mathcal{T}}_i)_{i \in I}$ ist kantenregulär
- b) $(\tilde{\mathcal{T}}_i)_{i \in I}$ ist flächenregulär
- c) $\exists c > 0$:

$$Q_0 \le ch^{\min\{1,\delta\}}, \quad Q_\infty \le ch^{\min\{1,\delta\}}.$$



Test Problem

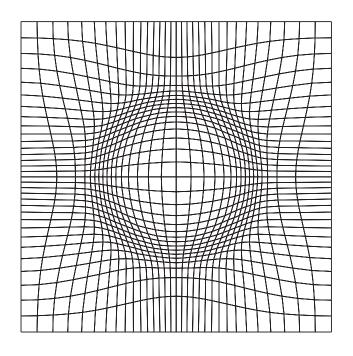
 $\Omega = [0,1]^2$, Tensorproduktgitter

$$f(x) = \min \left\{ 1, \max \left\{ \frac{|d - 0.25|}{0.25}, \varepsilon \right\} \right\}, \quad d := \sqrt{\left(x_1 - \frac{1}{2}\right)^2 + \left(x_2 - \frac{1}{2}\right)^2}$$

Test Problem

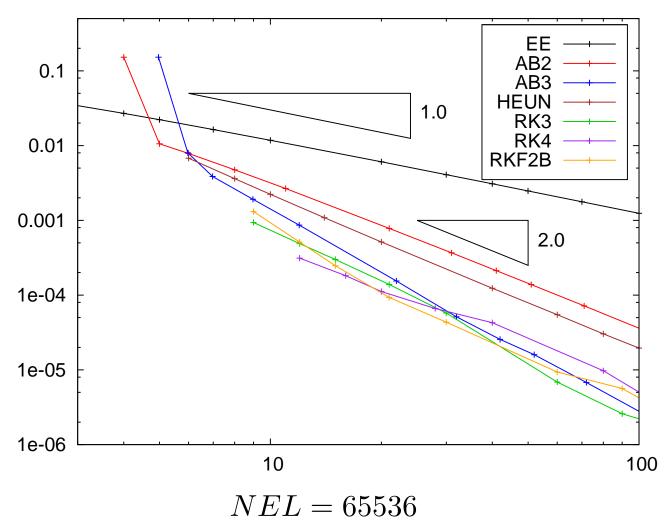
 $\Omega = [0,1]^2$, Tensorproduktgitter

$$f(x) = \min \left\{ 1, \max \left\{ \frac{|d - 0.25|}{0.25}, \varepsilon \right\} \right\}, \quad d := \sqrt{\left(x_1 - \frac{1}{2}\right)^2 + \left(x_2 - \frac{1}{2}\right)^2}$$



$$\varepsilon = 0.1$$

Konvergenz der ODE-Löser



ODE-Fehler: $\mathcal{O}(\Delta t^2)$

Konvergenz am Testbeispiel

Korollar Sei

$$||\nabla w - G_h w_h||_{L^{\infty}} = \mathcal{O}(h^2), \quad \Delta t = \mathcal{O}(h).$$

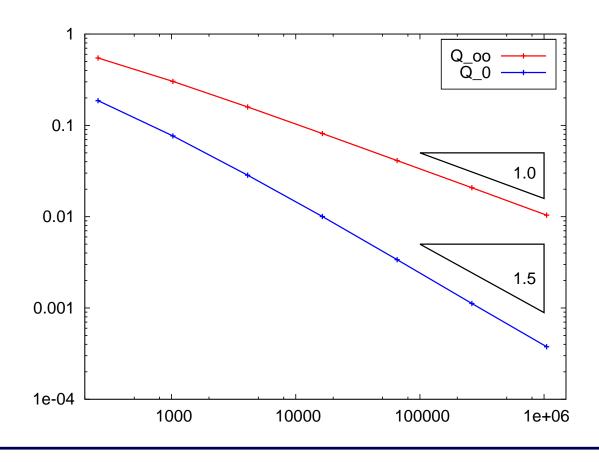
$$\Rightarrow \quad Q_0 = \mathcal{O}(h), \quad Q_{\infty} = \mathcal{O}(h)$$

Konvergenz am Testbeispiel

Korollar Sei

$$||\nabla w - G_h w_h||_{L^{\infty}} = \mathcal{O}(h^2), \quad \Delta t = \mathcal{O}(h).$$

$$\Rightarrow$$
 $Q_0 = \mathcal{O}(h), \quad Q_\infty = \mathcal{O}(h)$

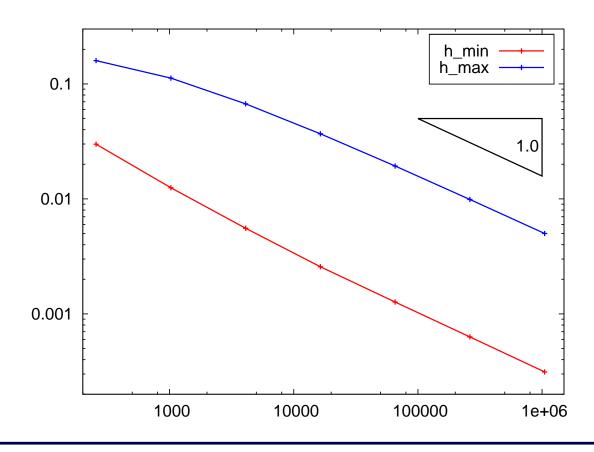


Konvergenz am Testbeispiel

Korollar Sei

$$||\nabla w - G_h w_h||_{L^{\infty}} = \mathcal{O}(h^2), \quad \Delta t = \mathcal{O}(h).$$

$$\Rightarrow$$
 $Q_0 = \mathcal{O}(h), \quad Q_\infty = \mathcal{O}(h)$



Grenzen der Methode

$$\Omega_{1} \qquad \Omega_{2}$$

$$(-2,1) \qquad (1,1)$$

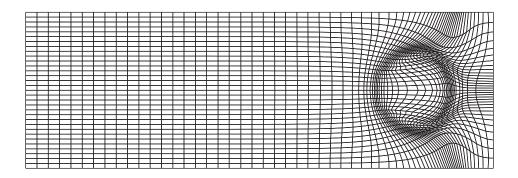
$$\Omega_{2} \qquad (-2,0) \qquad (-1,0) \qquad (1,0)$$

$$g(x) = \left\{ \begin{array}{ll} 1 & , & x \in \Omega_{1} \\ 2 & , & x \in \Omega_{2} \end{array} \right. f(x) = \min \left\{ 1, \max \left\{ \frac{|d - 0.25|}{0.25}, \varepsilon \right\} \right\}$$

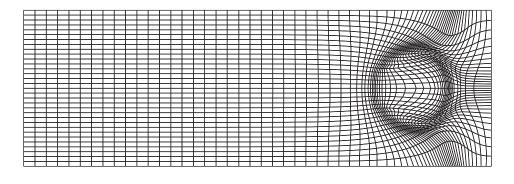
$$g \notin C(\overline{\Omega}) \Rightarrow w \notin H^{2+k}(\Omega), k > 0$$

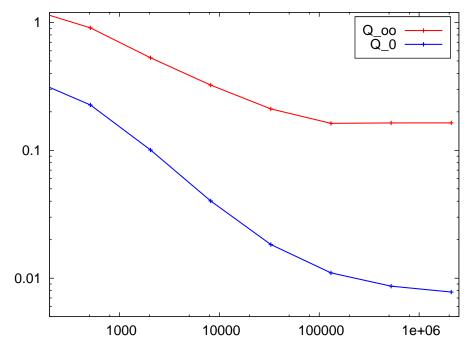
$$\Rightarrow ||\nabla w - G_h w_h||_{L^{\infty}} \neq \mathcal{O}(h^2)$$

Grenzen der Methode



Grenzen der Methode





Laufzeitverhalten

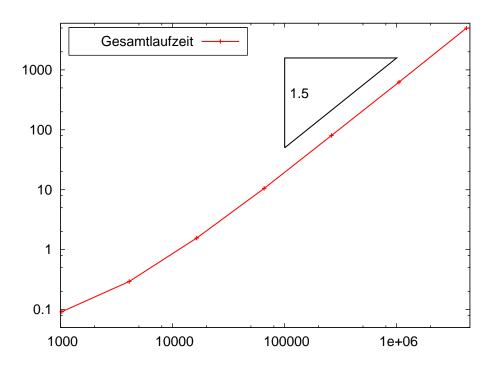
Konvergenz: Zeitschrittweite $\Delta t = \mathcal{O}(h) = \mathcal{O}(N^{-1/2})$

Komplexität: $\mathcal{O}(N^{3/2})$

Laufzeitverhalten

Konvergenz: Zeitschrittweite $\Delta t = \mathcal{O}(h) = \mathcal{O}(N^{-1/2})$

Komplexität: $\mathcal{O}(N^{3/2})$

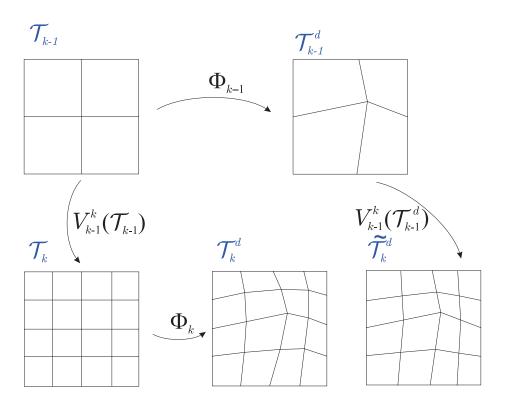


Ziel: feste Zeitschrittweite + Konvergenz

in der Praxis: Gittersequenz durch sukzessives Verfeinern

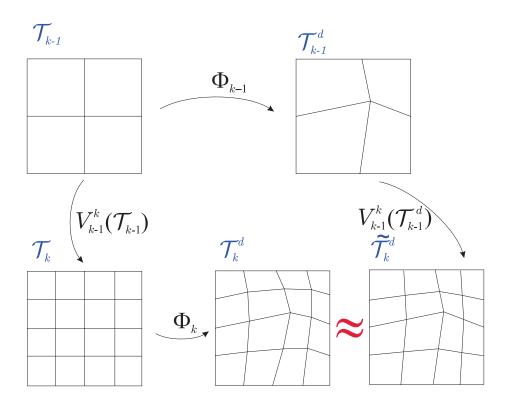
Ziel: feste Zeitschrittweite + Konvergenz

in der Praxis: Gittersequenz durch sukzessives Verfeinern



Ziel: feste Zeitschrittweite + Konvergenz

in der Praxis: Gittersequenz durch sukzessives Verfeinern



Idee:

- Deformation auf grobem Gitter
- Verfeinerung
- Deformation auf feinem Gitter (Korrekturschritt)

Idee:

- Deformation auf grobem Gitter
- Verfeinerung
- Deformation auf feinem Gitter (Korrekturschritt)

Annahme 1:

$$d_k := \max_{x \in \mathcal{X}_k} ||x - \Phi(x)|| \stackrel{?!}{=} \mathcal{O}(h^2)$$

Annahme 2:

$$\frac{||X_h - \tilde{X}||}{||x - \Phi(x)||} \le c$$

Idee:

- Deformation auf grobem Gitter
- Verfeinerung
- Deformation auf feinem Gitter (Korrekturschritt)

Annahme 1:

$$d_k := \max_{x \in \mathcal{X}_k} ||x - \Phi(x)|| \stackrel{?!}{=} \mathcal{O}(h^2)$$

Annahme 2:

$$\frac{||X_h - \tilde{X}||}{||x - \Phi(x)||} \le c$$

$$\Rightarrow ||X_h - \tilde{X}|| = \mathcal{O}(h^2)$$

Algorithmus

MehrgitterDeformation(f, \mathcal{T} , N_{pre}): \mathcal{T}

$$\mathcal{T}_{i_{\min}} := \mathsf{R} \left(\mathcal{T}, i_{\min} \right)$$

DO
$$i = i_{\min}, i_{\max}, i_{incr}$$

$$\mathcal{T}_i := \mathsf{PreSmooth}(\ \mathcal{T}_i,\ N_{\mathsf{pre}}(i))$$

$$\mathcal{T}_i := \mathsf{Deformation}(f, \mathcal{T}_i)$$

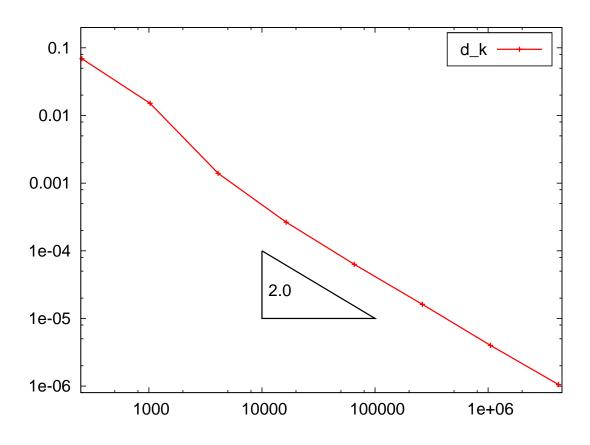
IF (
$$i < i_{\max}$$
) $\mathcal{T}_{i+1} := V(\mathcal{T}_i)$

ENDDO

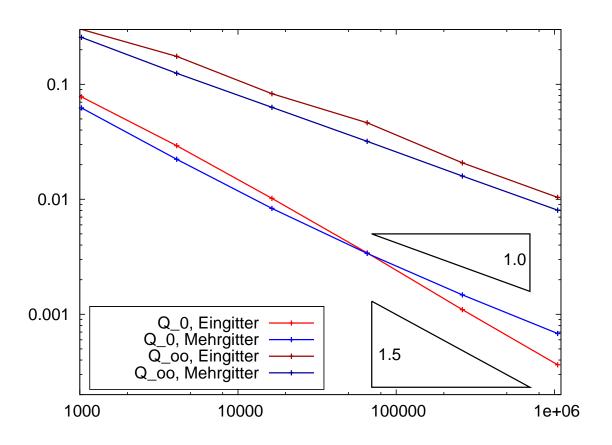
$$\mathcal{T} := \mathcal{T}_{i_{\max}}$$

RETURN \mathcal{T}

END MehrgitterDeformation

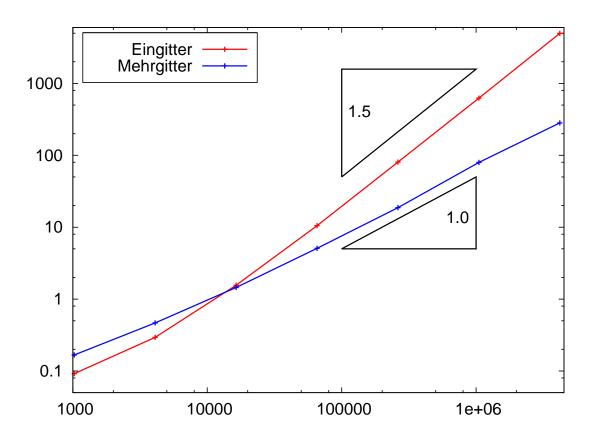


$$i_{\min}=3$$
, $i_{\mathrm{incr}}=1$, $N_{\mathrm{pre}}=2$



Konvergenz trotz fester Zeitschrittweite

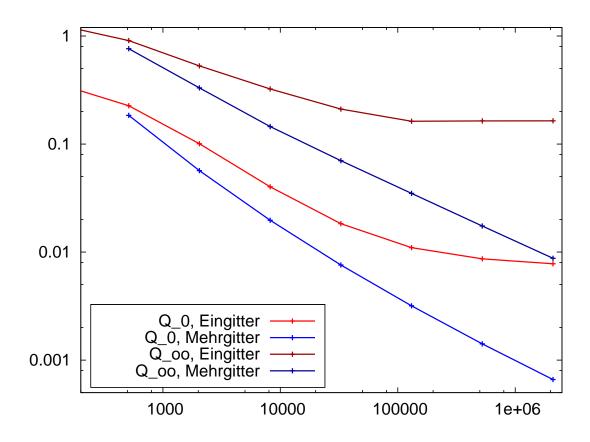
Laufzeitvergleich



fast optimale Komplexität

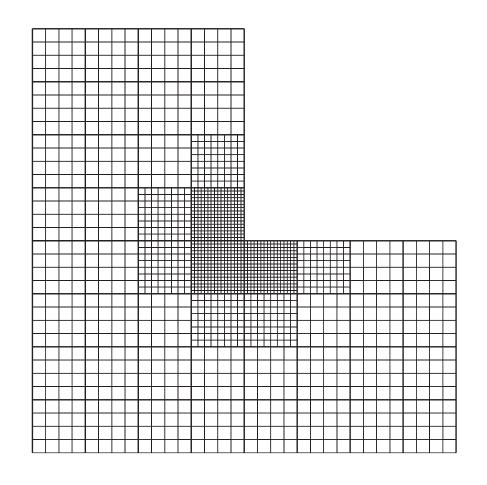


Robustheit



Konvergenz beim 2. Testbeispiel

Testproblem: L-Gebiet, 48 macros



Poisson-Gleichung

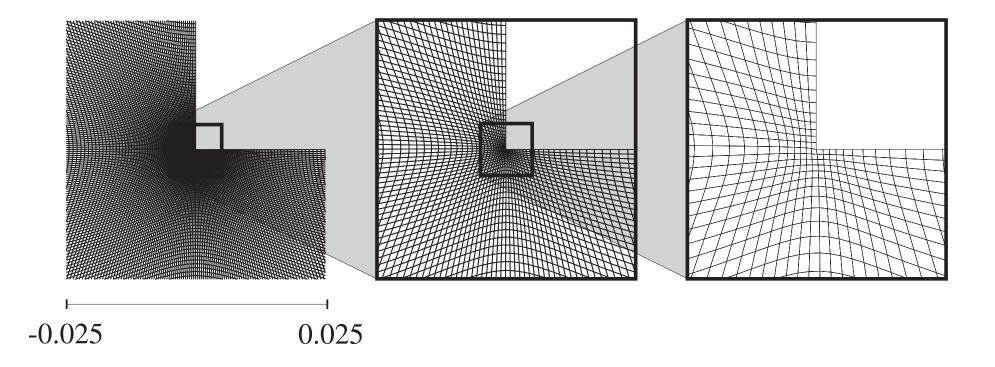
$$\Omega = [-0.5, 0.5]^2 / [0, 0.5]^2$$

$$u(r,\varphi) = r^{2/3}\sin(2/3\varphi)$$

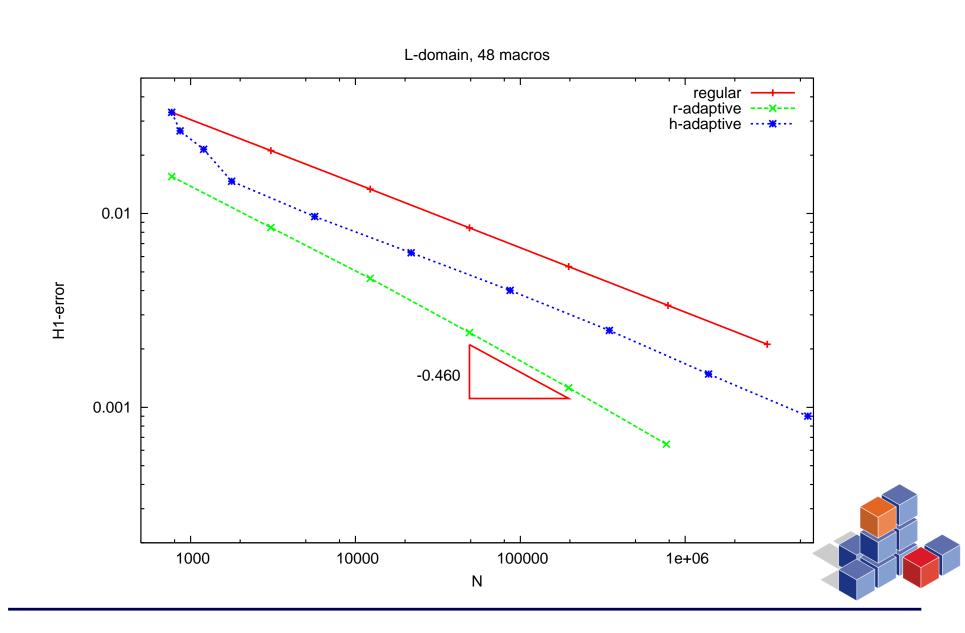
$$f(r) = \min \left\{ 1, \max\{c_0 h, \sqrt{2}|r|\} \right\}$$

gesucht: Gradientenfehler

Gitter an einspringender Ecke



Fehlerkonvergenz



Zusammenfassung

- HPC: lokal strukturierte Gitter
- Deformationsmethode: Herleitung und Konvergenzuntersuchung
- Mehrgitterdeformation
- Testbeispiel L-Gebiet: r-Adaptivität

Vielen Dank für ihre Aufmerksamkeit

