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FEAST overview

FEAST Finite Element Analysis and Solution Tools

under development at TU Dortmund in Stefan Turek’s group

http://www.feast.tu-dortmund.de

Core features

separation of unstructured and structured data for optimised linear
algebra components

Finite Element discretisations (Q1)

parallel generalised domain decomposition multigrid solvers

usage of GPUs as coprocessors

grid adaptivity and error control

scalar and vector-valued problems

applications in CFD and CSM
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local structure

local band matrices

Poisson equation

generalised tensor product mesh

conforming bilinear Finite Elements Q1

matrix consists of 9 bands
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FEAST grids

FEAST concepts MFLOP/s-rate preserving adaptivity grid deformation: derivation and convergence analysis practical aspects multilevel deformation r - and



data structures

Cover domain by unstructured collection of subdomains

resolve complex geometries, boundary layers in fluid dynamics, etc.

Refine each subdomain independently and discretise using FEs

generalised tensorproduct fashion

isotropic and anisotropic refinement combined with r/h/rh adaptivity

Performance

clear separation of globally unstructured and locally structured parts

nonzero pattern of local FE matrices known a priori

exploit spatial and temporal locality for tuned LA building blocks
(Sparse Banded BLAS)
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ScaRC solver

Contradictory properties

numerical vs. computational efficiency

weak and strong scalability vs. numerical scalability

Parallel multigrid

strong recursive coupling optimal in serial codes

usually relaxed to block-Jacobi due to high comm requirements

degrades convergence rates in the presence of local anisotropies

Generalised DD/MG approach (ScaRC)

global MG, block-smoothed by local MGs (optimal asymptotic
complexity)

hide anisotropies locally

good scalability by design

global operations realised via special local BCs and syncronisation
across subdomain boundaries (no overlap!)
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Overview of GPU integration
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adaptivity concepts in FEM

h-adaptivity
(h: mesh width)

r -adaptivity
(r : “relocate”)

grid deformation: building block for r -adaptivity
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flexibility
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computational speed

observation: MFlop/s-rate ≪ peak performance

example: AMD Opteron 852, peak performance : 4280 MFlop/s

y = Ax , Poisson equation, N unknowns, Q1:

NEQ SP-MOD SP-STO SBB-V (FEAST)
4.225 557 561 1.805

66.049 395 223 660
1.050.625 391 75 591

SP-STO: ca. 2% of peak performance (worst case)
FEAST: ca. 15% of peak performance (worst case)

⇒ acceleration by factor 8

FEAST: local logical tensor product grids

goal: adaptivity with local structured grids!
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derivation

domain Ω

triangulation T , quads T

“monitor function” 0 < εf < f ∈ C1(Ω̄): desired area distribution

“weighting function” 0 < εg < g ∈ C1(Ω̄): current area distribution

goal: mapping Φ : Ω → Ω with

g(x)|JΦ(x)| = f (Φ(x)) ∀x ∈ Ω

and
Φ : ∂Ω → ∂Ω.

T d = Φ(T ), X := Φ(x)
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derivation II

m(Φ(T )) :=

∫

Φ(T )

1 dx =

∫

T

|JΦ(x)|dx ,

1 × 1 Gauss formula:

g(xc)
m(Φ(T ))

m(T )
= f (Φ(xc)) + O(h).

If

g(x) = ch−2 m(T ) + O(h), x ∈ T

holds, then
ch−2 m(Φ(T )) = f (Φ(xc)) + O(h)
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basic algorithm

Deformation(f , T )

compute f̃ − g̃ , f̃ := c/f , g̃ = C/g ,
R

f̃
!
=

R

g̃

solve −div(v(x)) = f̃ (x) − g̃(x), x ∈ Ω, v(x) · n = 0, x ∈ ∂Ω

DO FORALL x ∈ T

solve
∂tϕ(x , t) =

v(ϕ(x,t),t)

tf̃ (ϕ(x,t))+(1−t)g̃(ϕ(x,t))
, 0 ≤ t ≤ 1, ϕ(x , 0) = x

Φ(x) := ϕ(x , 1)

ENDDO

END Deformation

realisation: v := ∇w ⇒ −∆w = f̃ − g̃ , ∂nw = 0 auf ∂Ω

total amount:

1 Poisson problem + 2N decoupled IVPs
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preliminaries

assumptions:
Let (Ti )i∈I , Ni < Ni+1 with

hi := max
e∈Ei

|e| = O(N
−1/2
i ) ∀i ∈ I (edge-length regularity)

∃0 < c, C : ch2
i ≤ m(T ) ≤ Ch2

i ∀T ∈ Ti ∀i ∈ I (size regularity)

∃ 0 < gmin < g < gmax < ∞:

1

h2
i

ci m(T ) = g(x)+O(hi ) ∀x ∈ T ∀T ∈ Ti∀i ∈ I , cs ≤ ci ≤ Cs

(similarity condition)
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definition of convergence

1. approach: comparison with “reference deformation”: ||Φh − Φ|| → 0

but:

Φ unique only by curlv
!
= 0

||Φh − Φ|| hard to compute

2. approach: q(x) = f (x)
g(x) − 1

!≈ 0 ⇒

Q0 := ||q||L2(Ω), Q∞ := ||q||L∞(Ω)

convergence: ⇔

Q0 → 0, Q∞ → 0 for h → 0
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convergence theorem

Let (Ti )i∈I be edge-length regular and fulfil the similarity condition,
0 < ε < f ∈ C1(Ω̄). Further, ||∇w − Ghwh||∞ = O(h1+δ), δ > 0 and
||Xh − X̃ || = O(h1+δ).

Then:

(T̃i )i∈I is edge-length regular.

(T̃i )i∈I is size regular.

∃c > 0:
Q0 ≤ chmin{1,δ}, Q∞ ≤ chmin{1,δ}.
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test example

Ω = [0, 1]2, tensor product mesh,

f (x) = min

{

1, max

{ |d − 0, 25|
0, 25

, ε

}}

, d :=

√

(

x1 − 1
2

)2
+

(

x2 − 1
2

)2

assumption:

||∇w − Gh(wh)||∞ = O(h2) ⇒ δ = 1

convergence of IVP solvers

RKF2B
RK4
RK3

HEUN
AB3
AB2

EE

2.0

1.0

10010

1e-1

1e-2

1e-3

1e-4

1e-5

1e-6

δ = 1 ⇒ ∆t = O(1/
√

N)
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test problem: convergence

Q0

Q∞

1.5

1.0

1e61e51e41e3

1e-1

1e-2

1e-3

Q∞ = O(h), Q0 = O(h3/2)
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grid search

deformation IVPs:
∂tϕ(x , t) = vh(ϕ(x,t),t)

tf̃h(ϕ(x,t))+(1−t)g̃h(ϕ(x,t))
, 0 ≤ t ≤ 1, ϕ(x , 0) = x

evaluation of FEM functions ⇒ grid search

raytracing search
X

X

T
old T

new

distance search
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searching times [s]

NEL distance β raytracing β brute force β

256 5.15 · 10−3 - 5.40 · 10−3 - 1.34 · 10−1 -
1,024 2.27 · 10−2 4.41 2.20 · 10−2 4.07 2.13 · 100 15.9
4,096 9.48 · 10−2 4.17 9.52 · 10−2 4.32 3.53 · 101 16.6

16,384 4.27 · 10−1 4.50 4.55 · 10−1 4.78 5.59 · 102 15.8
65,536 2.05 · 100 4.80 2.38 · 100 5.23 9.79 · 103 17.5

262,144 1.12 · 101 5.46 1.41 · 101 5.92 - -
1,048,576 6.77 · 101 6.05 9.33 · 101 6.61 - -
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runtime behaviour

1.5

to
ta
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m
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]
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1000

100

10

1

0.1

complexity: O(N3/2)
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multilevel def: basic idea

deformation on coarse grid
regular refinement
deformation on fine grid (correction step)

assumption 1:

dk := max
x∈Xk

||x − Φ(x)|| ?!
= O(h2)

assumption 2:
||Xh − X̃ ||
||x − Φ(x)|| ≤ c

⇒ ||Xh − X̃ || = O(h2)

under these assumptions:

convergence + complexity O(N)
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multilevel def: convergence

Q∞, mult lev
Q∞, one lev
Q0, mult lev
Q0, one lev

1.5

1.0

1e61e51e41e3

0.1

0.01

0.001

convergence despite of fixed time step size
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multilevel deformation: complexity

mult lev
one lev
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generic r -AFEM

r-AFEM
GRID1 := GRID

DO i = 1, imax

ui := SOLVE(f , g , GRIDi )

ηi :=ESTIMATE(ui , J)

IF (ηi < TOL) EXIT LOOP

fmon,i :=MON(ηi )

GRIDi+1 := DEFORM(fmon,i , GRIDi )
IF (∃ non-convex elements) RETURN

END DO

J(uh) := J(ui ); η := ηi

RETURN J(uh), η

END r-AFEM

Mon(v)(x) := [−c1 ln(Smoothi (v(x))) + c2] · area(x)
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test example

Poisson equation

Ω = [−0.5, 0.5]2/[0, 0.5]2

u(r , ϕ) = r2/3 sin(2/3ϕ)

desired: gradient error
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r -adapted mesh
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gradient error

r-adaptive
regular

0.5

||∇
u
−

∇
u

h
||

1e71e61e51e41e3

1e-2

1e-3

1e-4

optimal rate of convergence by r -adaptivity

FEAST concepts MFLOP/s-rate preserving adaptivity grid deformation: derivation and convergence analysis practical aspects multilevel deformation r - and



rh-adaptivity

rh-AFEM
η0 := ∞
GRID1 := GRID
DO i = ilev ,min, ilev ,max

DO j = 1, imax,r

uj := SOLVE(f , g , GRIDj )

ηj := ESTIMATE(uj , J)

IF (ηj < TOL) THEN

J(uh) := J(uj ); η := ηj

RETURN J(uh), η
END IF

IF (ηj > cr ηj−1) EXIT LOOP

fmon,j :=MON(ηj )

GRIDj+1 :=DEFORM(fmon,j , GRIDj )
IF (∃ non-convex elements) RETURN

END DO

GRID1 := PROLONGATE(GRIDj)

END DO

J(uh) := J(uj); η := ηj

END rh-AFEM
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comparison of runtime

 10

 100

 1000

 10000

N
E
L
 = 768

N
E
L
 = 3k

N
E
L
 = 12k

N
E
L
 = 49k

N
E
L
 = 196k

N
E
L
 = 786k

N
E
L
 = 3M

to
ta

l 
ru

n
ti

m
e
 [

s]
r-AFEM

rh-AFEM

FEAST concepts MFLOP/s-rate preserving adaptivity grid deformation: derivation and convergence analysis practical aspects multilevel deformation r - and



comparison

rh-AFEM
r -AFEM
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problem setting and example

generalised Poisson equation:

−div(D·∇u) = f , D =

(

cos θ sin θ
− sin θ cos θ

)(

k1 0
0 k2

)(

cos θ − sin θ
sin θ cos θ

)

.

weak formulation:

(D · ∇u,∇ϕ) = (f , ϕ) ∀ϕ ∈ H1
0 .

test example: Ω = [0, 1]2, k1 = 1000, k2 = 1

W
1

W
2

W
3

W
4

θ =

{

−π/6 , x ∈ Ω1 ∪ Ω4

π/6 , x ∈ Ω2 ∪ Ω3
.

f (x) =

{ 1
|ω| , x ∈ ω

0 , x 6∈ ω
, ω = [7/18, 11/18]2.

desired: point error in (1/4, 1/4)
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error estimation by dwr

(∇u,∇ϕ) = (f , ϕ) ∀ϕ ∈ H1
0 , u|∂Ω = 0

desired: evaluation of derived quantities

Jx0(ϕ) := ϕ(x0) (point evaluation),
JΓ(ϕ) :=

R

Γ
∂nϕds (evaluation along a line),

JD/L(ϕ, χ) :=
R

Γ
n · σ(ϕ, χ) · ex/y ds (lift /drag computation).

dual problem:
(∇z ,∇ϕ) = J(ϕ) ∀ϕ ∈ H1

0

|J(u − uh)| = |(∇u,∇z) − (∇uh,∇z)|
= |(f , z − ϕh) − (∇uh,∇(z − ϕh))| ∀ϕh ∈ Vh
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error estimation by dwr
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primal and dual solution
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numerical results

rh-adaptive
regular

|u
−

u
h
|(1

/4
,1

/4
)

1e51e41e3

1e-3

1e-4

1e-5

1e-6

1e-7
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r -adapted grid
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advanced application: CFD

incompressible Navier-Stokes equation (3D)

based upon FeatFlow

fictitious boundary technique

[picture: Matthias Miemczyk]
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Summary

Finite Element code

local band matrices

generalised DD/MG approach (ScaRC)

GPU integration

MFLOP/s preserving adaptivity

grid deformation

multilevel deformation

r - and rh-adaptivity

anisotropic diffusion

www.feast.tu-dortmund.de
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Thank you for your attention!
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