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The basic equations of fluid dynamics
Navier-Stokes equations

∂tv + ∇ ·
(
v vT

)
− ν∆v + 1

ρ
∇p + fc e3 × v =

 f̂−g
 ,

∇ · v = 0 .

Unknowns: velocity vector v =
[
ũ ṽ w̃

]T
and pressure p ;

parameters: constant fluid density ρ , constant kinematic viscosity ν , Coriolis
coefficient fc , horizontal body forces f̂ , and acceleration due to gravity g .

Enriched with a surface boundary condition for the (x, y)−dependent variable ξ

at z = ξ : d(ξ − z)
dt

= 0 ⇒ ∂ξ

∂t
+ ũ

∣∣∣∣∣
ξ

∂ξ

∂x
+ ṽ

∣∣∣∣∣
ξ

∂ξ

∂y
− w̃

∣∣∣∣∣
ξ

= 0 .

The bottom boundary b has to be known to specify the geometry correctly.
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Simplifications of the model

For the purpose of this talk let us assume...

constant water density,
no salinity or temperature variations,
omission of diffusive terms (mainly due to turbulent mixing, not molecular friction).

Shallowness
Water depth � horizontal diameter of the domain.
⇒ Analysis of scales: vertical pressure derivative balances the gravity force.
⇒ Hydrostatic pressure assumption (pressure is only due to water weight)

∂p

∂z
= − g ρ ,

⇒ p(z) = p(ξ)−
ˆ ξ

z

∂ p

∂ζ
dζ = pa + g ρ (ξ − z) ,

⇒ Omission of z−component of momentum equations.
⇒ The pressure is no longer an unknown in the system.
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3D shallow-water equations

Using the notation u =
ũ
ṽ

 and [·]x,y to denote the two horizontal components the

system becomes

∂ξ

∂t
+ ũ

∣∣∣∣∣
ξ

∂ξ

∂x
+ ṽ

∣∣∣∣∣
ξ

∂ξ

∂y
− w̃

∣∣∣∣∣
ξ

= 0 , (1)

∂u

∂t
+ ∇ ·

(
v uT

)
− ν∆u + g∇x,y ξ + fc [e3 × v]x,y = f , (2)

∇ · v = 0 . (3)

The unknowns are the velocity v as well as the free surface elevation ξ.
The right hand side f consists of f̂ and the atmospheric pressure gradient.

System (1)–(3) is suitable for most applications and can be solved properly with a lower
resolution than the full Navier-Stokes equations.
Challenges of solving the 3D shallow-water equations

The free surface requires a moving 3D grid.
Equation (1) is solved on the 2D surface boundary.
Computational cost!
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Integration over the total height of water

H = ξ − b , u := 1
H

ˆ ξ

b

ũ dz , v := 1
H

ˆ ξ

b

ṽ dz .

0 =
ˆ ξ

b

∇ · v dz =
ˆ ξ

b

∂ũ
∂x

+ ∂ṽ

∂y
+ ∂w̃

∂z

 dz

= ∂

∂x

ˆ ξ

b

ũ dz − ũ
∣∣∣∣∣
ξ

∂ξ

∂x
+ ũ

∣∣∣∣∣
b

∂b

∂x

+ ∂

∂y

ˆ ξ

b

ṽ dz − ṽ
∣∣∣∣∣
ξ

∂ξ

∂y
+ ṽ

∣∣∣∣∣
b

∂b

∂y

+ w̃
∣∣∣∣∣
ξ
− w̃

∣∣∣∣∣
b

= ∂(uH)
∂x

+ ∂(v H)
∂y

+ ∂ξ

∂t
− ∂b

∂t

= ∂(uH)
∂x

+ ∂(v H)
∂x

+ ∂H

∂t
.
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Depth-averaged shallow-water equations

∂H

∂t
+∇ · (uH) = 0,

∂(uH)
∂t

+∇ · (uuH) + g H
∂ξ

∂x
+ cf |u|u− fc v H −H f1 = F1 .

∂(v H)
∂t

+∇ · (vuH) + g H
∂ξ

∂y
+ cf |u| v + fc uH −H f2 = F2 .

Unknowns: H = ξ − b (total height of water), with ξ free surface elevation, b
bathymetry; u =

[
u, v

]T
(depth-averaged horizontal velocity);

parameters: g (acceleration due to gravity), cf (friction coefficient), fc (Coriolis

constant), and force terms f =
[
f1, f2

]T
, F =

[
F1, F2

]T
.

Further elimination is required:

g H∇ξ = g H∇(H + b) = g

2
∇H2 + g H∇b

= g(ξ − b)∇ξ − g ξ∇b + g ξ∇b

= g∇
ξ

ξ
2
− b


 + g ξ∇b.
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Conservative and well-balanced formulation

The conserved variables are the height of water and momentum.

∂(ξ − b)
∂t

+∇ · (uH) = 0 ,
∂(uH)
∂t

+ ∇ ·
uH ⊗ uH

H
+ g

2
H2 1

 + g H∇b + cf

∣∣∣∣∣∣
uH

H2

∣∣∣∣∣∣ uH − fc e3 × uH = 0 .

flow boundary : uH = (uH)D ,
land boundary : uH · ν = 0 ,

outflow boundary : −
river boundary : H = HD , uH = (uH)D ,
sea boundary : H = HD ,
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Examples

X,m

Y
,m
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Figure: Bathymetry for Galveston Bay over computational mesh. All lengths are in meters.
Modified Shallow-Water Equations for Direct Bathymetry Reconstruction · Oberseminar LS3 · Hennes Hajduk · TU Dortmund · 9/26



Idea

Standard shallow water equations use bathymetry as a parameter to produce
approximations of free surface elevation.
Idea in [1,2]: switch roles of parameter and solution,
Benefit: classical inverse problem approach avoided.

Goal of the present work

Generalize the approach in [2] to incorporate transient flows, and use an advanced
finite element method on unstructured grids.

[1] A.F. Gessese, M. Sellier, E. Van Houten and G. Smart: Reconstruction of river bed
topography from free surface data using a direct numerical approach in
one-dimensional shallow water flow, Inverse Problems, 2011.
[2] A.F. Gessese, M. Sellier: A direct solution approach to the inverse shallow-water
problem (two-dimensional analog), Mathematical Problems in Engineering, 2012.
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Characterization as PDE systems

Primary unknowns:

cT :=
[
H (uH)T

]T =:
[
H U V

]T
.

The forward (ζ = 1) and inverse (ζ = 0) problems can be expressed as

∂tc + ∇ · Aζ(c) = Zζ(c) where

Aζ


H
U
V


 =



U V

U 2

H
+ ζ

g

2
H2 U V

H
V U

H

V 2

H
+ ζ

g

2
H2


,

Zζ



H
U
V


 =


0

−g H ∂x(ζ b + (1− ζ)ξ)− τbf U + fc V

−g H ∂y(ζ b + (1− ζ)ξ)− τbf V − fcU

 .
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Characterization of the forward and inverse problem

Eigenvalues and eigenvectors of the first order operator

Let a =
√
g H be the celerity, and let

√
x2 + y2 = 1. The eigenvalues and

corresponding eigenvectors of
∂

∂c

Aζ(c)
x
y


 are

forward (ζ =1) : inverse (ζ = 0) :

λ0 =U
H
x + V

H
y, λ0 =U

H
x + V

H
y,

v0 =
[
0, −y, x

]T
, v0 =

[
0, −y, x

]T
,

λ1,2 =λ0± a, λ1,2 =λ0,

v1,2 =
1, U

H
± a x, V

H
± a y

 , v1 =
1, U

H
,
V

H

 ,
fully hyperbolic degenerate hyperbolic.
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Discretization of the forward problem

Discontinuous Galerkin finite element space

VDG
h :=

ϕh ∈ L
1(Ω) : ϕh

∣∣∣∣∣
T

(x1, x2) = a x1 + b x2 + c , a, b, c ∈ R ∀T ∈ Th

 .

Seek ch(t) ∈
(
VDG
h

)3
, such that for almost all t ∈ (t0, tend) , ∀T− ∈ Th , with outer unit

normal νT− , and ∀ψh ∈ P1(T−)3 , the following holds:ˆ
T−
ψh · ∂tch(t) dx =

ˆ
T−

∇ψh : A1(ch(t)) dx−
ˆ
∂T−

ψh ·AνT −
∧

(c−h (t), c+
h (t)) ds

+
ˆ
T−
ψh ·Z1(ch(t)) dx ,

AνT −
∧

(c−h (t), c+
h (t)) describes the advective transport over ∂T− in direction νT− and

is a solution to a Riemann problem.
Time stepping is performed using the SSP Runge-Kutta method of order 2, i.e.
Heun’s method.
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Flux approximation

Lax-Friedrichs approximation and Roe-Pike mean state

On an edge E ⊂ ∂T− of element T−, let the one-sided limits of ch be denoted by
c−h , c

+
h , and let νT− be the outer unit normal to T−. We define λ = λ(ch , νT− , g) as

the largest absolute eigenvalue of

∂

∂c
(A1(c)νT−) , which gives λ =

∣∣∣∣∣∣
U
H

V

H

νT−

∣∣∣∣∣∣ +
√
gH .

Due to discontinuity we need certain averages of the unknowns

λ̂ = λ̂(ch , νT− , g) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



√
H+
h U

−
h +

√
H−h U

+
h

H−h
√
H+
h + H+

h

√
H−h√

H+
h V

−
h +

√
H−h V

+
h

H−h
√
H+
h + H+

h

√
H−h


· νT−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+

√√√√g
2

(H−h + H+
h ) .

The advective Lax-Friedrichs flux on int(E) in direction νT− is

AνT −
∧

(c−h , c+
h ) := 1

2
((
A1(c−h ) +A1(c+

h )
)
νT− + λ̂

(
c−h − c+

h

))
.
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Designing the scheme for the inverse problem

The continuous nature of bathymetry motivates the use of a continuous finite
element space for the inverse problem.
Steady states of the forward problem are desired to be preserved in the inverse
problem as well.

Consequences

A combination of the CG method for bathymetry and a DG method for momentum
may be useful.
As long as the same order of polynomial spaces is used, the subspace property
VCG
h ⊆ VDG

h holds.
The flux terms should be the same in the momentum equations of forward and
inverse problem.
Some contributions of the fluxes in the inverse problem consist only of the known
free surface elevation.

Modified Shallow-Water Equations for Direct Bathymetry Reconstruction · Oberseminar LS3 · Hennes Hajduk · TU Dortmund · 15/26



Discretization of the continuity equation

The primary unknown must be the bathymetry, due to the use of a continuous basis.

∂tb−∇ · (uH) = ∂tξ .

For a triangular grid with L vertices xi and K elements let ϕ1, . . . , ϕL be the piecewise
linear nodal basis functions of the linear Lagrange elements, i.e. ϕi(xj) = δij and
{ψkj : k = 1, . . . , K, j = 1, 2, 3} a basis of the DG space, with supp ψkj = Tk .

The semi-discrete formulation is
L∑
j=1

∂tbj

ˆ

Ω

ϕiϕj +
K∑
k=1

3∑
l=1

(uH)kl ·
ˆ

Tk

∇ϕi ψkl −
ˆ

∂Ω

ϕiuH · ν =
K∑
k=1

3∑
l=1
∂tξkl

ˆ

Tk

ϕi ψkl ,

or written in matrix-vector form with rectangular matrices A1,2,Mm ∈ RL×3K

M ∂tb + A1U + A2V = Mm ∂tξ + f

Interior edge contributions cancel due to the continuity of the test functions.
f combines the contributions of boundary integrals where uH is prescribed.
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Solving the continuity equation

Again, Heun’s method is employed for time-stepping.
Replacing the consistent mass matrix M by the lumped mass matrix ML means no
linear system has to be solved.
The ill-conditioning of the inverse problem requires the use of regularization.
Adding diffusive terms in the continuity equation results in the desired stabilization.
The difference between lumped and consistent mass matrix can be seen as a
discretization of the Laplace operator.

Hence, the equation becomes

ML ∂tb + A1U + A2V + β(ML −M) b = Mm ∂tξ + f ,

and is solved as follows

b∗ = bn + ∆tnM−1
L

Mm
ξ∗ − ξn

∆tn
+ fn − A1U

n − A2V
n − β(ML −M) bn

 ,

bn+1 = 1
2
bn + 1

2
b∗ + ∆tn

2
M−1
L

Mm
ξn+1 − ξ∗

∆tn
+ fn+1 − A1U

∗ − A2V
∗ − β(ML −M) b∗

 .
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Forward problem setup

space-time cylinder:
Ω = (0, 1)× (0, 1) [km] (t0, tend) = (0, 3) [h]

initial conditions:

ξ(0) ≡ 0 [m] (uH)(0) ≡
[
4 0

]T [m2/s]
boundary conditions:

(uH)(t) · ν ≡ 0 [m2/s] on (0, 1000)× {0, 1}
(uH)D(t) ≡

[
4 0

]T [m2/s] on {0} × (0, 1000)
ξ(t) ≡ 0 [m] on {1} × (0, 1000)

physical parameters:
g = 9.81 [m/s2] fc = 3.0 · 10−5 [1/s]
cf = 10−3 [1/s]

numerical parameters:
h = 40 [m] ∆t = 0.1 [s] .
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Spatial grid over the exact bathymetry

b(x, y) = ΠL2

V CG
h (Ωh)

(
−2−

(
1− e−2·10−5 (x−800)2−10−5 (y−700)2)

br(x, y)
)
.

Figure: The analytical solution of the inverse problem
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Stationary solution of the forward problem

Convergence criterion:

∥∥∥∥ξn+1 − ξn
∥∥∥∥
l2(Th) :=

 K∑
k=1

3∑
j=1

(
ξn+1
kj − ξnkj

)2


1
2

< εf = 10−8 [m] .

(a) Steady-state surface elevation (b) Steady-state velocity (coloring corresponds to the magnitude of the
velocity vector)

Modified Shallow-Water Equations for Direct Bathymetry Reconstruction · Oberseminar LS3 · Hennes Hajduk · TU Dortmund · 20/26



Solution of the inverse problem

Figure: Bathymetry reconstruction

Convergence criterion: ∥∥∥∥bn+1 − bn
∥∥∥∥
l2(Th) < εi = 10−8 [m] .

Convergence according to this criterion is reached after 246473 iterations. The
l∞(Th)−error is 7.85µm.
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Time-dependent setup and forward problem solution

Change above configuration to include the time-dependent flow boundary condition

(uH)D =
0.5 cos

 π t

86400

 + 3.5 0
T , and use (uH)(0) ≡

[
4 0

]T
.

Figure: Evolving free surface (top) and bathymetry (bottom)
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Ill-conditioning of the inverse problem

For absolute an noise level ι > 0 , add uniformly distributed random numbers in
(−ι, ι) to the free surface values in the grid points. A representative result of the
reconstruction for ι = 10−4m is seen below.

(a) Perturbed solution of the forward problem (b) Bathymetry reconstruction from noisy data

The amplification of data errors in the reconstruction indicates the ill-posedness of
the problem.
The result gets even worse on refined grids.
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Observations on reconstruction from noisy data

A steady-state is reached if ι is not too large.
We observe a one-way compatibility consistent to the subspace property
VCG
h ⊆ VDG

h : Using the osciallatory bathymetry as input for the forward problem,
we get a different result, than the original perturbed surface elevation.
This new steady-state reconstructs the osciallatory bathymetry accurately.

(c) Solution of the forward problem with osciallatory bathymetry (d) Reconstruction of oscillatory bathymetry

Modified Shallow-Water Equations for Direct Bathymetry Reconstruction · Oberseminar LS3 · Hennes Hajduk · TU Dortmund · 24/26



Regularization with artificial diffusion

Previous results were computed with regularization parameter β = 0. Using β = 80 m2

s ι

on the coarse and β = 500 m2

s ι on the refined grid we get the following results.

(e) Reconstruction on the coarse grid for ι = 0.1mm, β =
0.008m2/s

(f) Reconstruction on the coarse grid for ι = 1mm, β =
0.08m2/s

(g) Reconstruction on the fine grid for ι = 0.1mm, β =
0.05m2/s

case iterations l∞(Th)-error in cm
e 11532 0.94
f 13734 7.49
g 19725 1.90
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Summary and outlook

Summary:
Design of a new coupled CG-DG method for bathymetry reconstruction from a
modification of the shallow water equations.
The discretization ensures compatibility to the DG scheme for the forward problem
in the case VCG

h ⊆ VDG
h .

The examples show the potential of the methodology.

Outlook:
The optimal choice of regularization parameter β needs to be investigated.
Different types of artificial diffusion, such as TV-regularization should be compared.
Investigation of applicability using experiments.
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