

Grid Adaptation by Deformation in 2D and 3D

Michael Hein, Matthias Miemczyk, Raphael Münster

7. December 2006

hae	

Matthias and Michael

Outline

Raphael

- Objects in a numerical simulation
- Strategy for minimum distance computation
- Dynamic Hierarchical Data Structures
- Rejection criterion for distance computation
- Further acceleration methods

2 Matthias and Michael

- 3D search algorithm
- Efficient 3D search algorithm
- Numerical results

- Future Work (Topics for diploma thesis?)
- Bibliography

Objects in a numerical simulation

Objects in Featflow

000000

- Circles, spheres, boxes, rectangles or compound objects of these primitives
- Goal: Use of multiple arbitrary shaped objects
- Represent objects by closed NURBS curves or NURBS surfaces

Requirements for ficticious boundary methods and grid adaptation

- Solve the containment problem
- Compute the minimum distance between a grid point and an arbitrary shaped object

Matthias and Michael	

Strategy for minimum distance computation

Ray tracing methods in distance computation

- Use of hierarchical data structures to subdivide search space
- Quadtrees, octrees, k-d-trees, bounding volume hierarchies(spheres, circles, rectangles, AABBs)
- Quickly reject objects/regions that are not part of the solution

Matthias and Michael

Dynamic Hierarchical Data Structures

Choice of acceleration structures

- Hierarchy of axis aligned bounding rectangles (AABR tree) of the objects
- Quickly reduce the candidates on the bounding rectangle level
- Hierarchy of circles to further decompose the objects
- Structures can be updated quickly without rebuilding them
- Reuse data structures for collision detection

Rejection criterion for distance computation

Lower bound / upper bound principle

- Elements (nodes) in a hierarchy supply methods to compute lower and upper bounds for the distance
- For each level in the hierarchy an upper bound is computed
- When a node's lower bound is worse than the upper bound it can be pruned

Lower bound / upper bound search example

	C	

Matthias and Michael

Further acceleration methods

Incorporating time and space coherency

- A global upper and lower bound for the current grid point can be constructed from the preceding grid point
- Lazily update the bounding rectangle hierarchy
- Make use of information from the last time step (point inside, long distances,...)

Distancefield

Raphael

Matthias and Michael

3D search algorithm

problems in existing implementation

- slow & inaccurate raytracing
- ray-quad intersection was calculated by projecting the quad into the plane
- raytracing failed quite often, especially for non-planar faces
- fallback to brute-force search caused unacceptable time complexity

Search with distance information

general idea

- no expensive raytracing
- only cheap calculation of distances
- next element is found by calculating the smallest distance to the search point

Algorithm one

- check if point is within element
- distance from search point to the center of each face
- only cheap calculation of distances for six faces
- next element is adjacent element to the face with smallest distance

Algorithm one

ha	iel		

Matthias and Michael

Search with distance information

Algorithm two

- check if point is within element
- distance from searchpoint to the center of the element
- distance calculation for six adjacent elements
- go to the element with smallest distance

Algorithm two

ha	el	

Matthias and Michael

Search with distance information

Algorithm three, combination of cheap distance search and raytracing

- go to element with smallest global distance
- check if point is within element
- if not, start raytracing search

Matthias and Michael

Search with distance information

Conclusion for distance-searches

- for quite regular elements distance search is an option
- problems arise as soon as the grid contains distorted elements
- every distance-search had an Achilles heel
- pure raytracing is not slower then combination

New raytracing implementation

New raytracing implementation

- separate the quad faces into two triangles
- calculate ray-traingle intersection
- fast and accurate, fails only for heavily distorted elements

Matthias and Michael

Numerical results

Matthias and Michael

Numerical results

Raphael 0000000 Matthias and Michael

Numerical results

Raphael 0000000 Matthias and Michael

Numerical results

Raphael 0000000 Matthias and Michael

Numerical results

Raphael 0000000 Matthias and Michael

Numerical results

Raphael 0000000

Matthias and Michael

Numerical results

Matthias and Michael

Future work

Future Work: Numerical analysis (Raphael)

- comparison with numerical methods (eikonal equation)
- extensive performance tests
- error estimation

Possible Todo's

- Laplace and Umbrella-Smoothing (work in progress)
- parallel calculation of monitor function (OpenMP?)
- work on memory usage, for larger problems
- fix multigrid solver

Future work

Complex geometries (Diploma thesis Michael)

- Objects described by NURBS-surfaces and NURBS-patches
- Requirement: Efficient method for distance calculation
- Requirement: Efficient data structures
- Example below: 1578 patches (original data from Volkswagen)[1]

Raphael	Matthias and Michael

Future work

Diploma thesis (Matthias)

- Objects described by surface triangulation
- grid deformation with fictitious boundary
- versus
- exact grid deformation and refinement on the boundary of the simulated object
- or
- combination of both methods

future work

Raphael 0000000 Matthias and Michael

Bibliography

Bibliography

 REUSCHE, L.: Conversion of Trimmed NURBS Surfaces into Subdivision Surfaces.
Diplomarbeit, Technische Universität Carolo-Wilhelmina zu Braunschweig, 2005.