

Hierarchical Solution Concepts for Flow Control Problems

Michael Hinze, Stefan Turek

Part of the SPP1253: Optimization with PDE's

Michael Köster

Institute for Applied Mathematics TU Dortmund

Freising, 30. – 31.03.2009

1st period: Flow Control Model Problemtechnische universität

Distributed Control for the nonstationary Navier-Stokes equation with tracking-type functional for a given *z*:

$$J(y,u) = \frac{1}{2}||y-z||_Q^2 + \frac{\alpha}{2}||u||_Q^2 + \frac{\gamma}{2}||y(T)-z(T)||_{\Omega}^2 \quad \to \quad \min\{y,y\} = \frac{1}{2}||y(T)-z(T)||_{\Omega}^2$$

on $Q = \Omega \times [0, T]$ such that

$$y_t - \nu \Delta y + (y \nabla) y + \nabla p = u \text{ in } Q$$

 $-\nabla \cdot y = 0 \text{ in } Q$ + BC

No constraints.

Design goals for optimal control tools

technische universitä

Moderate performance measure; for C not too large (≈ 10):

$$\frac{\text{costs for optimization}}{\text{costs for simulation}} \le C$$

By modern numerical CFD techniques $(\rightarrow$ special FEM on solution adapted grids, MG+Newton solvers)

costs for simulation
$$= O(N)$$

Aim: costs for optimization $\stackrel{!}{=} O(N)$

Distributed Control of nonstationary flowechnische universität

Corresponding KKT-System (unconstrained case):

$$y_t - \nu \Delta y + (y\nabla)y + \nabla p = u$$
 in Q
 $-\nabla \cdot y = 0$ in Q

$$-\lambda_t - \nu \Delta \lambda - (y\nabla)\lambda + (\nabla y)^t \lambda + \nabla \xi = (y - z) \text{ in } Q$$

$$-\nabla \cdot \lambda = 0 \text{ in } Q$$

$$u = -\frac{1}{\alpha}\lambda$$
 in Q

- + boundary conditions
- + initial condition
- + terminal condition $\lambda(T) = \gamma(y(T) z(T))$ in Ω

Distributed Control of nonstationary flowechnische universität

Corresponding KKT-System (unconstrained case):

$$y_t + N(y)y + \nabla p + \frac{1}{\alpha}\lambda = 0 \quad \text{in } Q$$

$$-\nabla \cdot y = 0 \quad \text{in } Q$$

$$-\lambda_t + N^*(y)\lambda + \nabla \xi - y = -z \quad \text{in } Q$$

$$-\nabla \cdot \lambda = 0 \quad \text{in } Q$$

- + boundary conditions
- + initial condition
- + terminal condition $\lambda(T) = \gamma(y(T) z(T))$ in Ω

Properties of the KKT system

Observation:

• KKT-system \rightarrow *elliptic* BVP in space/time

Idea:

 Apply modern O(N) ingredients from CFD (Multigrid + Newton) to this BVP!

Feasible?

Space-time discretization

Discretization in space+time leads to a system

$$A(x)x = b$$

in the form (here e.g. for 2 timesteps):

 \rightarrow Sparse, (block) tridiagonal system

Design of an efficient optimal control solverische universität

Nonlinearity: Newton method for quadratic convergence

$$x^{i+1} = x^i + A'^{-1}(x^i)(b - A(x^i)x^i)$$

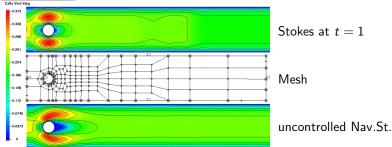
- Linear subproblems: space-time Multigrid solver
 - \rightarrow using Block-Jacobi/Block-SOR smoothing techniques
- Linear subproblems in space: Monolithic Multigrid solver
 - \rightarrow using 'local Pressure-Schur complement' techniques in each timestep for the coupled Navier–Stokes subproblems

1st period: Proof of Concept + Prototype for low Re $\sqrt{}$

Numerical example

Flow-around-cylinder

• Target flow z: Stokes flow, $t \in [0, 1]$, starting from rest



- Optimal control problem: Navier–Stokes, Re = 20
- Coarse mesh: Standard DFG benchmark
 - \rightarrow 1404 DOF's in space, 5 timesteps, $\Delta t := 0.2$
 - \Rightarrow 8 424 DOF's, \times 8 per level

Numerical example

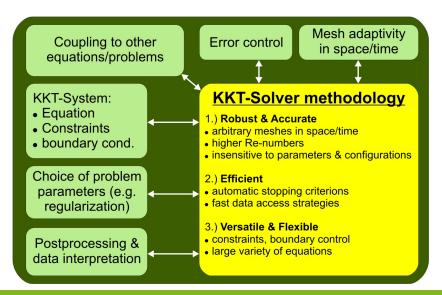
Convergence of the Newton solver

		Simulation			Optimisation		
Δt	Space-Lv.	#NL	#MG	⊘#NL	⊘#MG	#NL	#MG
1/20	3	63	312	3	16	4	47
1/40	4	123	709	3	18	4	14
1/80	5	246	1589	3	20	4	9

- Nonlinear solver gained 5 digits
- Space-time MG gained 2 digits per step
- Space-preconditioner gained 2 digits per step

The role of the project in flow control

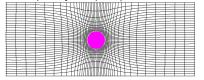
technische universität dortmund



Main goal 1: Higher accuracy + stability echnische universität

Realization & numerical analysis of

- higher order discretisations in space/time (Q_2/P_1 , \tilde{Q}_2/P_1 , CN, FS- θ)
- r/h-adaptivity in space/time \rightarrow convergence properties?



- stabilization techniques (for higher Re-numbers)
 - e.g. EO-stabilisation (only in space!)

$$j(u,v) = \sum_{\text{edge}E} \gamma |E|^2 \int_{E} [\nabla u] [\nabla v] d\sigma$$

→ Effect on the solution?

Main goal 2: Improved solver efficiency technische universität

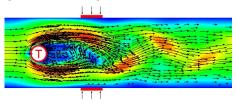
- Design & numerical analysis of space-time smoothers/solvers
 - MG convergence properties for $Q_2/P_1 + CN$ in the Stokes case
 - Coupling between Δt and h?
- Numerical analysis of stopping criteria for inner/outer solvers
- HPC techniques, parallel computing
 - Data management & parallelization; e.g. Block Jacobi preconditioner

$$A(x) = \begin{pmatrix} \begin{pmatrix} N(x_0) & M & & & & \\ M & N(x_1) & M & & & \\ & M & N(x_3) & M & & \\ & & \ddots & & \ddots \end{pmatrix} \Rightarrow \tilde{A}(x) = \begin{pmatrix} N(x_0) & & & & \\ & N(x_1) & & & & \\ & & N(x_3) & & & \\ & & & \ddots & & \end{pmatrix}$$

 \Rightarrow Simultaneous calculation of timesteps

Main goal 3: Towards real-life problems technische universität

• Complex flow geometries + higher Re numbers



- Constraints + Boundary Control
- Non-Newtonian + Non-isothermal flow

$$y_t - \nabla \cdot (\nu(y, \Theta)\mathbf{D}(y)) + y\nabla y + \nabla p - Gr\Theta g = f_1$$

 $\Theta_t - (1/Pr)\Delta\Theta + y\nabla\Theta = f_2$

ullet Preparation for 3D ullet Basically the same concept, but...

Summary & Outlook

1st period: Proof of concept

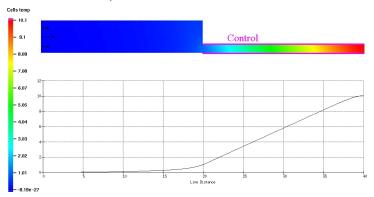
- Design & numerical analysis of a flow solver prototype
- Support for low Re number flow problems

2nd period:

- ullet Design & numerical analysis of efficient + robust solver components
- Support for realistic, nonstationary flow problems

Example: Temperature by friction

Friction leads to a temperature increase in the rear area of the channel:

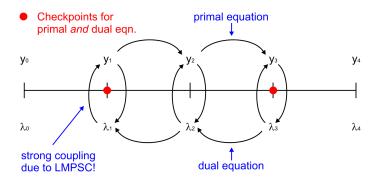


$$y_t - \nabla \cdot (\nu(y, \Theta)\mathbf{D}(y)) + y\nabla y + \nabla p - Gr\Theta g = f_1$$

$$\Theta_t - (1/Pr)\Delta\Theta + y\nabla\Theta + D(y) : D(y) = f_2$$

→ How to control to prevent the temperature increase?

Checkpointing in the One-shot approach technische universität



- ullet Checkpoints o nonlinear subproblems of the same kind.
- High computational costs necessary for recomputation
 → due to strong coupling by LPSC!