

Hierarchical Solution Concepts for Flow Control Problems Michael Hinze, Stefan Turek

Part of the SPP1253: Optimization with PDE's

Michael Köster

Institute for Applied Mathematics TU Dortmund

Kloster Banz, 04. - 06.10.2009

1st period: Flow Control Model Problem technische universität

Distributed Control for the nonstationary Navier-Stokes equation with tracking-type functional for a given z:

$$J(y, u) = \frac{1}{2} ||y - z||_Q^2 + \frac{\alpha}{2} ||u||_Q^2 + \frac{\gamma}{2} ||y(T) - z(T)||_{\Omega}^2 \quad \to \quad \min!$$

on $Q = \Omega \times [0, T]$ such that

$$y_t - \nu \Delta y + (y \nabla)y + \nabla p = u \quad \text{in } Q \ - \nabla \cdot y = 0 \quad \text{in } Q + \mathsf{BC}$$

No constraints.

Design goals for optimal control tools

Moderate performance measure; for C not too large (\approx 10):

 $\frac{\text{costs for optimization}}{\text{costs for simulation}} \leq C$

By modern numerical CFD techniques (\rightarrow special FEM on solution adapted grids, MG+Newton solvers)

costs for simulation = O(N)

Aim:

costs for optimization
$$\stackrel{!}{=} O(N)$$

Distributed Control of nonstationary flowechnische universität

Corresponding KKT-System (unconstrained case):

$$y_t - \nu \Delta y + (y \nabla)y + \nabla p = u$$
 in Q
 $-\nabla \cdot y = 0$ in Q

$$\begin{aligned} -\lambda_t - \nu \Delta \lambda - (y \nabla) \lambda + (\nabla y)^t \lambda + \nabla \xi &= (y - z) & \text{in } Q \\ -\nabla \cdot \lambda &= 0 & \text{in } Q \end{aligned}$$

$$u = -\frac{1}{\alpha}\lambda$$
 in Q

- + boundary conditions
- + initial condition
- + terminal condition $\lambda(T) = \gamma(y(T) z(T))$ in Ω

Distributed Control of nonstationary flowechnische universität

Corresponding KKT-System (unconstrained case):

$$y_t + N(y)y + \nabla p + \frac{1}{\alpha}\lambda = 0 \quad \text{in } Q$$

$$-\nabla \cdot y = 0 \quad \text{in } Q$$

$$\begin{aligned} -\lambda_t + \mathsf{N}^*(y)\lambda + \nabla\xi - y &= -z & \text{in } Q \\ -\nabla \cdot \lambda &= 0 & \text{in } Q \end{aligned}$$

- + boundary conditions
- + initial condition
- + terminal condition $\lambda(T) = \gamma(y(T) z(T))$ in Ω

Properties of the KKT system

Observation:

• KKT-system \rightarrow *elliptic* BVP in space/time

Idea:

• Apply modern *O*(*N*) ingredients from CFD (Multigrid + Newton) to this BVP!

Feasible?

Space-time discretization

Discretization in space+time leads to a system

A(x)x = b

in the form (here e.g. for 2 timesteps):

 \rightarrow Sparse, (block) tridiagonal system

Design of an efficient optimal control solver ische universität

• Nonlinearity: Newton method for quadratic convergence

$$x^{i+1} = x^i + A'^{-1}(x^i)(b - A(x^i)x^i)$$

Linear subproblems: space-time Multigrid solver
→ using Block-Jacobi/Block-SOR smoothing techniques

• Linear subproblems in space: Monolithic Multigrid solver

 \rightarrow using 'local Pressure-Schur complement' techniques in each timestep for the coupled Navier–Stokes subproblems

1st period: Proof of Concept + Prototype for low Re $\sqrt{}$

Numerical example

technische universität dortmund

Flow-around-cylinder

• Target flow z: Stokes flow, $t \in [0, 1]$, starting from rest

- Optimal control problem: Navier-Stokes, Re = 20
- <u>Coarse mesh</u>: Standard DFG benchmark \rightarrow 1404 DOF's in space, 5 timesteps, $\Delta t := 0.2$ \Rightarrow 8424 DOF's, ×8 per level

Convergence of the Newton solver

		Simulation				Optimisation	
Δt	Space-Lv.	#NL	#MG	⊘#NL	⊘#MG	#NL	#MG
1/20	3	63	312	3	16	4	47
1/40	4	123	709	3	18	4	14
1/80	5	246	1589	3	20	4	9

- Nonlinear solver gained 5 digits
- Space-time MG gained 2 digits per step
- Space-preconditioner gained 2 digits per step

The role of the project in flow control

Mesh adaptivity Coupling to other Error control in space/time equations/problems KKT-System: **KKT-Solver** methodology Equation 1.) Robust & Accurate Constraints arbitrary meshes in space/time boundary cond. higher Re-numbers insensitive to parameters & configurations Choice of problem 2.) Efficient parameters (e.g. automatic stopping criterions fast data access strategies regularization) 3.) Versatile & Flexible constraints, boundary control Postprocessing & large variety of equations data interpretation

Main goal 1: Higher accuracy + stability dortmund

Realization & numerical analysis of

- higher order discretisations in space/time (Q_2/P_1 , \tilde{Q}_2/P_1 , CN, FS- θ)
- r/h-adaptivity in space/time \rightarrow convergence properties?

- stabilization techniques (for higher Re-numbers)
 - e.g. EO-stabilisation (only in space!)

$$j(u, v) = \sum_{edge E} \gamma |E|^2 \int_E [\nabla u] [\nabla v] d\sigma$$

 \rightarrow Effect on the solution?

Main goal 2: Improved solver efficiency technische universität

- Design & numerical analysis of space-time smoothers/solvers
 - MG convergence properties for $Q_2/P_1 + CN$ in the Stokes case
 - Coupling between Δt and h?
- Numerical analysis of stopping criteria for inner/outer solvers
- HPC techniques, parallel computing
 - Data management & parallelization; e.g. Block Jacobi preconditioner

$$A(x) = \begin{pmatrix} N(x_0) & M & & \\ M & N(x_1) & M & & \\ & M & N(x_3) & M & \\ & & \ddots & \end{pmatrix} \Rightarrow \tilde{A}(x) = \begin{pmatrix} N(x_0) & N(x_1) & & \\ & N(x_3) & & \\ & & & \ddots & \end{pmatrix}$$

 \Rightarrow Simultaneous calculation of timesteps

Main goal 3: Towards real-life problems technische universität

• Complex flow geometries + higher *Re* numbers

- Constraints + Boundary Control
- Non-Newtonian + Non-isothermal flow

$$y_t - \nabla \cdot (\nu(y, \Theta) \mathbf{D}(y)) + y \nabla y + \nabla p - Gr \Theta g = f_1$$

$$\Theta_t - (1/Pr) \Delta \Theta + y \nabla \Theta = f_2$$

Preparation for 3D Basically the same concept, but...

1st period: Proof of concept

- Design & numerical analysis of a flow solver prototype
- Support for low *Re* number flow problems

2nd period:

- Design & numerical analysis of efficient + robust solver components
- Support for realistic, nonstationary flow problems

Example: Temperature by friction

Friction leads to a temperature increase in the rear area of the channel:

$$y_t - \nabla \cdot (\nu(y, \Theta)\mathbf{D}(y)) + y\nabla y + \nabla p - Gr\Theta g = f_1$$

$$\Theta_t - (1/Pr)\Delta\Theta + y\nabla\Theta + D(y) : D(y) = f_2$$

 \rightarrow How to control to prevent the temperature increase?

Convergence of the Newton solver

Δt	Space-Lv.	T_{sim}	$T_{\rm opt}$	$\frac{T_{\text{opt}}}{T_{\text{sim}}}$
1/20	3	27.0	1384.42	51.3
1/40	4	209.6	3895.59	18.6
1/80	5	2227.1	22882.87	10.3

 \Rightarrow $C\approx 10-20$ on reasonable refinement levels.

Checkpointing in the One-shot approachtechnische universität

- $\bullet~$ Checkpoints $\rightarrow~$ nonlinear subproblems of the same kind.
- High computational costs necessary for recomputation → due to strong coupling by LPSC!