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1st period: Flow Control Model Problem

Distributed Control for the nonstationary Navier-Stokes equation with
tracking-type functional for a given z :

J(y , u) =
1
2 ||y − z ||2Q +

α

2 ||u||
2
Q +

γ

2 ||y(T )− z(T )||2Ω → min!

on Q = Ω× [0,T ] such that

yt − ν∆y + (y∇)y +∇p = u in Q
−∇ · y = 0 in Q + BC

No constraints.
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Design goals for optimal control tools

Moderate performance measure; for C not too large (≈ 10):

costs for optimization
costs for simulation ≤ C

By modern numerical CFD techniques
(→ special FEM on solution adapted grids, MG+Newton solvers)

costs for simulation = O(N)

Aim: costs for optimization !
= O(N)
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Distributed Control of nonstationary flow

Corresponding KKT-System (unconstrained case):

yt − ν∆y + (y∇)y +∇p = u in Q
−∇ · y = 0 in Q

−λt − ν∆λ− (y∇)λ+ (∇y)tλ+∇ξ = (y − z) in Q
−∇ · λ = 0 in Q

u = − 1
αλ in Q

+ boundary conditions
+ initial condition
+ terminal condition λ(T ) = γ(y(T )− z(T )) in Ω
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Distributed Control of nonstationary flow

Corresponding KKT-System (unconstrained case):

yt + N(y)y +∇p + 1
αλ = 0 in Q

−∇ · y = 0 in Q

−λt + N∗(y)λ+∇ξ − y = −z in Q
−∇ · λ = 0 in Q

+ boundary conditions
+ initial condition
+ terminal condition λ(T ) = γ(y(T )− z(T )) in Ω

Space-Time Multigrid Techniques



Properties of the KKT system

Observation:

KKT-system → elliptic BVP in space/time

Idea:
Apply modern O(N) ingredients from CFD
(Multigrid + Newton) to this BVP!

Feasible?
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Space–time discretization

Discretization in space+time leads to a system

A(x)x = b

in the form (here e.g. for 2 timesteps):

A(x)x =

NST −B
−M NST∗ −B − M

∆t
−BT 0

−BT 0
− M

∆t NST M
α

−B
−M NST∗ −B − M

∆t
−BT 0

−BT 0
− M

∆t NST M
α

−B
−c(γ,∆t)M NST∗ −B
−BT 0

−BT 0





y0
λ0
p0
ξ0
y1
λ1
p1
ξ1
y2
λ2
p2
ξ2


→ Sparse, (block) tridiagonal system
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Design of an efficient optimal control solver

Nonlinearity: Newton method for quadratic convergence

x i+1 = x i + A′−1(x i )(b − A(x i )x i )

Linear subproblems: space-time Multigrid solver

→ using Block-Jacobi/Block-SOR smoothing techniques

Linear subproblems in space: Monolithic Multigrid solver

→ using ‘local Pressure-Schur complement’ techniques
in each timestep for the coupled Navier–Stokes subproblems

1st period: Proof of Concept + Prototype for low Re
√
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Numerical example

Flow-around-cylinder

Target flow z : Stokes flow, t ∈ [0, 1], starting from rest

Stokes at t = 1

Mesh

uncontrolled Nav.St.

Optimal control problem: Navier–Stokes, Re = 20
Coarse mesh: Standard DFG benchmark
→ 1404 DOF’s in space, 5 timesteps, ∆t := 0.2
⇒ 8 424 DOF’s, ×8 per level
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Numerical example

Convergence of the Newton solver

Simulation Optimisation
∆t Space-Lv. #NL #MG �#NL �#MG #NL #MG
1/20 3 63 312 3 16 4 47
1/40 4 123 709 3 18 4 14
1/80 5 246 1589 3 20 4 9

Nonlinear solver gained 5 digits
Space-time MG gained 2 digits per step
Space-preconditioner gained 2 digits per step
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The role of the project in flow control
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Main goal 1: Higher accuracy + stability

Realization & numerical analysis of
higher order discretisations in space/time (Q2/P1, Q̃2/P1, CN, FS-θ)
r/h-adaptivity in space/time → convergence properties?

stabilization techniques (for higher Re-numbers)
e.g. EO-stabilisation (only in space!)

j(u, v) =
∑
edgeE

γ|E |2
∫

E
[∇u][∇v ]dσ

→ Effect on the solution?
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Main goal 2: Improved solver efficiency

Design & numerical analysis of space-time smoothers/solvers
MG convergence properties for Q2/P1 + CN in the Stokes case
Coupling between ∆t and h?

Numerical analysis of stopping criteria for inner/outer solvers

HPC techniques, parallel computing
Data management & parallelization; e.g. Block Jacobi preconditioner

A(x) =

 N(x0) M
M N(x1) M

M N(x3) M

. . .

 ⇒ Ã(x) =

 N(x0)
N(x1)

N(x3)

. . .


⇒ Simultaneous calculation of timesteps

Space-Time Multigrid Techniques



Main goal 3: Towards real-life problems

Complex flow geometries + higher Re numbers

Constraints + Boundary Control

Non-Newtonian + Non-isothermal flow

yt −∇ · (ν(y ,Θ)D(y)) + y∇y +∇p − GrΘg = f1
Θt − (1/Pr)∆Θ + y∇Θ = f2

Preparation for 3D → Basically the same concept, but...
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Summary & Outlook

1st period: Proof of concept
Design & numerical analysis of a flow solver prototype
Support for low Re number flow problems

2nd period:
Design & numerical analysis of efficient + robust solver components
Support for realistic, nonstationary flow problems
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Example: Temperature by friction
Friction leads to a temperature increase in the rear area of the channel:

yt −∇ · (ν(y ,Θ)D(y)) + y∇y +∇p − GrΘg = f1
Θt − (1/Pr)∆Θ + y∇Θ + D(y) : D(y) = f2

→ How to control to prevent the temperature increase?
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Numerical example

Convergence of the Newton solver

∆t Space-Lv. Tsim Topt
Topt
Tsim

1/20 3 27.0 1384.42 51.3
1/40 4 209.6 3895.59 18.6
1/80 5 2227.1 22882.87 10.3

⇒ C ≈ 10− 20 on reasonable refinement levels.
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Checkpointing in the One-shot approach

Checkpoints → nonlinear subproblems of the same kind.
High computational costs necessary for recomputation
→ due to strong coupling by LPSC!
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