

Isogeometric Analysis of Fluid–Structure Interaction based on a fully coupled Arbitrary Lagrangian–Eulerian variational formulation

Babak S. Hosseini¹, Stefan Turek¹, Matthias Möller²

¹TU Dortmund University, Institute of Applied Mathematics, LS III babak.hosseini@math.tu-dortmund.de

²Delft University of Technology, Delft Institute of Applied Mathematics

Seventh International Conference on Isogeometric Analysis (IGA 2019), 18-20 September, 2019, Munich, Germany

Objective: Develop an Isogeometric Analysis based fully coupled monolithic FSI simulation framework that in the sense of robustness/stability is particularly well suited for biomechanical applications.

We would like to use a method that has the following advantages:

- Stable in biomechanical applications $(\rho^{\mathcal{F}}/\rho^{\mathcal{S}} \approx 1)$
- Fully coupled ALE variational formulation solves the difficulty of common variational description; Facilitates consistent Galerkin discretization of the FSI problem
- High continuity and regularity spaces; Complex geometries \rightarrow Isogeometric Analysis

Compressible solid problem

St. Venant–Kirchhoff material

$$\boldsymbol{P} := \lambda \operatorname{tr} \left(\boldsymbol{E} \right) \boldsymbol{F} + 2\mu \boldsymbol{F} \boldsymbol{E}$$

Neo–Hookean material

$$\boldsymbol{P} := \mu(\boldsymbol{F} - \boldsymbol{F}^{-T}) + \lambda \log(\det \boldsymbol{F}) \boldsymbol{F}^{-T}$$

Green–St. Venant strain tensor

$$\boldsymbol{E} := \frac{1}{2} \left(\nabla_{\boldsymbol{X}} \boldsymbol{u} + (\nabla_{\boldsymbol{X}} \boldsymbol{u})^T + (\nabla_{\boldsymbol{X}} \boldsymbol{u})^T \nabla_{\boldsymbol{X}} \boldsymbol{u} \right)$$

 $J:=\det(\boldsymbol{F})$

Incompressible fluid problem

Incompressible Newtonian flow (Eulerian perspective):

$$\begin{split} \rho\left(\frac{\partial \boldsymbol{v}}{\partial t}\Big|_{\boldsymbol{x}} + (\boldsymbol{v}\cdot\nabla)\boldsymbol{v}\right) &= \nabla\cdot\boldsymbol{\sigma} + \rho\boldsymbol{b} & \text{ in } \Omega_{\boldsymbol{x}}^{\mathcal{F}}(t), t \in I, \\ \nabla\cdot\boldsymbol{v} &= 0 & \text{ in } \Omega_{\boldsymbol{x}}^{\mathcal{F}}(t), t \in I, \\ p(\cdot,0) &= \mathring{\boldsymbol{v}}, \boldsymbol{v}(\cdot,0) = \mathring{\boldsymbol{v}} & \text{ in } \Omega_{\boldsymbol{x}}^{\mathcal{F}}(0), \\ \boldsymbol{v} &= \boldsymbol{v}_D & \text{ on } \Gamma_{D,\boldsymbol{x}}^{\mathcal{F}}(t), t \in I, \\ \boldsymbol{\sigma}\cdot\boldsymbol{n} &= \boldsymbol{g} & \text{ on } \Gamma_{N,\boldsymbol{x}}^{\mathcal{F}}(t), t \in I. \\ \boldsymbol{\sigma} &:= -p\boldsymbol{I} + \mu(\nabla\boldsymbol{v} + (\nabla\boldsymbol{v})^T) \end{split}$$

FSI coupling conditions:

- Geometric coupling: Fluid- and solid-domain never detach or overlap
- Continuity of velocity:

$$\boldsymbol{v}^{\mathcal{F}} = \boldsymbol{v}^{\mathcal{S}} \ \ \text{on} \ \Gamma^{\mathcal{I}}_{\boldsymbol{x}}(t)$$

Continuity of normal stresses:

$$\boldsymbol{\sigma}^{\mathcal{F}} \cdot \boldsymbol{n}_{\boldsymbol{x}}^{\mathcal{F}} = -\boldsymbol{\sigma}^{\mathcal{S}} \cdot \boldsymbol{n}_{\boldsymbol{x}}^{\mathcal{S}} \ \text{ on } \Gamma_{\boldsymbol{x}}^{\mathcal{I}}(t)$$

Strategy for combination into one conservation equation: Rewrite fluid equations in a "structure-appropriate" framework (ALE)

Governing equations

$$\begin{split} \hat{J}\rho^{\mathcal{F}} \left(\frac{\partial \boldsymbol{v}^{\mathcal{F}}}{\partial t} \Big|_{\boldsymbol{\chi}} + \nabla_{\boldsymbol{\chi}} \boldsymbol{v}^{\mathcal{F}} \left(\hat{\boldsymbol{F}}^{-1} (\boldsymbol{v}^{\mathcal{F}} - \partial_{t} \hat{\boldsymbol{A}} \right) \right) \right) \\ -\nabla_{\boldsymbol{\chi}} \cdot \left(\hat{J} \left(-p^{\mathcal{F}} \boldsymbol{I} + \mu^{\mathcal{F}} \left(\nabla_{\boldsymbol{\chi}} \boldsymbol{v}^{\mathcal{F}} \hat{\boldsymbol{F}}^{-1} + \hat{\boldsymbol{F}}^{-T} (\nabla_{\boldsymbol{\chi}} \boldsymbol{v}^{\mathcal{F}})^{T} \right) \right) \hat{\boldsymbol{F}}^{-T} \right) = \hat{J}\rho^{\mathcal{F}} \boldsymbol{b}^{\mathcal{F}} \quad \text{in } \Omega_{\boldsymbol{\chi}}^{\mathcal{F}} \times (0, T], \\ \nabla_{\boldsymbol{\chi}} \cdot \left(\hat{J} \hat{\boldsymbol{F}}^{-1} \boldsymbol{v}^{\mathcal{F}} \right) = 0 & \text{in } \Omega_{\boldsymbol{\chi}}^{\mathcal{F}} \times [0, T], \\ p^{\mathcal{F}} (\cdot, 0) = p^{\mathcal{F}}, \boldsymbol{u}^{\mathcal{F}} (\cdot, 0) = \boldsymbol{u}^{\mathcal{F}}, \boldsymbol{v}^{\mathcal{F}} (\cdot, 0) = \boldsymbol{v}^{\mathcal{S}} & \text{in } \Omega_{\boldsymbol{\chi}}^{\mathcal{F}}, \\ \boldsymbol{u}^{\mathcal{F}} = \boldsymbol{u}_{D}^{\mathcal{F}}, \boldsymbol{v}^{\mathcal{F}} = \boldsymbol{v}_{D}^{\mathcal{F}} & \text{on } \Gamma_{D,\boldsymbol{\chi}}^{\mathcal{F}} \times (0, T], \\ \left(\hat{J} \sigma^{\mathcal{F}} \hat{\boldsymbol{F}}^{-T} \right) \boldsymbol{n}_{0}^{\mathcal{T}} = \boldsymbol{g}_{0}^{\mathcal{F}} & \text{on } \Gamma_{N,\boldsymbol{\chi}}^{\mathcal{F}} \times (0, T], \\ \hat{J}\rho^{\mathcal{S}} \frac{\partial \boldsymbol{v}^{\mathcal{S}}}{\partial t} \Big|_{\boldsymbol{\chi}} - \nabla_{\boldsymbol{\chi}} \cdot \hat{\boldsymbol{P}}^{\mathcal{S}} = \hat{J}\rho^{\mathcal{S}} \boldsymbol{b}^{\mathcal{S}} & \text{in } \Omega_{\boldsymbol{\chi}}^{\mathcal{S}} \times (0, T], \\ \frac{\partial \boldsymbol{u}^{\mathcal{S}}}{\partial t} - \boldsymbol{v}^{\mathcal{S}} = 0 & \text{in } \Omega_{\boldsymbol{\chi}}^{\mathcal{S}} \times (0, T], \\ \boldsymbol{u}^{\mathcal{S}} (\cdot, 0) = \boldsymbol{u}^{\mathcal{S}}, \boldsymbol{v}^{\mathcal{S}} (\cdot, 0) = \boldsymbol{v}^{\mathcal{S}} & \text{in } \Omega_{\boldsymbol{\chi}}^{\mathcal{S}}, \\ \boldsymbol{u}^{\mathcal{S}} = \boldsymbol{u}_{D}^{\mathcal{S}} & \text{on } \Gamma_{D,\boldsymbol{\chi}}^{\mathcal{S}} \times (0, T], \\ \hat{\boldsymbol{P}}^{\mathcal{S}} \boldsymbol{n}_{0}^{\mathcal{S}} = \boldsymbol{g}_{0}^{\mathcal{S}} & \text{on } \Gamma_{N,\boldsymbol{\chi}}^{\mathcal{S}} \times (0, T], \\ \hat{\boldsymbol{V}}_{\boldsymbol{\chi}} \cdot \left(\alpha_{u} \hat{J}^{-1} \nabla_{\boldsymbol{\chi}} \boldsymbol{u}^{\mathcal{F}} \right) = 0 & \text{in } \Omega_{\boldsymbol{\chi}}^{\mathcal{S}} \times (0, T], \\ \boldsymbol{u}^{\mathcal{F}} = \boldsymbol{u}^{\mathcal{S}}, \boldsymbol{v}^{\mathcal{F}} = \boldsymbol{v}^{\mathcal{S}}, \left(\hat{J} \sigma^{\mathcal{F}} \hat{\boldsymbol{F}}^{-T} \right) \boldsymbol{n}_{0} = \hat{\boldsymbol{P}}^{\mathcal{S}} \boldsymbol{n}_{0} & \text{on } \Gamma_{X}^{\mathcal{Z}} \times (0, T]. \end{split}$$

Variational formulation

• Displacement trial and test spaces in the fluid domain:

$$\begin{split} \mathcal{T}_{\boldsymbol{u}}^{\mathcal{F}} &:= \{ \boldsymbol{u}^{\mathcal{F}} \in \mathcal{H}^1(\Omega_{\boldsymbol{\chi}}^{\mathcal{F}}) : \boldsymbol{u}^{\mathcal{F}} = \boldsymbol{u}^{\mathcal{S}} \text{ on } \Gamma_{\boldsymbol{\chi}}^{\mathcal{I}}, \boldsymbol{u}^{\mathcal{F}} = \boldsymbol{u}_D^{\mathcal{F}} \text{ on } \Gamma_{D,\boldsymbol{\chi}}^{\mathcal{F}} \} \\ \mathcal{W}_{\boldsymbol{u}}^{\mathcal{F}} &:= \{ \boldsymbol{\phi}^{\boldsymbol{u},\mathcal{F}} \in \mathcal{H}_0^1(\Omega_{\boldsymbol{\chi}}^{\mathcal{F}}) : \boldsymbol{\phi}^{\boldsymbol{u},\mathcal{F}} = \boldsymbol{\phi}^{\boldsymbol{u},\mathcal{S}} \text{ on } \Gamma_{\boldsymbol{\chi}}^{\mathcal{I}} \} \end{split}$$

• Velocity trial and test spaces in the fluid domain:

$$\begin{split} \mathcal{T}_{\boldsymbol{v}}^{\mathcal{F}} &:= \{ \boldsymbol{v}^{\mathcal{F}} \in \mathcal{H}^1(\Omega_{\boldsymbol{\chi}}^{\mathcal{F}}) : \boldsymbol{v}^{\mathcal{F}} = \boldsymbol{v}^{\mathcal{S}} \text{ on } \Gamma_{\boldsymbol{\chi}}^{\mathcal{I}}, \boldsymbol{v}^{\mathcal{F}} = \boldsymbol{v}_D^{\mathcal{F}} \text{ on } \Gamma_{D,\boldsymbol{\chi}}^{\mathcal{F}} \} \\ \mathcal{W}_{\boldsymbol{v}}^{\mathcal{F}} &:= \{ \boldsymbol{\phi}^{\boldsymbol{v},\mathcal{F}} \in \mathcal{H}_0^1(\Omega_{\boldsymbol{\chi}}^{\mathcal{F}}) : \boldsymbol{\phi}^{\boldsymbol{v},\mathcal{F}} = \boldsymbol{\phi}^{\boldsymbol{v},\mathcal{S}} \text{ on } \Gamma_{\boldsymbol{\chi}}^{\mathcal{I}} \} \end{split}$$

• Pressure trial and test space in the fluid domain:

$$\mathcal{L}^{\mathcal{F}} := \mathcal{L}^2(\Omega^{\mathcal{F}}_{\boldsymbol{\chi}}) / \mathbb{R}$$

Displacement trial and test space in the solid domain:

$$\mathcal{T}^{\mathcal{S}}_{\boldsymbol{u}} := \{ \boldsymbol{u}^{\mathcal{S}} \in \mathcal{H}^1(\Omega^{\mathcal{S}}_{\boldsymbol{\chi}}) : \boldsymbol{u}^{\mathcal{S}} = \boldsymbol{u}^{\mathcal{S}}_D \text{ on } \Gamma^{\mathcal{S}}_{D,\boldsymbol{\chi}} \}, \qquad \mathcal{W}^{\mathcal{S}}_{\boldsymbol{u}} := \mathcal{H}^1_0(\Omega^{\mathcal{S}}_{\boldsymbol{\chi}})$$

• Velocity trial and test space in the solid domain:

$$\mathcal{T}_{\boldsymbol{v}}^{\mathcal{S}} := \mathcal{H}^1(\Omega_{\boldsymbol{\chi}}^{\mathcal{S}}), \qquad \mathcal{W}_{\boldsymbol{v}}^{\mathcal{S}} := \mathcal{H}_0^1(\Omega_{\boldsymbol{\chi}}^{\mathcal{S}})$$

• Pressure trial and test spaces in the solid domain:

$$\mathcal{L}^{\mathcal{S}} := \mathcal{L}^2(\Omega^{\mathcal{S}}_{\boldsymbol{\chi}}) / \mathbb{R}$$

Variational formulation

Let
$$\mathcal{T} := \{\mathcal{T}_v^{\mathcal{F}} \times \mathcal{T}_v^{\mathcal{S}} \times \mathcal{T}_u^{\mathcal{F}} \times \mathcal{T}_u^{\mathcal{S}} \times \mathcal{L}^{\mathcal{F}} \times \mathcal{L}^{\mathcal{S}}\}$$
, let $U = \{v^{\mathcal{F}}, v^{\mathcal{S}}, u^{\mathcal{F}}, u^{\mathcal{S}}, p^{\mathcal{F}}, p^{\mathcal{S}}\}$, and let $\Phi = \{\phi^{v, \mathcal{F}}, \phi^{v, \mathcal{S}}, \phi^{u, \mathcal{F}}, \phi^{u, \mathcal{S}}, \phi^{p, \mathcal{F}}, \phi^{p, \mathcal{S}}\}$.
Find $U \in \mathcal{T} \times I$ such that:

$$\begin{split} \mathcal{F}_1(\boldsymbol{U};\boldsymbol{\Phi}) &= 0 \quad \forall \boldsymbol{\phi}^{\boldsymbol{v},\mathcal{F}} \in \boldsymbol{\mathcal{W}}_{\boldsymbol{v}}^{\mathcal{F}} \\ \mathcal{F}_2(\boldsymbol{U};\boldsymbol{\Phi}) &= 0 \quad \forall \boldsymbol{\phi}^{\boldsymbol{v},\mathcal{F}} \in \mathcal{L}^{\mathcal{F}} \\ \mathcal{F}_3(\boldsymbol{U};\boldsymbol{\Phi}) &= 0 \quad \forall \boldsymbol{\phi}^{\boldsymbol{v},\mathcal{S}} \in \boldsymbol{\mathcal{W}}_{\boldsymbol{v}}^{\mathcal{S}} \\ \mathcal{F}_4(\boldsymbol{U};\boldsymbol{\Phi}) &= 0 \quad \forall \boldsymbol{\phi}^{\boldsymbol{u},\mathcal{S}} \in \boldsymbol{\mathcal{W}}_{\boldsymbol{u}}^{\mathcal{S}} \\ \mathcal{F}_5(\boldsymbol{U};\boldsymbol{\Phi}) &= 0 \quad \forall \boldsymbol{\phi}^{\boldsymbol{v},\mathcal{F}} \in \mathcal{L}^{\mathcal{S}} \\ \mathcal{F}_6(\boldsymbol{U};\boldsymbol{\Phi}) &= 0 \quad \forall \boldsymbol{\phi}^{\boldsymbol{u},\mathcal{F}} \in \boldsymbol{\mathcal{W}}_{\boldsymbol{u}}^{\mathcal{H}} \end{split}$$

$$\begin{split} \mathcal{F}_{1}(\boldsymbol{U};\boldsymbol{\Phi}) &:= \\ \int_{0}^{T} \int_{\Omega_{\boldsymbol{\chi}}^{\mathcal{F}}} \hat{J} \rho^{\mathcal{F}} \left(\frac{\partial \boldsymbol{v}^{\mathcal{F}}}{\partial t} \Big|_{\boldsymbol{\chi}} + \nabla_{\boldsymbol{\chi}} \boldsymbol{v}^{\mathcal{F}} \left(\hat{\boldsymbol{F}}^{-1} (\boldsymbol{v}^{\mathcal{F}} - \partial_{t} \hat{\boldsymbol{\mathcal{A}}}) \right) \right) \cdot \boldsymbol{\phi}^{\boldsymbol{v}} \, \mathrm{d}\Omega_{\boldsymbol{\chi}}^{\mathcal{F}} \, \mathrm{d}t \\ &+ \int_{0}^{T} \int_{\Omega_{\boldsymbol{\chi}}^{\mathcal{F}}} \hat{J} \left(-p^{\mathcal{F}} \boldsymbol{I} + \mu^{\mathcal{F}} \left(\nabla_{\boldsymbol{\chi}} \boldsymbol{v}^{\mathcal{F}} \hat{\boldsymbol{F}}^{-1} + \hat{\boldsymbol{F}}^{-T} (\nabla_{\boldsymbol{\chi}} \boldsymbol{v}^{\mathcal{F}})^{T} \right) \right) \hat{\boldsymbol{F}}^{-T} : \nabla_{\boldsymbol{\chi}} \boldsymbol{\phi}^{\boldsymbol{v}} \, \mathrm{d}\Omega_{\boldsymbol{\chi}}^{\mathcal{F}} \, \mathrm{d}t \\ &- \int_{0}^{T} \int_{\Omega_{\boldsymbol{\chi}}^{\mathcal{F}}} \hat{J} \rho^{\mathcal{F}} \boldsymbol{f}^{\mathcal{F}} \cdot \boldsymbol{\phi}^{\boldsymbol{v}} \, \mathrm{d}\Omega_{\boldsymbol{\chi}}^{\mathcal{F}} \, \mathrm{d}t - \int_{0}^{T} \int_{\Gamma_{N,\boldsymbol{\chi}}^{\mathcal{F}}} \boldsymbol{g}_{0}^{\mathcal{F}} \cdot \boldsymbol{\phi}^{\boldsymbol{v}} \, \mathrm{d}\Gamma_{N,\boldsymbol{\chi}}^{\mathcal{F}} \, \mathrm{d}t. \end{split}$$

Variational formulation

$$\begin{aligned} \mathcal{F}_{2}(\boldsymbol{U};\boldsymbol{\Phi}) &:= \int_{0}^{T} \int_{\Omega_{\boldsymbol{\chi}}^{\mathcal{F}}} \nabla_{\boldsymbol{\chi}} \cdot \left(\hat{J} \hat{\boldsymbol{F}}^{-1} \boldsymbol{v}^{\mathcal{F}} \right) \cdot \phi^{p} \, \mathrm{d}\Omega_{\boldsymbol{\chi}}^{\mathcal{F}} \, \mathrm{d}t. \\ \mathcal{F}_{3}(\boldsymbol{U};\boldsymbol{\Phi}) &:= \int_{0}^{T} \int_{\Omega_{\boldsymbol{\chi}}^{\mathcal{S}}} \hat{J} \rho^{\mathcal{S}} \frac{\partial \boldsymbol{v}^{\mathcal{S}}}{\partial t} \Big|_{\boldsymbol{\chi}} \cdot \phi^{\boldsymbol{v},\mathcal{S}} \, \mathrm{d}\Omega_{\boldsymbol{\chi}}^{\mathcal{S}} \, \mathrm{d}t + \int_{0}^{T} \int_{\Omega_{\boldsymbol{\chi}}^{\mathcal{S}}} \hat{\boldsymbol{P}}^{\mathcal{S}} : \nabla_{\boldsymbol{\chi}} \phi^{\boldsymbol{v},\mathcal{S}} \, \mathrm{d}\Omega_{\boldsymbol{\chi}}^{\mathcal{S}} \, \mathrm{d}t \\ &- \int_{0}^{T} \int_{\Omega_{\boldsymbol{\chi}}^{\mathcal{S}}} \hat{J} \rho^{\mathcal{S}} \boldsymbol{b}^{\mathcal{S}} \cdot \phi^{\boldsymbol{v},\mathcal{S}} \, \mathrm{d}\Omega_{\boldsymbol{\chi}}^{\mathcal{S}} \, \mathrm{d}t - \int_{0}^{T} \int_{\Gamma_{N,\boldsymbol{\chi}}^{\mathcal{S}}} \boldsymbol{g}_{0}^{\mathcal{S}} \cdot \phi^{\boldsymbol{v},\mathcal{S}} \, \mathrm{d}\Gamma_{N,\boldsymbol{\chi}}^{\mathcal{S}} \, \mathrm{d}t. \\ &\mathcal{F}_{4}(\boldsymbol{U};\boldsymbol{\Phi}) := \int_{0}^{T} \int_{\Omega_{\boldsymbol{\chi}}^{\mathcal{S}}} \left(\frac{\partial \boldsymbol{u}^{\mathcal{S}}}{\partial t} \Big|_{\boldsymbol{\chi}}^{\mathcal{L}} - \boldsymbol{v}^{\mathcal{S}} \right) \cdot \phi^{\boldsymbol{u},\mathcal{S}} \, \mathrm{d}\Omega_{\boldsymbol{\chi}}^{\mathcal{S}} \, \mathrm{d}t. \\ &\mathcal{F}_{5}(\boldsymbol{U};\boldsymbol{\Phi}) := \int_{0}^{T} \int_{\Omega_{\boldsymbol{\chi}}^{\mathcal{F}}} \alpha_{\boldsymbol{u}} \hat{J}^{-1} \nabla_{\boldsymbol{\chi}} \boldsymbol{u}^{\mathcal{F}} : \nabla_{\boldsymbol{\chi}} \phi^{\boldsymbol{u}} \, \mathrm{d}\Omega_{\boldsymbol{\chi}}^{\mathcal{F}} \, \mathrm{d}t. \end{aligned}$$

Discrete Isogeometric approximation spaces

Approximation of velocity and pressure functions with LBB-stable Taylor-Hood like non-uniform rational B-spline space pairs $\hat{\mathbf{V}}_{h}^{TH}/\hat{Q}_{h}^{TH}$

$$\begin{split} \hat{\mathbf{V}}_{h}^{TH} &\equiv \hat{\mathbf{V}}_{h}^{TH}(\mathbf{p}, \boldsymbol{\alpha}) = \mathcal{N}_{\alpha, \alpha}^{p+1, p+1} = \mathcal{N}_{\alpha, \alpha}^{p+1, p+1} \times \mathcal{N}_{\alpha, \alpha}^{p+1, p+1} \\ \hat{Q}_{h}^{TH} &\equiv \hat{Q}_{h}^{TH}(\mathbf{p}, \boldsymbol{\alpha}) = \mathcal{N}_{\alpha, \alpha}^{p, p} \end{split}$$

Corresponding spaces \mathbf{V}_h^{TH} and Q_h^{TH} in the physical domain Ω obtained via component-wise mapping using parametrization $\mathbf{F}: \hat{\Omega} \to \Omega$

$$\mathbf{V}_h^{TH} = \{\mathbf{v}_h \circ \mathbf{F}^{-1}, \hat{\mathbf{v}}_h \in \hat{\mathbf{V}}_h^{TH}\}, Q_h^{TH} = \{q_h = \hat{q}_h \circ \mathbf{F}^{-1}, \hat{q}_h \in \hat{Q}_h^{TH}\}$$

Solution algorithm and discrete problem

• Discrete spaces:

$$\begin{split} \boldsymbol{\mathcal{T}}^{h} &:= \{ \left(\boldsymbol{\mathcal{T}}_{\boldsymbol{v}}^{\mathcal{F}} \cap \mathbf{V}_{h}^{TH} \right) \times \left(\boldsymbol{\mathcal{T}}_{\boldsymbol{v}}^{\mathcal{S}} \cap \mathbf{V}_{h}^{TH} \right) \times \left(\boldsymbol{\mathcal{T}}_{\boldsymbol{u}}^{\mathcal{F}} \cap \mathbf{V}_{h}^{TH} \right) \times \left(\boldsymbol{\mathcal{T}}_{\boldsymbol{u}}^{\mathcal{S}} \cap \mathbf{V}_{h}^{TH} \right) \\ &\times \left(\mathcal{L}^{\mathcal{F}} \cap Q_{h}^{TH} \right) \times \left(\mathcal{L}^{\mathcal{S}} \cap Q_{h}^{TH} \right) \} \\ \boldsymbol{\mathcal{W}}^{h} &:= \{ \left(\boldsymbol{\mathcal{W}}_{\boldsymbol{v}}^{\mathcal{F}} \cap \mathbf{V}_{h}^{TH} \right) \times \left(\boldsymbol{\mathcal{W}}_{\boldsymbol{v}}^{\mathcal{S}} \cap \mathbf{V}_{h}^{TH} \right) \times \left(\boldsymbol{\mathcal{W}}_{\boldsymbol{u}}^{\mathcal{F}} \cap \mathbf{V}_{h}^{TH} \right) \times \left(\boldsymbol{\mathcal{W}}_{\boldsymbol{u}}^{\mathcal{S}} \cap \mathbf{V}_{h}^{TH} \right) \\ &\times \left(\mathcal{L}^{\mathcal{F}} \cap Q_{h}^{TH} \right) \times \left(\mathcal{L}^{\mathcal{S}} \cap Q_{h}^{TH} \right) \} \end{split}$$

• Time discretization.: Shifted Crank-Nicolson ($\theta = \frac{1}{2} + O(\Delta t)$)

while
$$t \leq T$$
 do
Solve the nonlinear monolithic FSI problem:
Find $U^h \in \mathcal{T}^h$, s.t. $\forall \Phi^h \in \mathcal{W}^h$ it holds
 $\mathcal{F}(U^h; \Phi^h) = \sum_i \mathcal{F}_i(U^h; \Phi^h) = 0$ Semilinear form

In each Newton iteration,

Find
$$\delta \boldsymbol{U}^{h} = \left\{ \delta \boldsymbol{v}^{h,\mathcal{F}}, \delta \boldsymbol{v}^{h,\mathcal{S}}, \delta \boldsymbol{u}^{h,\mathcal{F}}, \delta \boldsymbol{u}^{h,\mathcal{S}}, \delta p^{h,\mathcal{F}}, \delta p^{h,\mathcal{S}} \right\} \in \boldsymbol{\mathcal{T}}^{h}$$
, s.t.
 $\mathcal{F}'(\boldsymbol{U}^{h,k}; \delta \boldsymbol{U}^{h}, \boldsymbol{\Phi}^{h}) = -\mathcal{F}(\boldsymbol{U}^{h,k}; \boldsymbol{\Phi}^{h}), \quad \forall \boldsymbol{\Phi}^{h} \in \boldsymbol{\mathcal{W}}^{h}$
 $\boldsymbol{U}^{h,k+1} = \boldsymbol{U}^{h,k} + \omega \, \delta \boldsymbol{U}^{h},$

end

FSI tests

Parameter	Description	Unit	FSI 1	FSI 2	FSI 3
$ \rho^{S} $ $ \nu^{S} $	Solid density Solid Poisson's ratio	$\left[\frac{kg}{m^3}\right]$	$1000 \\ 0.4$	$10000 \\ 0.4$	$1000 \\ 0.4$
μ^{S}	Solid Lamé constant	$\left[\frac{kg}{ms^2}\right]$	0.5×10^6	0.5×10^6	$2 imes 10^6$
$\rho^{\mathcal{F}}$	Fluid density	$\left[\frac{kg}{m^3}\right]$	1000	1000	1000
$\nu^{\mathcal{F}}$	Fluid kinematic viscosity	$\left[\frac{m^2}{s}\right]$	0.001	0.001	0.001
Ū	Average inflow velocity	$\left[\frac{m}{s}\right]$	0.2	1	2
$\beta = \frac{\rho^s}{\rho^F}$	Fluid-solid density ratio		1	10	1
$Re = \frac{\bar{U}d}{\nu^{\mathcal{F}}}$	Reynold's number		20	100	200

FSI 2

Taylor–Hood NURBS spaces $\hat{\mathbf{V}}_h^{TH} = \mathcal{N}_{0,0}^{3,3}, \hat{Q}_h^{TH} = \mathcal{N}_{0,0}^{2,2}$ on multi-patch mesh

	Δt	level	ndof	$u_1(A)[imes 10^{-3}]$ [f]	$u_2(A)[imes 10^{-3}]$ [f]	F_D [f]	F_L [f]
	1×10^{-2}	1	25209	$-15.22 \pm 13.34 [3.85]$	$1.23 \pm 82.1[1.92]$	$211.43 \pm 77.41[3.84]$	$1.1 \pm 237.6[1.92]$
		2	111573	$-15.14 \pm 13.28[3.85]$	$1.21 \pm 82.1[1.92]$	$214.53 \pm 78.80[3.84]$	$1.3 \pm 236.0[1.92]$
		3	468621	$-15.22 \pm 13.33[3.85]$	$1.27 \pm 82.4[1.92]$	$217.48 \pm 80.30 [3.84]$	$1.2 \pm 236.9[1.93]$
	$5 imes 10^{-3}$	1	25209	$-15.23 \pm 13.13[3.85]$	$1.23 \pm 82.4[1.92]$	$210.70 \pm 77.66 [3.84]$	$0.9 \pm 243.0 [1.93]$
		2	111573	$-15.21 \pm 13.10[3.86]$	$1.20 \pm 82.5[1.92]$	$213.91 \pm 79.13[3.85]$	$1.2 \pm 241.9[1.93]$
		3	468621	$-15.29 \pm 13.15[3.86]$	$1.26 \pm 82.8[1.92]$	$216.80 \pm 80.63 [3.85]$	$0.9 \pm 242.8[1.93]$
Turek/Hron[1]	$5 imes 10^{-4}$	4+0	304128	$-14.85 \pm 12.70 [3.86]$	$1.30\pm 81.6[1.93]$	$215.06 \pm 77.65 [3.86]$	$0.6\pm237.8[1.93]$

	Δt	ndof	$u_1(A)[\times 10^{-3}]$ [f]	$u_2(A)[imes 10^{-3}]$ [f]	F_D [f]	F_L [f]
Present	1.0e-3	25209	$-3.26\pm 3.08[10.90]$	$1.48 \pm 37.21 [5.46]$	$457.6 \pm 31.59 [10.88]$	$1.29 \pm 169.74[5.43]$
		111573	$-2.85 \pm 2.69[10.92]$	$1.38 \pm 34.78[5.47]$	$458.1 \pm 27.65[10.90]$	$2.06 \pm 158.95[5.44]$
		468621	$-2.92 \pm 2.76 [10.93]$	$1.45 \pm 35.25[5.47]$	$459.5 \pm 28.32 [10.97]$	$2.15 \pm 159.57 [5.51]$
Present	$5.0\mathrm{e}{-4}$	111573	$-2.89 \pm 2.72 [10.88]$	$1.49 \pm 34.99 [5.44]$	$458.6 \pm 27.19 [10.86]$	$2.43 \pm 159.59 [5.42]$
1) Schäfer	1.0e - 3	941158	$-2.91 \pm 2.77[11.63]$	$1.47 \pm 35.26[4.98]$	459.9 ± 27.92	1.84 ± 157.70
2b) Rannacher	$5.0e{-4}$	72696	$-2.84 \pm 2.67[10.84]$	$1.28 \pm 34.61[5.42]$	452.4 ± 26.19	2.36 ± 152.70
Turek/Hron[4]	2.5e - 4	304128	$-2.88 \pm 2.72[10.93]$	$1.47 \pm 34.99[5.46]$	460.5 ± 27.74	2.50 ± 153.91
4) Münsch/Breuer[7]	$2.0e{-5}$	324480	$-4.54 \pm 4.34[10.12]$	$1.50 \pm 42.50[5.05]$	467.5 ± 39.50	16.2 ± 188.70
5) Krafczyk/Rank	5.1e - 5	2480814	$-2.88 \pm 2.71[11.00]$	$1.48 \pm 35.10[5.50]$	463.0 ± 31.30	1.81 ± 154.00
6) Wall	$5.0e{-4}$	27147	$-2.00 \pm 1.89[10.60]$	$1.45 \pm 29.00[5.30]$	434.0 ± 17.50	2.53 ± 88.60
7) Bletzinger	$5.0e{-4}$	271740	$-3.04 \pm 2.87[10.99]$	$1.55 \pm 36.63[5.51]$	474.9 ± 28.12	3.86 ± 165.90
Gallinger[8]					474.9 ± 28.10	3.90 ± 165.90
Sandboge[9]			$-2.83 \pm 2.78[10.8]$	$1.35 \pm 34.75[5.4]$	458.5 ± 24.00	2.50 ± 147.50
Breuer[10]					464.5 ± 40.50	6.00 ± 166.00

17 / 19

Isogeometric Analysis \oplus fully coupled monolithic ALE-FSI model

- robust numerical method
- successful (benchmarks)

Extension to

- 3D
- Complex geometries from biomechanical contexts
- Local refinement (Hierarchical B-splines, T-splines, etc.)

Work already done:

• ALE "Binary-fluid"-Structure Interaction based on the Cahn-Hilliard phase field model

Figure : ©[5]

References

FeatFlow FSI Benchmarking

http://www.featflow.de/en/benchmarks/cfdbenchmarking/fsi_ benchmark.html

J. Hron and S. Turek.

A Monolithic FEM/Multigrid Solver for an ALE Formulation of Fluid–Structure Interaction with Applications in Biomechanics.

S. Turek and J. Hron.

Proposal for Numerical Benchmarking of Fluid-Structure Interaction between an Elastic Object and Laminar Incompressible Flow.

Turek, S. and Hron, J. and Razzaq, M. and Wobker, H. and Schäfer, M.

Numerical Benchmarking of Fluid-Structure Interaction: A comparison of different discretization and solution approaches

Zhang Y. and Bazilevs Y. and Goswami S. and Bajaj C.L., Hughes $\mathsf{T}.\mathsf{J}.\mathsf{R}$

Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow

Scovazzi, G. and Hughes, T.J.R.

Lecture Notes on Continuum Mechanics on Arbitrary Moving Domains

Münsch, M. and Breuer, M. Numerical Simulation of Fluid–Structure Interaction Using Eddy–Resolving Schemes

Gallinger, T.G. Effiziente Algorithmen zur partitionierten Lösung stark gekoppelter Probleme der Fluid-Struktur-Wechselwirkung

Sandboge, R.

Fluid-structure interaction with openfsitm and md nastrantm structural solver

M. Breuer and G. De Nayer and M. Münsch and T. Gallinger and R. Wüchner

Fluid-structure interaction using a partitioned semi-implicit predictor-corrector coupling scheme for the application of large-eddy simulation

Aortic valve

https://en.wikipedia.org/wiki/Aortic_valve

Simulation of flow in the heart valve

https://cdn.comsol.com/wordpress/2018/04/ heart-valve-comsol-simulation-results.png

	ndof	$u_1(A)[imes 10^{-5}]$ (%-Err)	$u_2(A)[imes 10^{-4}]$ (%-Err)	F_D (%-Err)	F_L (%-Err)
Present	5067	2.240935(1.30)	8.455798(3.01)	14.28377(0.073)	0.774193(1.368)
	25209	2.261569(0.39)	8.201354(0.09)	14.28930(0.035)	0.765377(0.214)
	111573	2.266417(0.18)	8.196860(0.15)	14.29256(0.012)	0.764979(0.161)
	468621	2.268144(0.10)	8.194405(0.18)	14.29334(0.006)	0.764847(0.144)
	1919997	2.268989(0.07)	8.191383(0.21)	14.29367(0.004)	0.764798(0.138)
1) Schäfer	322338			14.2890	0.76900
2b) Rannacher	351720	2.2695	8.1556	14.2603	0.76388
Turek/Hron[4]	19320832	2.270493	8.208773	14.29426	0.76374
5) Krafczyk/Rank	14155776	2.2160	8.2010	14.3815	0.75170
6) Wall	164262	2.2680	8.2310	14.2940	0.76487
7) Bletzinger	217500	2.2640	8.2800	14.3510	0.76351

Appendix, Mesh motion models

• Harmonic mesh motion model

$$\begin{split} -\nabla_{\pmb{\chi}} \cdot (\pmb{\sigma}_{\mathsf{mesh}}) &= 0 & \text{ in } \Omega_{\pmb{\chi}}^{\mathcal{F}}, \\ \pmb{u}^{\mathcal{F}} &= \pmb{u}^{\mathcal{S}} & \text{ on } \Gamma_{\pmb{\chi}}^{\mathcal{I}}, \\ \pmb{u}^{\mathcal{F}} &= 0 & \text{ on } \partial \Omega_{\pmb{\chi}}^{\mathcal{F}} \setminus \Gamma_{\pmb{\chi}}^{\mathcal{I}}, \\ \pmb{\sigma}_{\mathsf{mesh}} &= D \nabla_{\pmb{\chi}} \pmb{u}. \end{split}$$

• Linear elastic mesh motion model

$$\begin{split} -\nabla_{\boldsymbol{\chi}} \cdot (\boldsymbol{\sigma}_{\mathsf{mesh}}) &= 0 & \text{ in } \Omega_{\boldsymbol{\chi}}^{\mathcal{F}}, \\ \boldsymbol{u}^{\mathcal{F}} &= \boldsymbol{u}^{\mathcal{S}} & \text{ on } \Gamma_{\boldsymbol{\chi}}^{\mathcal{I}}, \\ \boldsymbol{u}^{\mathcal{F}} &= 0 & \text{ on } \partial \Omega_{\boldsymbol{\chi}}^{\mathcal{F}} \setminus \Gamma_{\boldsymbol{\chi}}^{\mathcal{I}}, \\ \boldsymbol{\sigma}_{\mathsf{mesh}} &= 2\alpha_{\mu}\boldsymbol{\varepsilon} + \alpha_{\lambda}\operatorname{tr}(\boldsymbol{\varepsilon}) \boldsymbol{I}. \end{split}$$

-

• Biharmonic mesh motion model

$$\begin{split} \nabla^4_{\boldsymbol{\chi}} \boldsymbol{u} &= \nabla^2_{\boldsymbol{\chi}} \nabla^2_{\boldsymbol{\chi}} \boldsymbol{u} = \Delta^2_{\boldsymbol{\chi}} \boldsymbol{u} = 0 & \text{ in } \Omega^{\mathcal{F}}_{\boldsymbol{\chi}}, \\ \boldsymbol{u}^{\mathcal{F}} &= \boldsymbol{u}^{\mathcal{S}}, \partial_{\boldsymbol{n}} \boldsymbol{u}^{\mathcal{F}} = \partial_{\boldsymbol{n}} \boldsymbol{u}^{\mathcal{S}} & \text{ on } \Gamma^{\mathcal{I}}_{\boldsymbol{\chi}}, \\ \boldsymbol{u}^{\mathcal{F}} &= 0, \partial_{\boldsymbol{n}} \boldsymbol{u}^{\mathcal{F}} = 0 & \text{ on } \partial\Omega^{\mathcal{F}}_{\boldsymbol{\chi}} \setminus \Gamma^{\mathcal{I}}_{\boldsymbol{\chi}} \end{split}$$

Appendix, FSI 1

Appendix, FSI 3

Linear form (for fixed U^k):

$$\mathcal{F}(oldsymbol{U}^k;oldsymbol{\Phi}) = \sum_i \mathcal{F}_i(oldsymbol{U}^k;oldsymbol{\Phi})$$

$$\begin{split} \mathcal{F}_{1}(\boldsymbol{U}^{k};\boldsymbol{\Phi}) &\coloneqq \\ \left(\rho^{\mathcal{F}}\hat{J}^{n,\theta}\left(\boldsymbol{v}^{k,\mathcal{F}}-\boldsymbol{v}^{0,\mathcal{F}}\right), \boldsymbol{\phi}^{\boldsymbol{v},\mathcal{F}}\right)_{\Omega_{\boldsymbol{\chi}}^{\mathcal{F}}} + \left(\Delta t \theta \rho^{\mathcal{F}}\hat{J}\nabla_{\boldsymbol{\chi}}\boldsymbol{v}^{k,\mathcal{F}}\hat{\boldsymbol{F}}^{-1}\boldsymbol{v}^{k,\mathcal{F}}, \boldsymbol{\phi}^{\boldsymbol{v},\mathcal{F}}\right)_{\Omega_{\boldsymbol{\chi}}^{\mathcal{F}}} \\ + \left(\Delta t (1-\theta) \rho^{\mathcal{F}}\hat{J}^{0}\nabla_{\boldsymbol{\chi}}\boldsymbol{v}^{0,\mathcal{F}}\left(\hat{\boldsymbol{F}}^{0}\right)^{-1}\boldsymbol{v}^{0,\mathcal{F}}, \boldsymbol{\phi}^{\boldsymbol{v},\mathcal{F}}\right)_{\Omega_{\boldsymbol{\chi}}^{\mathcal{F}}} \\ - \left(\rho^{\mathcal{F}}\hat{J}\nabla_{\boldsymbol{\chi}}\boldsymbol{v}^{k,\mathcal{F}}\hat{\boldsymbol{F}}^{-1} \cdot \left(\boldsymbol{u}^{k,\mathcal{F}}-\boldsymbol{u}^{0,\mathcal{F}}\right), \boldsymbol{\phi}^{\boldsymbol{v},\mathcal{F}}\right)_{\Omega_{\boldsymbol{\chi}}^{\mathcal{F}}} \\ + \left(\Delta t \theta \hat{J} \mu^{\mathcal{F}}\left(\nabla_{\boldsymbol{\chi}}\boldsymbol{v}^{k,\mathcal{F}}\hat{\boldsymbol{F}}^{-1}+\hat{\boldsymbol{F}}^{-T} \cdot \left(\nabla_{\boldsymbol{\chi}}\boldsymbol{v}^{k,\mathcal{F}}\right)^{T}\right)\hat{\boldsymbol{F}}^{-T}, \nabla_{\boldsymbol{\chi}}\boldsymbol{\phi}^{\boldsymbol{v},\mathcal{F}}\right)_{\Omega_{\boldsymbol{\chi}}^{\mathcal{F}}} \\ + \left(\Delta t (1-\theta) \hat{J}^{0} \mu^{\mathcal{F}}\left(\nabla_{\boldsymbol{\chi}}\boldsymbol{v}^{0,\mathcal{F}}\left(\hat{\boldsymbol{F}}^{0}\right)^{-1}+(\hat{\boldsymbol{F}}^{0})^{-T} \cdot (\nabla_{\boldsymbol{\chi}}\boldsymbol{v}^{0,\mathcal{F}})^{T}\right)\left(\hat{\boldsymbol{F}}^{0}\right)^{-T}, \nabla_{\boldsymbol{\chi}}\boldsymbol{\phi}^{\boldsymbol{v},\mathcal{F}}\right)_{\Omega_{\boldsymbol{\chi}}^{\mathcal{F}}} \\ + \left(\Delta t \hat{J}\left(-p^{k,\mathcal{F}}\boldsymbol{I}\right)\hat{\boldsymbol{F}}^{-T}, \nabla_{\boldsymbol{\chi}}\boldsymbol{\phi}^{\boldsymbol{v},\mathcal{F}}\right)_{\Omega_{\boldsymbol{\chi}}^{\mathcal{F}}} - \left(\rho^{\mathcal{F}}\Delta t \hat{J}^{n,\theta}\boldsymbol{b}^{\mathcal{F}}, \boldsymbol{\phi}^{\boldsymbol{v},\mathcal{F}}\right)_{\Omega_{\boldsymbol{\chi}}^{\mathcal{F}}} - \left(\Delta t \boldsymbol{g}_{0}^{\mathcal{F}}, \boldsymbol{\phi}^{\boldsymbol{v},\mathcal{F}}\right)_{\Gamma_{N,\boldsymbol{\chi}}^{\mathcal{F}}} \right) \\ \end{array}$$

$$\mathcal{F}_2(oldsymbol{U}^k;oldsymbol{\Phi}) := \left(\hat{J} \hat{oldsymbol{F}}^{-1} : \left(
abla_{oldsymbol{\chi}} oldsymbol{v}^{k,\mathcal{F}}
ight)^T, \phi^{p,\mathcal{F}}
ight)_{\Omega^{\mathcal{F}}_{oldsymbol{\chi}}}$$

$$\begin{aligned} \mathcal{F}_{3}(\boldsymbol{U}^{k};\boldsymbol{\Phi}) &:= \left(\hat{J}\rho^{\mathcal{S}}\left(\boldsymbol{v}^{k,\mathcal{S}}-\boldsymbol{v}^{0,\mathcal{S}}\right), \boldsymbol{\phi}^{\boldsymbol{v},\mathcal{S}}\right)_{\Omega_{\boldsymbol{\chi}}^{\mathcal{S}}} \\ &+ \left(\Delta t\theta\,\hat{\boldsymbol{P}}\left(\boldsymbol{u}^{k,\mathcal{S}}\right), \nabla_{\boldsymbol{\chi}}\boldsymbol{\phi}^{\boldsymbol{v},\mathcal{S}}\right)_{\Omega_{\boldsymbol{\chi}}^{\mathcal{S}}} + \left(\Delta t(1-\theta)\,\hat{\boldsymbol{P}}\left(\boldsymbol{u}^{0,\mathcal{S}}\right), \nabla_{\boldsymbol{\chi}}\boldsymbol{\phi}^{\boldsymbol{v},\mathcal{S}}\right)_{\Omega_{\boldsymbol{\chi}}^{\mathcal{S}}} \\ &- \left(\Delta t\theta\,\hat{J}^{n,\theta}\rho^{\mathcal{S}}\boldsymbol{b}^{\mathcal{S}}, \boldsymbol{\phi}^{\boldsymbol{v},\mathcal{S}}\right)_{\Omega_{\boldsymbol{\chi}}^{\mathcal{S}}} - \left(\Delta t\boldsymbol{g}_{0}^{\mathcal{S}}, \boldsymbol{\phi}^{\boldsymbol{v},\mathcal{S}}\right)_{\Gamma_{N,\boldsymbol{\chi}}^{\mathcal{S}}}\end{aligned}$$

$$\begin{aligned} \mathcal{F}_4(\boldsymbol{U}^k; \boldsymbol{\Phi}) &:= \left(\boldsymbol{u}^{k, \mathcal{S}} - \boldsymbol{u}^{0, \mathcal{S}}, \boldsymbol{\phi}^{\boldsymbol{u}, \mathcal{S}}\right)_{\Omega_{\boldsymbol{\chi}}^{\mathcal{S}}} - \left(\Delta t \theta \, \boldsymbol{v}^{k, \mathcal{S}}, \boldsymbol{\phi}^{\boldsymbol{u}, \mathcal{S}}\right)_{\Omega_{\boldsymbol{\chi}}^{\mathcal{S}}} - \left(\Delta t (1 - \theta) \, \boldsymbol{v}^{0, \mathcal{S}}, \boldsymbol{\phi}^{\boldsymbol{u}, \mathcal{S}}\right)_{\Omega_{\boldsymbol{\chi}}^{\mathcal{S}}} \\ \mathcal{F}_5(\boldsymbol{U}^k; \boldsymbol{\Phi}) &:= \left(p^{k, \mathcal{S}}, \boldsymbol{\phi}^{p, \mathcal{S}}\right)_{\Omega_{\boldsymbol{\chi}}^{\mathcal{S}}} \\ \mathcal{F}_6(\boldsymbol{U}^k; \boldsymbol{\Phi}) &:= \left(\alpha_u \hat{J}^{-1} \nabla_{\boldsymbol{\chi}} \boldsymbol{u}^{k, \mathcal{F}}, \nabla_{\boldsymbol{\chi}} \boldsymbol{\phi}^{\boldsymbol{u}}\right)_{\Omega_{\boldsymbol{\chi}}^{\mathcal{F}}} \\ \hat{J}^{n, \theta} &:= \theta \hat{J}^n + (1 - \theta) \hat{J}^{n-1} = \theta \hat{J}(\boldsymbol{u}^k) + (1 - \theta) \hat{J}(\boldsymbol{u}^0) \end{aligned}$$

Bilinear form $\mathcal{J} = \mathcal{F}'(\boldsymbol{U}^k;\cdot,\cdot)$ from linearization of \mathcal{F} around $\boldsymbol{U} = \boldsymbol{U}^k$:

$$\mathcal{F}'(oldsymbol{U}^k;\deltaoldsymbol{U},oldsymbol{\Phi}) = \sum_i \mathcal{F}'_i(oldsymbol{U}^k;\deltaoldsymbol{U},oldsymbol{\Phi})$$

$$\begin{split} \mathcal{F}_{1}'(\boldsymbol{U}^{k};\delta\boldsymbol{U},\boldsymbol{\Phi}) &\coloneqq \\ &\int_{\Omega_{\boldsymbol{\chi}}^{\mathcal{F}}} \left(\rho^{\mathcal{F}}\theta \hat{J}\operatorname{tr}\left(\hat{\boldsymbol{F}}^{-1}\nabla_{\boldsymbol{\chi}}\delta\boldsymbol{u}^{\mathcal{F}}\right) \left(\boldsymbol{v}^{k,\mathcal{F}}-\boldsymbol{v}^{0,\mathcal{F}}\right) + \rho^{\mathcal{F}}\hat{J}^{n,\theta}\delta\boldsymbol{v}^{\mathcal{F}} \right) \cdot \boldsymbol{\phi}^{\boldsymbol{v},\mathcal{F}} \operatorname{d}\Omega_{\boldsymbol{\chi}}^{\mathcal{F}} \\ &+ \int_{\Omega_{\boldsymbol{\chi}}^{\mathcal{F}}} \left(\Delta t \theta \rho^{\mathcal{F}} \left(\hat{J}\operatorname{tr}\left(\hat{\boldsymbol{F}}^{-1}\nabla_{\boldsymbol{\chi}}\delta\boldsymbol{u}^{\mathcal{F}}\right) \nabla_{\boldsymbol{\chi}}\boldsymbol{v}^{k,\mathcal{F}} \hat{\boldsymbol{F}}^{-1}\boldsymbol{v}^{k,\mathcal{F}} + \hat{J}\nabla_{\boldsymbol{\chi}}\boldsymbol{v}^{k,\mathcal{F}} \left(-\hat{\boldsymbol{F}}^{-1}\nabla_{\boldsymbol{\chi}}\delta\boldsymbol{u}^{\mathcal{F}} \hat{\boldsymbol{F}}^{-1}\right) \boldsymbol{v}^{k,\mathcal{F}} \right) \\ &+ \Delta t \theta \rho^{\mathcal{F}} \hat{J} \left(\nabla_{\boldsymbol{\chi}}\delta\boldsymbol{v}^{\mathcal{F}} \hat{\boldsymbol{F}}^{-1}\boldsymbol{v}^{k,\mathcal{F}} + \nabla_{\boldsymbol{\chi}}\boldsymbol{v}^{k,\mathcal{F}} \hat{\boldsymbol{F}}^{-1}\delta\boldsymbol{v}^{\mathcal{F}} \right) \\ &- \rho^{\mathcal{F}} \hat{J}\operatorname{tr} \left(\hat{\boldsymbol{F}}^{-1}\nabla_{\boldsymbol{\chi}}\delta\boldsymbol{u}^{\mathcal{F}} \right) \nabla_{\boldsymbol{\chi}}\boldsymbol{v}^{k,\mathcal{F}} \hat{\boldsymbol{F}}^{-1} \cdot \left(\boldsymbol{u}^{k,\mathcal{F}} - \boldsymbol{u}^{0,\mathcal{F}} \right) \\ &- \rho^{\mathcal{F}} \hat{J} \left(\nabla_{\boldsymbol{\chi}}\boldsymbol{v}^{k,\mathcal{F}} \left(-\hat{\boldsymbol{F}}^{-1}\nabla_{\boldsymbol{\chi}}\delta\boldsymbol{u}^{\mathcal{F}} \hat{\boldsymbol{F}}^{-1} \right) \left(\boldsymbol{u}^{k,\mathcal{F}} - \boldsymbol{u}^{0,\mathcal{F}} \right) + \nabla_{\boldsymbol{\chi}}\boldsymbol{v}^{k,\mathcal{F}} \hat{\boldsymbol{F}}^{-1}\delta\boldsymbol{u}^{\mathcal{F}} \right) \\ &- \rho^{\mathcal{F}} \hat{J} \nabla_{\boldsymbol{\chi}}\delta\boldsymbol{v}^{\mathcal{F}} \hat{\boldsymbol{F}}^{-1} \cdot \left(\boldsymbol{u}^{k,\mathcal{F}} - \boldsymbol{u}^{0,\mathcal{F}} \right) \right) \cdot \boldsymbol{\phi}^{\boldsymbol{v},\mathcal{F}} \operatorname{d}\Omega_{\boldsymbol{\chi}}^{\mathcal{F}} \end{split}$$

$$\begin{split} \boldsymbol{G}(\delta\boldsymbol{u}) &:= \begin{pmatrix} \partial \delta u_2 / \partial y & -\partial \delta u_2 / \partial x \\ -\partial \delta u_1 / \partial y & \partial \delta u_1 / \partial x \end{pmatrix} \\ \boldsymbol{F}_2'(\boldsymbol{U}^k; \delta\boldsymbol{U}, \boldsymbol{\Phi}) &:= \\ & \int_{\Omega_{\boldsymbol{\chi}}^{\mathcal{F}}} \left(\boldsymbol{\sigma}_{uv}^{\mathcal{F}} \boldsymbol{G}(\delta\boldsymbol{u}) \\ & + \mu^{\mathcal{F}} \left(\nabla_{\boldsymbol{\chi}} \boldsymbol{v}^{k, \mathcal{F}} \left(-\hat{\boldsymbol{F}}^{-1} \nabla_{\boldsymbol{\chi}} \delta \boldsymbol{u}^{\mathcal{F}} \hat{\boldsymbol{F}}^{-1} \right) + \left(-\hat{\boldsymbol{F}}^{-T} \cdot (\nabla_{\boldsymbol{\chi}} \delta \boldsymbol{u}^{\mathcal{F}})^T \hat{\boldsymbol{F}}^{-T} \right) (\nabla_{\boldsymbol{\chi}} \boldsymbol{v}^{k, \mathcal{F}})^T \right) \hat{\boldsymbol{J}} \hat{\boldsymbol{F}}^{-T} \\ & + \mu^{\mathcal{F}} \left(\nabla_{\boldsymbol{\chi}} \delta \boldsymbol{v}^{\mathcal{F}} \hat{\boldsymbol{F}}^{-1} + \hat{\boldsymbol{F}}^{-T} (\nabla_{\boldsymbol{\chi}} \delta \boldsymbol{v}^{\mathcal{F}})^T \right) \hat{\boldsymbol{J}} \hat{\boldsymbol{F}}^{-T} \\ & - (p^{\mathcal{F}} \boldsymbol{I}) \boldsymbol{G}(\delta\boldsymbol{u}) - (\delta p^{\mathcal{F}} \boldsymbol{I}) \hat{\boldsymbol{J}} \hat{\boldsymbol{F}}^{-T} - \left(\delta p^{\mathcal{F}} \boldsymbol{I} \right) \hat{\boldsymbol{J}} \hat{\boldsymbol{F}}^{-T} \right) : \nabla_{\boldsymbol{\chi}} \boldsymbol{\phi}^{\boldsymbol{v}, \mathcal{F}} \, \mathrm{d}\Omega_{\boldsymbol{\chi}}^{\mathcal{F}} \\ & \boldsymbol{\mathcal{F}}_3'(\boldsymbol{U}^k; \delta\boldsymbol{U}, \boldsymbol{\Phi}) := \\ & \int_{\Omega_{\boldsymbol{\chi}}^{\mathcal{F}}} \left(\hat{\boldsymbol{J}} \operatorname{tr} \left(\hat{\boldsymbol{F}}^{-1} \nabla_{\boldsymbol{\chi}} \delta \boldsymbol{u}^{\mathcal{F}} \right) \operatorname{tr} \left(\nabla_{\boldsymbol{\chi}} \boldsymbol{v}^{k, \mathcal{F}} \hat{\boldsymbol{F}}^{-1} \right) \right) \\ & + \hat{\boldsymbol{J}} \operatorname{tr} \left(\nabla_{\boldsymbol{\chi}} \boldsymbol{v}^{k, \mathcal{F}} \left(-\hat{\boldsymbol{F}}^{-1} \nabla_{\boldsymbol{\chi}} \delta \boldsymbol{u}^{\mathcal{F}} \hat{\boldsymbol{F}}^{-1} \right) \right) \\ & + \hat{\boldsymbol{J}} \operatorname{tr} \left(\nabla_{\boldsymbol{\chi}} \boldsymbol{v}^{k, \mathcal{F}} \left(-\hat{\boldsymbol{F}}^{-1} \nabla_{\boldsymbol{\chi}} \delta \boldsymbol{u}^{\mathcal{F}} \hat{\boldsymbol{F}}^{-1} \right) \right) \\ & + \hat{\boldsymbol{J}} \operatorname{tr} \left(\nabla_{\boldsymbol{\chi}} \boldsymbol{v}^{k, \mathcal{F}} \left(-\hat{\boldsymbol{F}}^{-1} \nabla_{\boldsymbol{\chi}} \delta \boldsymbol{u}^{\mathcal{F}} \hat{\boldsymbol{F}}^{-1} \right) \right) \\ & + \hat{\boldsymbol{J}} \operatorname{tr} \left(\nabla_{\boldsymbol{\chi}} \boldsymbol{v}^{k, \mathcal{F}} \left(-\hat{\boldsymbol{F}}^{-1} \nabla_{\boldsymbol{\chi}} \delta \boldsymbol{u}^{\mathcal{F}} \hat{\boldsymbol{F}}^{-1} \right) \right) \\ & + \hat{\boldsymbol{J}} \operatorname{tr} \left(\nabla_{\boldsymbol{\chi}} \boldsymbol{v}^{k, \mathcal{F}} \left(-\hat{\boldsymbol{F}}^{-1} \nabla_{\boldsymbol{\chi}} \delta \boldsymbol{u}^{\mathcal{F}} \hat{\boldsymbol{F}}^{-1} \right) \right) \\ & + \hat{\boldsymbol{J}} \operatorname{tr} \left(\nabla_{\boldsymbol{\chi}} \boldsymbol{v}^{k, \mathcal{F}} \left(-\hat{\boldsymbol{F}}^{-1} \nabla_{\boldsymbol{\chi}} \delta \boldsymbol{u}^{\mathcal{F}} \right) \right) \\ & = \int_{\Omega_{\boldsymbol{\chi}}^{\mathcal{K}}} \left(-\alpha_u \hat{\boldsymbol{J}}^{-1} \operatorname{tr} \left(\hat{\boldsymbol{F}}^{-1} \nabla_{\boldsymbol{\chi}} \delta \boldsymbol{u}^{\mathcal{F}} \right) \nabla_{\boldsymbol{\chi}} \boldsymbol{u}^{k, \mathcal{F}} + \alpha_u \hat{\boldsymbol{J}}^{-1} \nabla_{\boldsymbol{\chi}} \delta \boldsymbol{u}^{\mathcal{F}} \right) \cdot \nabla_{\boldsymbol{\chi}} \boldsymbol{\phi}^{u, \mathcal{F}} \operatorname{d}\Omega_{\boldsymbol{\chi}}^{\mathcal{F}} \end{split} \right)$$

$$\begin{aligned} \mathcal{F}_{5}'(\boldsymbol{U}^{k};\delta\boldsymbol{U},\boldsymbol{\Phi}) &:= \int_{\Omega_{\boldsymbol{\chi}}^{S}} \rho^{S} \,\delta\boldsymbol{v} \cdot \boldsymbol{\phi}^{\boldsymbol{v},S} \,\mathrm{d}\Omega_{\boldsymbol{\chi}}^{S} \\ \mathcal{F}_{6}'(\boldsymbol{U}^{k};\delta\boldsymbol{U},\boldsymbol{\Phi}) &:= \int_{\Omega_{\boldsymbol{\chi}}^{S}} \Delta t \theta \lambda^{S} \operatorname{tr} \left(\frac{1}{2} \left((\nabla_{\boldsymbol{\chi}} \delta \boldsymbol{u})^{T} \hat{\boldsymbol{F}} + \hat{\boldsymbol{F}}^{T} \nabla_{\boldsymbol{\chi}} \delta \boldsymbol{u} \right) \right) \hat{\boldsymbol{F}} : \nabla_{\boldsymbol{\chi}} \boldsymbol{\phi}^{\boldsymbol{v},S} \,\mathrm{d}\Omega_{\boldsymbol{\chi}}^{S} \\ \mathcal{F}_{7}'(\boldsymbol{U}^{k};\delta\boldsymbol{U},\boldsymbol{\Phi}) &:= \int_{\Omega_{\boldsymbol{\chi}}^{S}} \delta \boldsymbol{u} \cdot \boldsymbol{\phi}^{\boldsymbol{u},S} \,\mathrm{d}\Omega_{\boldsymbol{\chi}}^{S} - \int_{\Omega_{\boldsymbol{\chi}}^{S}} \Delta t \theta \,\delta\boldsymbol{v} \cdot \boldsymbol{\phi}^{\boldsymbol{u},S} \,\mathrm{d}\Omega_{\boldsymbol{\chi}}^{S} \end{aligned}$$