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Abstract

The importance of delay differential equations (DDEs), in modelling mathematical bi-
ological, engineering and physical problems, has motivated searchers to provide efficient
numerical methods for solving such important type of differential equations. Most of these
types of differential models are stiff, and suitable numerical methods must be introduced to
simulate the solutions. In this paper, we provide a reliable computational technique, based
on a class of extended one-step methods for solving stiff and non-stiff DDEs. The efficiency
and stability properties of this technique are studied. Numerical results and simulations are
presented to demonstrate the effectiveness of the methodology.
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1 Introduction

The theory of delay differential equations (DDEs) is of both theoretical and practical interest, as
they provide a powerful model of many phenomena in applied sciences such as physics, biology,
chemistry, economics, control theory and so on. The work reported in [1, 2, 3, 4, 5, 6, 7] indicates
the scope for applications of DDEs. The delay(s), in such models, can be related to the duration
of certain hidden processes like the stages of the life cycle, the time between infection of a cell
and the production of new viruses, the duration of the infectious period, the immune period and
so on [8, 9]. Unfortunately, most of these models that represented by DDEs – especially in the
study of chemical kinetics, or immune system interactions – are ’stiff’, in the sense that they
have properties that make them slow and expensive to solve using explicit numerical methods.
The efficient use of reliable numerical methods (based in general on implicit formulae) for dealing
with stiff models involves a degree of sophistication not necessarily available to nonspecialists.

The history of stiff differential equations goes back to more than 60 years to the very early
days when the first identification of stiff equations as a special class of problems has been
given by chemists Curtiss and Hirschfelder in 1952 [10]. Since then, stiff equations presented
serious difficulties and were hard to solve, both in chemical problems (reaction kinetics) and
increasingly in other areas (electrical engineering, mechanical engineering, etc) until around
seventies century when a variety of methods began to appear in the literature [11, 12, 13]. The
nature of the problems that leads to stiffness is the existence of physical phenomena with very
different speeds (time constants) so that, while we may be interested in relative slow aspects
of the model, there are features of the model that could change very rapidly. Prior to the
availability of electronic computers, one could seldom solve problems that were large enough for
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this to be a problem, but once electronic computers became available and people began to apply
them to all sorts of problems, we very quickly ran into stiff problems. In the literature of ODEs,
various definitions are seen for the stiffness [14, 15, 16], one being somewhat more precise than
another. The essence of stiffness is that the solution to be computed is slowly varying but that
perturbations exist which are rapidly damped. The presence of such perturbations complicates
the numerical computation of the slowly varying solution. The problem of stiffness also occurs
in DDEs [17, 18, 19, 20]. However, the situation is more complicated than for ODEs because
the existence of rapidly and slowly varying may not imply stiffness.

The stiffness with DDEs models is characterized by phenomena such as: strong contractivity
of neighbouring solutions, multiple time scales (fast transient phases) and the fact that explicit
numerical integrators are not able to reproduce a correct approximation of the solution in an
efficient way. Another definition, stiff differential equation is an equation for which certain
numerical methods for solving the equation are numerically unstable, unless the step size is
taken to be extremely small. In other words, the step size is restricted by stability and not
accuracy considerations [21]. In [22], stiff equations are defined to be those equations where
implicit methods perform tremendously better than explicit ones. Practically, the software code
developers emphasis that stiff equation solvers are based on implicit methods and not explicit
methods as codes based on explicit methods are much more computational expensive than those
based on the implicit methods. One can also define a stiff solution of a DDE as one whose global
accuracy of the numerical solution is determined by stability rather than local error and implicit
methods are more appropriate for it.

Integrating of non-stiff problems with stiff method is very expensive, whereas non-stiff meth-
ods are much better suited for this purpose. Also, many problems may be stiff in some intervals
and nons-tiff in others. Therefore, we need an efficient technique to be suitable for stiff and non-
stiff problem. Explicit methods have lower computational costs, but with also lower accuracy,
compared to implicit methods. If the problem can be solved with comparable accuracy with
both explicit and implicit methods then explicit method is the choice. But what will happen if
explicit methods have higher computational cost and lower accuracy results or even fail to get
a solution as in stiff problems? In this case we have no choice but to use implicit methods.

Extended one step method (EOSM) is a combination of several linear multi-step methods
(LMMs) [18, 22]. These methods are introduced by the authors of [23, 24, 25] to solve stiff and
non-stiff ODEs. The authors showed that the EOSMs, depending on free parameters, are A/L-
stable in the case of solving ODEs. In this paper we adapt a class of extended one step schemes
for solving DDEs with constant and variable delays. We prove that EOSMs are suitable for stiff
and non-stiff DDEs. Consider the general form of first order DDEs of the form

y′(t) = f(t, y(t), y(t− τ)), t ∈ [t0, T ],

y(t) = ψ(t), t ∈ [−τ, t0],
(1)

where the time-lag τ is assumed to be non-negative parameter. It could be constant, or variable
as a function of t such that 0 ≤ τ(t) ≤ τ∗, where τ∗ is a constant. Because of the delay term
it is no longer sufficient to supply an initial value, at time t = t0, to completely define the
problem, but an initial function ψ(t) defined in interval [−τ, t0]. The function f is assumed to
be sufficiently smooth with respect to its arguments, and ψ(t) is also assumed to be continuous.
We assume also that the function f(t, u, v) satisfies the classical Lipschitz condition in the second
and third variables u and v, i.e.

‖f(t, u, v) − f(t, ū, v̄)‖ ≤ L(‖u− ū‖+ ‖v − v̄‖), L ∈ R
+. (2)

For stiff problems, however, L is typically very large, as the classical Lipschitz constant only
measures variations of f but does not take into account if the direction field corresponding to
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the right-hand side f of (1) is diverging or converging. Therefore, for stiff problems, we should
have the following Remark.

Remark 1 Equation (1) has a unique smooth solution y(t), satisfies the condition (2) and

R〈f(t, u, v) , f(t, ū, v̄)〉 ≤M‖u− ū‖2, (3)

where 〈. , .〉 denotes a given inner product. The constant M , representing the sensitivity of
solution with respect to this initial perturbation, exists such that M ≪ L and possibly M < 0
applies.

The organization of this paper is as follows: In Section 2, we present extended one step
schemes, up to order five, for the inial value probles of DDEs. In Section 3, we investigate the
stability analysis the numerical schemes throughout P-stability and Q-stability. Stabilit regions
are also deduced. The convergence of the scheme of order 3 is discussed in Section 4. Numerical
simulations for differen types of DDEs are procided in Section 5 and conclusion in Section 6.

2 Extended One-Step Methods for DDEs

The main aim of this Section is to consider the application of the EOSM for the numerical
solution of initial value problem for stiff and non-stiff delay differential equations DDEs. Let us
first provide EOSM applied to the initial value problem of the ODE form

y′(t) = f(t, y(t)), 0 < t ≤ b,

y(0) = y0, t = 0.
(4)

It is well known that the order of a k−step method cannot exceed k + 2, however an A-stable
linear multistep method (LMM) can not exceed 2 [26]. To overcome this ”order barrier” imposed
by A-stability, so called extended one-step A-stable methods of order up to five had constructed
by coupling several LMMs (see [25]. After discretization of the problem (4), one can get

yn+1 = yn + h[ α0fn + α1fn+1 +

m−1
∑

j=2

αjfn+j] + κn(h) , (5)

with

yn+j = βj0yn + βj1yn+1 + h[ γj0fn + γj1fn+1 +

j−1
∑

i=2

γjifn+i] + Enj(h). (6)

The extended one-step scheme of such problem takes the form

yn+1 = yn + h[ α0fn + α1fn+1 +
m−1
∑

j=2

αj f̂n+j] + Tn(h),

ŷn+j = βj0yn + βj1yn+1 + h[ γj0fn + γj1fn+1 +

j−1
∑

i=2

γjif̂n+i]

(7)

where αj, βj0, βj1, γj0, γj1 and γji, j = 2, 3, . . . m− 1 are real coefficients, fn = f(tn, yn) and
yn is an approximation to y(tn) at a sequence of equally spced points, tn = nh, n = 0, 1, . . . , N .
One can refer to such a methods (omitting Tn(h)) by Table 1.
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α0 α1 α2 ... αm−1

β20 β21 γ20 γ21
β30 β31 γ30 γ31 γ32

...
...

...
. . .

βm−1,0 βm−1,1 γm−1,0 γm−1,1 γm−1,2 . . . γm−1,m−2

Table 1: Coefficeints of the extended one-step methods.

Usmani and Agarwall [27] deduced an extended one-step third order A-stable scheme by
requiring that En2(h) = O(h3). Later, Jacques [23] modified the method of such schemes to
obtain a one parameter family of third order L-stable method by requiring that En2(h) = O(h3).
Chawla et al. [24] obtained a two-parameter family of fourth order and A-stable methods by
requiring that En2(h) and En3(h) = O(h3) ;there exists a one-parameter sub-family of these
methods which are, in addition, L-stable. Chawla et al. [25] extended these ideas to obtain a
two-parameter family of fifth order and gave sub-families of A-stable and L-stable methods.
The general idea, for the derivation of a methods of order m , we require that κn(h) and Tn(h) =
O(hm+1) while Enj(h) = O(hm−1).

Tables 2 & 3 display the tubule of A-stable and L-stable of order four and five, respectively.

9
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24
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24

1

24
5 -4 2 4
28 -27 12 18 0

9

24

19

24
− 5

24

1

24
1 0 0 2

2 -1 -
1

2
4

1

2

Table 2: A-stable scheme (left) and L-stable scheme (right) of order four for the ODEs (4) [24].
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19
-
1592

19
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19

966

19
−12

19

2

19

Table 3: A-stable scheme (left) and L-stable scheme of order 5 for the ODEs (4) [25].

We extend the above schemes to the DDEs

y′(t) = f(x, y(t), y(α(t)), a ≤ t ≤ b,

y(t) = g(t), ν ≤ t ≤ a.
(8)

Here f , α and g denote given functions with α(t) ≤ t for t ≥ a , the function α is usually called
the delay or lag function and y is unknown solution for t > a. If the delay is a constant, it is
called the constant delay, if it is a function of only time, then it is called the time dependent
delay, if it is a function of time and the solution y(t), then it is called the state dependent delay.
The existence, uniqueness, and continuation of solutions to the above problem have been studied
by Driver [28].
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The extended one-step scheme for DDE (8) is given by

yn+1 = yn + h[ α0fn + α1fn+1 +

m−1
∑

j=2

αj f̂n+j], n = 0, 1, . . . , N − 1, (9)

where f̂n+j = f(tn+j, ŷn+j, y
h(α(tn+j))) and αj , j = 2, 3, . . . m − 1 are real coefficients. The

function yh is computed from



































yh(t) = g(t) for t ≤ a

yh(t) = βj0yk + βj1yk+1 + h[ γj0fk

+ γj1fk+1 +

j−1
∑

i=2

γjif̂k+i] ,

tk < t ≤ tk+1 k = 0, 1, . . .

(10)

where βj0, βj1, γj0, γj1 and γji are real coefficients. The function ŷn+j are computed from (10)
when t = tn+j. In this paper, we will use ˜ for the coefficients of ŷn+j as in the following form

ŷn+j = β̃j0yn + β̃j1yn+1 + h[ γ̃j0fn + γ̃j1fn+1 +

j−1
∑

i=2

γ̃jif̂n+i] (11)

Scheme of third order (m = 3)

In order to determine the coefficients α0, α1 and α2, we rewrite (9) for m = 3 in the exact form

y(tn+1) = y(tn) + h [α0f(tn, y(tn), y(α(tn)))

+ α1f(tn+1, y(tn+1), y(α(tn+1)))

+ α2f(tn+2, y(tn+2), y(α(tn+2)))] + κ(tn+1).

(12)

We expand the left and right sides of (12) in the Taylor series at the point tn+1, equate the
coefficients up to the third order terms O(h3) and solving the resulting system of equations, we
obtain

α0 =
5

12
, α1 =

2

3
, α2 = − 1

12
(13)

and

κ(tn+1) =
h4

24
y(4)(ξ) (14)

where tn < ξ < tn+2. Substituting from (13) into (9) for m = 3, we obtain

yn+1 = yn +
h

12

[

5fn + 8fn+1 − f̂n+2

]

(15)

where
yh(t) = g(t) for t ≤ a (16)

and yh(t) with t > a is defined by

yh(t) = β20yk + β21yk+1 + h [γ20fk + γ21fk+1] , for tk < t ≤ tk+1; k = 0, 1, . . . (17)
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In order to determine the coefficients β20, β21, γ20 and γ21, we rewrite (17) in the exact form

y(t) =β20y(tk) + β21y(tk+1) + h [γ20f(tk, y(tk), y(α(tk)))

+ γ21f(tk+1, y(tk+1), y(α(tk+1)))] + E(tk+1).
(18)

Similarly, we expand the left and right sides of (18) with Taylor series at point tk+1 and equate
the coefficients up to the terms of second order O(h2). We obtain the resulting system of
equations











β20 + β21 = 1

β20 − γ20 − γ21 = −δ(t)
β20 − 2γ20 = δ2(t)

(19)

where

δ(t) =
1

h
(t− tk+1). (20)

The solution of the above system (19) is






















β20 = 1− β21

γ20 =
1

2
(1− β21 − δ2(t))

γ21 =
1

2
(δ2(t) + 2δ(t) − β21 + 1)

(21)

and

E(tk+1) =
h3

12
(2δ3(t) + 3δ2(t) + β1 − 1)y(3)(η) (22)

where β21 is a free parameter and tk < η < tk+1. Substituting from (21) into (17), we obtain

yh(t) =(1− β21)yk + β21yk+1 +
h

2

[

(1− β21 − δ2(t))fk

+(δ2(t) + 2δ(t) − β21 + 1)fk+1

]

, for tk < t ≤ tk+1; k = 0, 1, . . . ,
(23)

Finally, from ( 23), the approximation ŷn+2 is determined in the form

ŷn+2 = (1− β21)yn + β21yn+1 −
h

2

[

β21fn + (β21 − 4)fn+1

]

. (24)

Equations (15), (23) and (24) are the basis of the third order methods (see [29]).
We can estimate the parameters for schemes of order 4 and order 5 in the same manner.

Scheme of fourth order (m = 4)

We can then obtain a two-parameter family of extended fourth order one-step methods, which
we will refer it by PM4(γ20, γ32) and these method are consisting of

yn+1 = yn +
h

24

[

9fn + 19fn+1 − 5f̂n+2 + f̂n+3

]

, (25)

if α(t) ∈ (tn, tn+2) then the function yh is computed from

yh(t) = (2γ20 + δ21(t))yk + (1− δ21(t)− 2γ20)yk+1 + h
[

γ20fk + (γ20 + (δ21(t) + δ1(t))fk+1

]

for tk < t ≤ tk+1; k = 0, 1, . . . , (26)

6



where δ1(t) = 1
h
(t − tk+1). The function ŷn+2 is computed from (26) when t = tn+2 and will

take the following form

ŷn+2 = (1 + 2γ20)yn − 2γ20yn+1 + h[γ20fn + (2 + γ20)fn+1], (27)

if α(t) ∈ (tn+2, tn+3) then the function yh is computed from

yh(t) = (2γ31 + 4γ32 − 2δ2(t)− δ22(t))yk + (1 + δ22(t) + 2δ2(t)− 2γ31

− 4γ32)yk+1 + h[(−δ2(t)− δ22(t) + γ31 + 3γ32)fk

+ γ31f̂k+1 + γ32f̂k+2] for tk < t ≤ tk+1; k = 0, 1, . . . ,

(28)

where δ2(t) =
1
h
(t− tk+1) and

γ31 = 5γ20 + δ32(α(tn+3)) + δ2(α(tn+3)) + 2δ22(α(tn+3))− 8γ32 − 5δ21(α(tn+2))− 5δ31(α(tn+2))

with a free parameter γ32. The function ŷn+3 is computed from (28) when t = tn+3 and will
take the following form

ŷn+3 = 2(4 + 5γ20 − 6γ32)yn + (−7− 10γ20 + 12γ32)yn+1+

h[(2 + 5γ20 − 5γ32)fn + (8 + 5γ20 − 8γ32)fn+1 + γ32f̂n+2].
(29)

Scheme of fifth order (m = 5)

We will refer it by PM5(γ32, γ43) and these methods are consisting of :

yn+1 = yn +
h

720

[

251fn + 646fn+1 − 264f̂n+2 + 106f̂n+3 − 19f̂n+4

]

, (30)

if α(t) ∈ (tn, tn+2) then the function yh is computed from

yh(t) = (2δ31(t)− 3δ21(t) + 1)yk + (3δ21(t)− 2δ31(t))yk+1

+ h
[

(δ31(t)− 2δ21(t) + δ1(t))fk + (δ31(t)− δ21(t))fk+1

]

for tk < t ≤ tk+1; k = 0, 1, . . . ,
(31)

The function ŷn+2 computed from (31) when t = tn+2 and will take the following form

ŷn+2 = 5yn − 4yn+1 + h [2fn + 4fn+1] , (32)

if α(t) ∈ (tn+2, tn+3) then the function yh is computed from

yh(t) = (2δ32(t)− 3δ22(t)− 12γ32 + 1)yk + (3δ22(t)− 2δ32(t) + 12γ32)yk+1

+ h[(δ32(t)− 2δ22(t) + δ2(t)− 5γ32)fk + (δ32(t)− δ22(t)

− 8γ32)fk+1 + γ32f̂k+2], for tk < t ≤ tk+1; k = 0, 1, . . . .

The function ŷn+3 is computed from the above equation when t = tn+3 and will take the following
form

ŷn+3 = (28− 12γ32)yn − (27− 12γ32)yn+1 + h[ (12 − 5γ32)fn

+(18− 8γ32)fn+1 + γ32f̂n+2]
(33)
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if α(t) ∈ (tn+3, tn+4) then the function yh is computed from

yh(t) = (2δ33(t)− 3δ23(t)− 12γ42 − 36γ43 + 1)yk + (3δ23(t)− 2δ33(t) + 12γ42

+ 36γ43)yk+1 + h[(δ33(t)− 2δ23(t) + δ3(t)− 5γ42 − 16γ43)fk

+ (δ33(t)− δ23(t)− 8γ42 − 21γ43)fk+1 + γ42f̂k+2 + γ43f̂k+3]

for tk < t ≤ tk+1; k = 0, 1, . . . ,

and ŷn+4 is computed from the above equation when t = tn+4

ŷn+4 =(81 − 12γ̃42 − 36γ43)yn − (80 − 12γ̃42 + 36γ43)yn+1+

h[ (36− 5γ̃42 − 16γ43)fn + (48 − 8γ̃42 − 21γ43)fn+1 + γ̃42f̂n+2 + γ43f̂n+3]
(34)

where δ3(t) =
1
h
(t− tk+1), γ̃42 = − 1

19 (2− 106γ32 + 95γ43), and

γ42 =
264

228
(δ41(α(tn+2)) + δ21(α(tn+2)− 2δ31(α(tn+2)))) −

106

228
(δ42(α(tn+3))− 2δ32(α(tn+3))

+ δ22(α(tn+3))− 12γ32) +
19

228
(δ43(α(tn+4)) + δ23(α(tn+4))− 2δ33(α(tn+4))− 60γ43).

3 Stability Analysis

There are many concepts of stability of numerical methods for DDEs based on different test
equations and the delay terms. Barwell [30] considered the below scalar equation for λ = 0 and
µ ∈ C and also considered the case, where λ and µ are complex using the linear DDEs

ý(t) = λy(t) + µy(t− τ), t ≥ 0

y(t) = g(t), −1 ≤ t ≤ 0.
(35)

In order to find the asymptotical stability region of (35) (which depends on the lag term τ), we
suppose, without any loosing of generality, that τ = 1 in (35). We search for (λ, µ) values for
which the first solution s crosses the imaginary axis (Re(s) = 0), i.e., s = iθ for θ real. If we
insert this into h(s) = s− λ− µe−sτ , we obtain

λ = −µ for θ = 0 (s real),

λ = iθ − µe−iθ for θ 6= 0.

By separating real and imaginary parts, we get λ =
θ cos θ

sin θ
, µ = − θ

sin θ
is valid for all real

values λ and µ. Thus the stability region of y′(t) = λy(t)+µy(t− 1) is bounded by µ = −λ and
the parametrized curve λ = θcot(θ), µ = −θ/sin(θ); see Figure 1.

Definition 1 (P -stability)
A numerical method, applied to (35) is said to be P -stable if under the condition Re(λ) < − |µ| ,
the numerical solution satisfies y(tn) −→ 0 as t −→ ∞ for all stepsizes h =

τ

m
, where m is

positive integer.

Definition 2 (P -stability Region)
If λ and µ are real in (35), the region SP in the (λ , µ ) plane is called the P− stability region
if for any (λ , µ) ∈ SP the numerical solution of (35) satisfies y(tn) −→ 0 as t −→ ∞ for the
stepsize h
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Definition 3 (Q-stability Region)
If λ = 0 and µ is complex in (35), the region Q(µ) in the µ−plane is called the Q− stability
region if for any µ ∈ Q(µ) the numerical solution y(tn) −→ 0 as tn −→ ∞. It is clear that if
the method is P-stable then it is A-stable.

Applying the third order EOSM to the test problem (35), yields

[24 − 2λh(8 − β21)+(λh)2(4− β21)]yn+1 = [24 + 2λh(4 + β21) + (λh)2β21]yn+

µh[(10 + λhβ21)y(tn − τ) + (16− λh(4 − β21))y(tn+1 − τ)− 2µhy(tn+2 − τ)].

(36)

The characteristic polynomial associated with (36) takes the form

Ws(z) = [24− 2X(8 − β21) +X2(4− β21)]z
s+1

− [24 + 2X(4 + β21) +X2β21]z
s

− Y [10 +Xβ21 + (16−X(4 − β21))z − 2z2]

= 0, s = 1, 2, . . .

(37)

where X = λh and Y = µh. The left banner of Figure 2 shows a bounded Q-stability region
(λ = 0, and µ is complex) to the test problem (35), when τ = 1 with the third order and β = 0.
However, the right banner shows the bounded P-stability region of the same order, with β = 10.

Remark 2 To calculate the stability region, we take different values of (λ, µ) along the co-
ordinate axes and find the roots of the stability polynomial. If all the roots have magnitude less
than one we accept the value of (λ, µ) as part of the stability region.

Similarly, we can estimate the stability regions of Q-stability and P-stability of EOSMs of
orders 4 and 5 which are displayed in Figures 3 and 4, respectively. We may notice that the
P-stability for order 4 and 5 are unbounded and similar to the analytical stability region given
in Figure 1, but Q-stability are bounded for such schemes.

4 Convergence of the Method

We investigate, in this section, the convergence factor of the third order EOSMs, that can be
expressed in the forms

y
(j+1)
n+1 = yn +

h

12
[5fn + 8f(xn+1, y

(j)
n+1, y

h(j)(α(xn+1)))− f(xn+2, ŷ
(j)
n+2, y

h(j)(α(xn+2)))] j = 1, . . .

(38)

and

yh(j)(x) = (1− β21)yk + β21yk+1 +
h

2
[(1− β21 − δ2(x)fk + (δ2(x) + 2δ(x)

−β21 + 1)fk+1], for xk < x ≤ xk+1; k = 0, 1, . . .
(39)

where y
(0)
n+1 is an initial approximation to the solution y at xn+1 and y

(j)
n+1, j ≥ 1 are Picard

iterations.
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Figure 1: Analytical stability region for the test problem y′(t) = λy(t) + µy(t− 1).

If α(xn+1) ∈ (xk, xk+1], k = 0, 1, . . . , n− 1, Eq. (39) will take the following form:

yh(j)(α(xn+1)) = (1− β21)yk + β21yk+1 +
h

2
[(1− β21 − δ2(α(xn+1))fk + (δ2(α(xn+1))

+2δ(α(xn+1))− β21 + 1)fk+1], for xk < x ≤ xk+1; k = 0, 1, . . .
(40)

If α(xn+1) ∈ (xn, xn+1], we put

yh(α(xn+1)) = (1− β21)yn + β21yn+1 +
h

2
[(1− β21 − δ2(α(xn+1))fn

+(δ2(α(xn+1)) + 2δ(α(xn+1))− β21 + 1)fn+1]
(41)

and

yh(j)(α(xn+1)) = (1− β21)yn + β21y
(j)
n+1 +

h

2
[(1 − β21 − δ2(α(xn+1))fn + (δ2(α(xn+1))

+2δ(α(xn+1))− β21 + 1)f(xn+1, y
(j)
n+1, y

h(j)(α(xn+1)))].

(42)

Since α(xn+1) − xn ≤ h, we let α(xn+1) − xn = r1h with r1 ∈ (0, 1]. Then, from (41) and (42)
and by using the Lipschitz condition, it follows that

∣

∣

∣
yh(j)(α(xn+1))− yh(α(xn+1))

∣

∣

∣
≤ 2|β21|+ hL|r21 − β21|

2− hL|r21 − β21|
∣

∣

∣
y
(j)
n+1 − yn+1

∣

∣

∣
. (43)
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Figure 2: Left banner shows bounded Q-stability region for the test problem (35) with τ = 1,
using the third order scheme (s = 3) and β21 = 0. The right banner shows the bounded
P-stability region, with β21 = 10.
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Figure 3: Left banner shows bounded Q-stability region for the test problem (35) with τ = 1,
using the fourth order scheme (s = 4) and γ32 = 0.5, γ20 = 0. However, the right banner shows
unbounded P-stability region.

where L = max{L1, L2}.By the same way, if α(xn+2)− xn+1 = r2h with r2 ∈ (0, 1], we get
∣

∣

∣
yh(j)(α(xn+2))− yh(α(xn+2))

∣

∣

∣
≤ R1

2− hL|r21 − β21|
∣

∣

∣
y
(j)
n+1 − yn+1

∣

∣

∣
. (44)

where

R1 = 2|β21| − hL|β21||r21 − β21|+ hL|r22 + 2r2 − β21 + 1|+ hL|β21||r22 + 2r2 − β21 + 1|

11



−2 −1.5 −1 −0.5 0 0.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Re(λ)

Im
(µ

)

Q−Stability Region

−5 −4 −3 −2 −1 0 1

−5

−4

−3

−2

−1

0

1

2

3

4

5

λ

µ P−Stability Region

Figure 4: Left banner shows bounded Q-stability region for the test problem(35) with τ = 1,
using the fifth order scheme (s = 5) and γ43 = 2/19, γ32 = 0. However, the right banner shows
unbounded P-stability region.

From (44), it follows

∣

∣

∣
ŷ
(j)
n+2 − yn+2

∣

∣

∣
≤ 2|β21| − hL|β21||r21 − β21|+ hL|β21 − 4|+ hL|β21||β21 − 4|

2− hL|r21 − β21|
∣

∣

∣
y
(j)
n+1 − yn+1

∣

∣

∣
.

(45)
Using (43), (44) and (45), we obtain

∣

∣

∣
y
(j+1)
n+1 − yn+1

∣

∣

∣
≤ C

∣

∣

∣
y
(j)
n+1 − yn+1

∣

∣

∣
, j = 0, 1, . . . (46)

where

C =
hL R2

24− 12hL|r21 − β21|
with

R2 = 16 − 7hL|r21 − β21|+ 6|β21| − 2hL|β21||r21 − β21|+ hL|β21 − 4|+ hL|β21||β21 − 4|
+hL|r22 + 2r2 − β21 + 1|+ hL|β21||r22 + 2r2 − β21 + 1|.

(47)

The constant C is referred as the convergence factor. Thus, the iterative process (39) is conver-
gent if C < 1. Now, we state the following theorem for β21.

Theorem 3 If the sequence {y(j)n+1} for β21 = 0 given by (38)and(40) is bounded by a constant
C and the condition

hL <
−2R3 + 2

√

R2
3 + 6R4

R4

R3 = 4 + 3r21

R4 = r22 + 2r2 − 7r21 + 5

(48)
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is satisfied, where r1, r2 ∈ (0, 1] and L = max{L1, L2}. Then, the extended third order method
is convergent.

5 Numerical Simulations

In this section, we present various examples of constant, variable delay and steady state DDEs;
stiff and non-stiff problems to show the efficiency of EOSMs for such types of DDEs. We compare
our results with the numerical results obtained by DDE23 [31] which are based on the explicit
RK schemes.

Example 1 Consider the logistic DDE [32]

y′(t) = −λy(t− 1)(1 + y(t)), t ≥ 0,

φ(t) = 1, t ≤ 0.
(49)

This problem has been suggested as a mathematical description of a fluctuating population of
organism and control systems (see e.g. [33] and [34]). The exact solution of this problem is
unknown. Figures 5-7 show the numerical simulations obtained by EOSMs and those of DDE23
with different values of λ = 1.5, 2.5 and 3, respectively and for tolerance = 10−3. For λ = 1.5,
the results are almost identical. For λ = 2.5 and 3, the solution obtained by DDE23 starts
to diverge away from the correct solution while the solution obtained by EOSMs still meets the
known numerical solution [34].
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Figure 5: Solution for non-linear eqn (49)(λ = 1.5) by EOSMs versus DDE23 [31].
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Figure 6: Solution for (49) (λ = 2.5) by EOSMs versus DDE23.
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Figure 7: Solution for (49) (λ = 3) by EOSMs versus DDE23.

Example 2 Consider the stiff DDE [32] of the form

y′(t) = −1000y(t) + q y(t− 1) + c, t ≥ 0,

S1 : q = 997e−3, c = 1000 − q

y(t) = 1 + e(−3t), t ≥ 0, (exact solution)

S1 : q = 999e−1, c = 1000 − q

y(t) = 1 + e(−t), t ≥ 0, (exact solution)

S1 : q = 999.99e−0.01, c = 1000 − q

y(t) = 1 + e(−0.01t), t ≥ 0, (exact solution).

(50)

This problem is derived from the linear stability DDE test equation. The choice of parameters

14



produces a stiff DDE. comparing the exact solution with the numerical results obtained by EOSMs
for different values for the parameter q, we note that, both are identical (see Figs. 8-10)
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Figure 8: Solution for (50) (q = 997e−3) using EOSMs versus exact solution.
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Figure 9: Solution for (50) (q = 999e−1) using EOSMs versus exact solution.

Example 3 Consider the varying-delay scalar DDE [32] of the form

y′(t) = 1− y(1− exp(1 − 1

t
)), t ≥ 1,

φ(t) = ln(t), 0 < t ≤ 1,
(51)

and analytical solution:
y(t) = ln(t), t > 0

The numerical simulations are given in Figure 11.
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Figure 10: Solution for (50) (q = 999.99e−0.01) using EOSMs versus exact solution.
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Figure 11: Solution for variable delay DDE (51) using EOSMs versus exact solution.

Example 4 Finally (See Figure 12), consider the more general state-dependent DDE [32] of
the form

y′(t) = y(y(t)−
√
2 + 1)

2
√
t

, t ≥ 1,

φ(t) = 1, 0 < t ≤ 1.

(52)

and analytical solution
y(t) =

√
t, 1 ≤ t ≤ 2.

Example 5 We extend our analysis to solve a system of DDEs [32] of the form

y′1(t) = y2(t)

y′2(t) = 1− y2(t− 1)− y1(t)
t ≥ 0, (53)
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Figure 12: Solution for state dependent DDE (52) using EOSMs versus exact solution

with
y(0) = [y1(0), y2(0)]

T = [0, 0]T , t ≤ 0

and analytical solution

y1(t) =

{

1− cos(t), 0 ≤ t ≤ 1;
1− cos(t) + 1

2 (t− 1) + cos(t− 1)12 sin(t− 1), 1 ≤ t ≤ 2.

y2(t) =

{

sin(t), 0 ≤ t ≤ 1;
sin(t) + 1

2(1− t) sin(t− 1), 1 ≤ t ≤ 2.
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Figure 13: Solution for the system of DDEs (53) using EOSMs versus exact solution.
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6 Conclusion

In this paper, a general form of extended one-step method for solving various types of DDEs
has been provided. Stability properties of such schemes have been investigated. The suggested
method is suitable and efficient for both non-stiff and stiff delay differential equations. It has
been shown that the results obtained by EOSM schemes of order 3 are better, compared with
those obtained by DDE23 Matlab code, which is based on explicit Runge-Kutta schemes, when
solving stiff problems. This comparison emphasizes on the fact that, even if the explicit method
gives a solution for the stiff problem, the computational cost for explicit methods is higher than
that of EOSM method in case of stiff problem. The accuracy of explicit scheme is very low
compared to those of EOSM. The suggested schemes may be able to solve many challenging
stiff initial value problems in biology, chemistry and optimal control which cannot be solved by
explicit schemes. The software of the given schemes of EOSM will be available very soon in a
technical report.

This work is extendable to solve stiff and non-stiff integro-delay differential equations and
also with variable step-size.
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