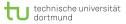
Numerical results

Stabilized Extended One-Step Schemes for Stiff and Non-Stiff Delay Differential Equations

F. Ibrahim, F. A. Rihan and S. Turek

Institut for Applied Mathematics and Numerics (LSIII) Technische Universität Dortmund fatma.ibrahim@math.tu-dortmund.de

NUMDIFF-14 Halle(Saale)-Germany, 07.09.2015-11.09.2015



TU Dortmund University

Numerical results

Extended One-Step Methods for DDEs

Stability Analysis

Numerical results

TU Dortmund University

Part 1: Extended One-Step Methods for DDEs

TU Dortmund University

Let us first provide EOSM applied to the initial value problem of the ODE form

$$y'(t) = f(t, y(t)), \quad 0 < t \le b, y(0) = y_0, \qquad t = 0.$$
 (1)

an A-stable *linear multistep method* (LMM) can not exceed 2. To overcome this "order barrier" imposed by A-stability, so called extended one-step A-stable methods of order up to five had constructed by coupling several LMMs

After discretization of the problem (1), one can get

$$y_{n+1} = y_n + h[\alpha_0 f_n + \alpha_1 f_{n+1} + \sum_{j=2}^{m-1} \alpha_j f_{n+j}] + \kappa_n(h) , \qquad (2)$$

In order to make the discretization in (2) one-step, they introduce, for j = 2, ..., m - 1,

$$y_{n+j} = \beta_{j0}y_n + \beta_{j1}y_{n+1} + h[\gamma_{j0}f_n + \gamma_{j1}f_{n+1} + \sum_{i=2}^{j-1}\gamma_{ji}f_{n+i}] + E_{nj}(h)$$

The extended one-step scheme of such problem takes the form

$$y_{n+1} = y_n + h[\alpha_0 f_n + \alpha_1 f_{n+1} + \sum_{j=2}^{m-1} \alpha_j \hat{f}_{n+j}] + T_n(h),$$
$$\hat{y}_{n+j} = \beta_{j0} y_n + \beta_{j1} y_{n+1} + h[\gamma_{j0} f_n + \gamma_{j1} f_{n+1} + \sum_{i=2}^{j-1} \gamma_{ji} \hat{f}_{n+i}]$$

TU Dortmund University

where α_j , β_{j0} , β_{j1} , γ_{j0} , γ_{j1} and γ_{ji} , $j = 2, 3, \ldots m - 1$ are real coefficients

α_0	α_1	α_2			α_{m-1}	
β_{20}	β_{21}	γ_{20}	γ_{21}			
β_{30}	β_{31}	γ_{30}	γ_{31}	γ_{32}		
:			:	÷	·	
$\beta_{m-1,0}$	$\beta_{m-1,1}$	$\gamma_{m-1,0}$	$\gamma_{m-1,1}$	$\gamma_{m-1,2}$		$\gamma_{m-1,m-2}$

Table: Coefficients of the extended one-step methods.

- Jacques (1989) obtained an extended one-step third order L-stable method by requiring that $E_{n2}(h) = O(h^3)$ and this method depend on a free parameter.
- Chawla et al.(1994) obtained a two-parameter family of fourth order and A-stable methods by requiring that $E_{n2}(h)$ and $E_{n3}(h) = O(h^3)$; there exists a one-parameter sub-family of these methods which are, in addition, L-stable.
- Chawla et al.(1995) extended these ideas to obtain a two-parameter family of fifth order and gave sub-families of A-stable and L-stable methods.

Third order methods (m = 3)

5	8	1		5	8	1		
$\overline{12}$	$\overline{12}$	$-\frac{12}{12}$		$\overline{12}$	$\overline{12}$	$-\frac{12}{12}$		
5	-4	2	4	1	0	0	2	

A-stable scheme of Usmani and Agarwal(left) and L-stable scheme of Jacques(right).

Fourth order methods (m = 4)

$\frac{9}{24}$ $\frac{19}{24}$	$-\frac{5}{24}$	$\frac{1}{24}$		$\frac{9}{24}$	$\frac{19}{24}$	$-\frac{5}{24}$	$\frac{1}{24}$	
<u>24</u> 24 5 -4	24	<u>24</u> 4		1	0	0	2	1
28 -27	12	18	0	2	-1	$-\frac{1}{2}$	4	$\frac{1}{2}$

A-stable scheme (left) and L-stable scheme (right) of order four for the ODEs $\left(1\right)$.

Fifth order methods (m = 5)

251	323	11	53	19	
$\overline{720}$	$\overline{360}$	$-\overline{30}$	$\overline{360}$	$-\frac{1}{720}$	
5	-4	2	4		
28	-27	12	18	0	
1611	1592	712	966	12	2
19	-19	$\overline{19}$	$\overline{19}$	$-\frac{19}{19}$	$\overline{19}$

L-stable scheme of order 5 for the ODEs (1) .

TU Dortmund University

We extend the above schemes to the DDEs

$$y'(t) = f(x, y(t), y(\alpha(t))), \quad a \le t \le b,$$

$$y(t) = g(t), \qquad \nu \le t \le a.$$
(3)

Here f, α and g denote given functions with $\alpha(t) \leq t$ for $t \geq a$, the function α is usually called the delay or lag function and y is unknown solution for t > a. If the delay is a constant, it is called the constant delay, if it is a function of only time, then it is called the time dependent delay, if it is a function of time and the solution y(t), then it is called the state dependent delay.

Numerical results

The extended one-step scheme for DDE (3) is given by

$$y_{n+1} = y_n + h[\alpha_0 f_n + \alpha_1 f_{n+1} + \sum_{j=2}^{m-1} \alpha_j \hat{f}_{n+j}], n = 0, 1, \dots, N-1,$$
(4)

where $\hat{f}_{n+j} = f(t_{n+j}, \hat{y}_{n+j}, y^h(\alpha(t_{n+j})))$ and $\alpha_j, \ j = 2, 3, \ldots m-1$ are real coefficients. The function y^h is computed from

$$\begin{cases} y^{h}(t) = g(t) & \text{for} \quad t \le a \\ y^{h}(t) = \beta_{j0}y_{k} + \beta_{j1}y_{k+1} + h[\gamma_{j0}f_{k} \\ + \gamma_{j1}f_{k+1} + \sum_{i=2}^{j-1} \gamma_{ji}\hat{f}_{k+i}], \\ t_{k} < t \le t_{k+1} \quad k = 0, 1, \dots \end{cases}$$
(5)

where β_{j0} , β_{j1} , γ_{j0} , γ_{j1} and γ_{ji} are real coefficients. The function \hat{y}_{n+j} are computed from (5) when $t = t_{n+j}$. We will use $\tilde{}$ for the coefficients of \hat{y}_{n+j} as in the following form

$$\hat{y}_{n+j} = \tilde{\beta}_{j0}y_n + \tilde{\beta}_{j1}y_{n+1} + h[\;\tilde{\gamma}_{j0}f_n + \tilde{\gamma}_{j1}f_{n+1} + \sum_{i=2}^{j-1}\tilde{\gamma}_{ji}\hat{f}_{n+i}]$$
(6)

Scheme of third order (m = 3)

TU Dortmund University

In order to determine the coefficients α_0, α_1 and α_2 , we rewrite (4) for m = 3 in the exact form

$$y(t_{n+1}) = y(t_n) + h \left[\alpha_0 f(t_n, y(t_n), y(\alpha(t_n))) + \alpha_1 f(t_{n+1}, y(t_{n+1}), y(\alpha(t_{n+1}))) + \alpha_2 f(t_{n+2}, y(t_{n+2}), y(\alpha(t_{n+2}))) \right] + \kappa(t_{n+1}).$$
(7)

We expand the left and right sides of (7) in the Taylor series at the point t_{n+1} , equate the coefficients up to the third order terms $O(h^3)$ and solving the resulting system of equations, we obtain

$$\alpha_0 = \frac{5}{12}, \quad \alpha_1 = \frac{2}{3}, \quad \alpha_2 = -\frac{1}{12}$$
 (8)

TU Dortmund University

$$\kappa(t_{n+1}) = \frac{h^4}{24} y^{(4)}(\xi) \tag{9}$$

where $t_n < \xi < t_{n+2}$. Substituting from (8) into (4) for m = 3, we obtain

$$y_{n+1} = y_n + \frac{h}{12} \left[5f_n + 8f_{n+1} - \hat{f}_{n+2} \right]$$
(10)

$$y^h(t) = g(t) \quad \text{for} \quad t \le a$$
 (11)

and $y^h(t)$ with t > a is defined by

 $y^{h}(t) = \beta_{20}y_{k} + \beta_{21}y_{k+1} + h\left[\gamma_{20}f_{k} + \gamma_{21}f_{k+1}\right], \text{ for } t_{k} < t \le t_{k+1}; \ k =$ (12)

In order to determine the coefficients β_{20} , β_{21} , γ_{20} and γ_{21} , we rewrite (12) in the exact form

 $y(t) = \beta_{20}y(t_k) + \beta_{21}y(t_{k+1}) + h\left[\gamma_{20}f(t_k, y(t_k), y(\alpha(t_k)))\right] + \gamma_{21}f(t_{k+1}, y(t_{k+1}), y(\alpha(t_{k+1})))] + E(t_{k+1}).$ (13)

TU Dortmund University

Numerical results

Similarly, we expand the left and right sides of (13) with Taylor series at point t_{k+1} and equate the coefficients up to the terms of second order $O(h^2)$. We obtain the resulting system of equations

$$\begin{cases} \beta_{20} + \beta_{21} = 1\\ \beta_{20} - \gamma_{20} - \gamma_{21} = -\delta(t)\\ \beta_{20} - 2\gamma_{20} = \delta^2(t) \end{cases}$$
(14)

where

$$\delta(t) = \frac{1}{h}(t - t_{k+1}).$$
(15)

The solution of the above system (14) is

$$\begin{cases} \beta_{20} = 1 - \beta_{21} \\ \gamma_{20} = \frac{1}{2} (1 - \beta_{21} - \delta^2(t)) \\ \gamma_{21} = \frac{1}{2} (\delta^2(t) + 2\delta(t) - \beta_{21} + 1) \end{cases}$$
(16)

TU Dortmund University

$$E(t_{k+1}) = \frac{h^3}{12} (2\delta^3(t) + 3\delta^2(t) + \beta_1 - 1)y^{(3)}(\eta)$$
 (17)

where β_{21} is a free parameter and $t_k < \eta < t_{k+1}$. Substituting from (16) into (12), we obtain

$$\begin{split} y^{h}(t) = & (1 - \beta_{21})y_{k} + \beta_{21}y_{k+1} + \frac{h}{2} \left[(1 - \beta_{21} - \delta^{2}(t))f_{k} \\ & + (\delta^{2}(t) + 2\delta(t) - \beta_{21} + 1)f_{k+1} \right], \quad \text{for} \quad t_{k} < t \leq t_{k+1}; \ k = 0, 1 \\ & (18) \end{split}$$

Finally, from (18), the approximation \hat{y}_{n+2} is determined in the form

$$\hat{y}_{n+2} = (1 - \beta_{21})y_n + \beta_{21}y_{n+1} - \frac{h}{2} \big[\beta_{21}f_n + (\beta_{21} - 4)f_{n+1}\big].$$
(19)

Equations (10), (18) and (19) are the basis of the third order methods.

Part 3: Stability Analysis

TU Dortmund University

Consider the test equation:

Definition

(P-stability) A numerical method, applied to (20) is said to be P-stable if under the condition $Re(\lambda) < -\mu$, the numerical solution satisfies $y(t_n) \longrightarrow 0$ as $t \longrightarrow \infty$ for all stepsizes $h = \frac{\tau}{s}$, where s is positive integer.

Definition

(*P*-stability Region) If λ and μ are real in (20), the region S_P in the (λ, μ) plane is called the *P*- stability region if for any $(\lambda, \mu) \in S_P$ the numerical solution of (20) satisfies $y(t_n) \longrightarrow 0$ as $t \longrightarrow \infty$ for the stepsize *h*

Definition

(*Q*-stability Region) If $\lambda = 0$ and μ is complex in (20), the region $Q(\mu)$ in the μ -plane is called the Q- stability region if for any $\mu \in Q(\mu)$ the numerical solution $y(t_n) \longrightarrow 0$ as $t_n \longrightarrow \infty$.

Applying the third order EOSM to the test problem (20), yields $[24 - 2\lambda h(8 - \beta_{21}) + (\lambda h)^2 (4 - \beta_{21})]y_{n+1} = [24 + 2\lambda h(4 + \beta_{21}) + (\lambda h)^2 \beta_{21}]y_n + \mu h[(10 + \lambda h \beta_{21})y(t_n - \tau) + (16 - \lambda h(4 - \beta_{21}))y(t_{n+1} - \tau) - 2\mu hy(t_{n+2} - \tau)]y_{n+1} = [24 + 2\lambda h(4 + \beta_{21}) + (\lambda h)^2 \beta_{21}]y_n + \mu h[(10 + \lambda h \beta_{21})y(t_n - \tau)]y_{n+1} = [24 + 2\lambda h(4 + \beta_{21}) + (\lambda h)^2 \beta_{21}]y_n + \mu h[(10 + \lambda h \beta_{21})y(t_n - \tau)]y_{n+1} = [24 + 2\lambda h(4 + \beta_{21}) + (\lambda h)^2 \beta_{21}]y_n + \mu h[(10 + \lambda h \beta_{21})y(t_n - \tau)]y_{n+1} = [24 + 2\lambda h(4 + \beta_{21}) + (\lambda h)^2 \beta_{21}]y_n + \mu h[(10 + \lambda h \beta_{21})y(t_n - \tau)]y_{n+1} = [24 + 2\lambda h(4 + \beta_{21}) + (\lambda h)^2 \beta_{21}]y_n + \mu h[(10 + \lambda h \beta_{21})y(t_n - \tau)]y_{n+1} = [24 + 2\lambda h(4 + \beta_{21}) + (\lambda h)^2 \beta_{21}]y_n + \mu h[(10 + \lambda h \beta_{21})y(t_n - \tau)]y_n + (\lambda h)^2 \beta_{21}]y_n + \mu h[(10 + \lambda h \beta_{21})y(t_n - \tau)]y_n + (\lambda h)^2 \beta_{21}]y_n + \mu h[(\lambda h)^2 \beta_{21}]y_n$

The characteristic polynomial associated with (21) takes the form

$$W_{s}(z) = [24 - 2X(8 - \beta_{21}) + X^{2}(4 - \beta_{21})]z^{s+1} - [24 + 2X(4 + \beta_{21}) + X^{2}\beta_{21}]z^{s} - Y[10 + X\beta_{21} + (16 - X(4 - \beta_{21}))z - 2z^{2}] = 0, \quad s = 1, 2, \dots$$
(22)

where $X = \lambda h$ and $Y = \mu h$.

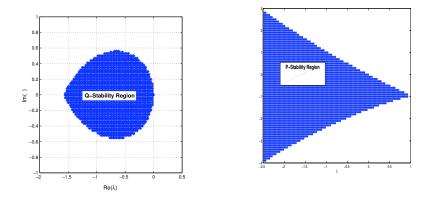


Figure: Left banner shows bounded Q-stability region for the test problem (20) with $\tau = 1$, using the third order scheme (s = 3) and $\beta_{21} = 0$. The right banner shows the unbounded P-stability region, with

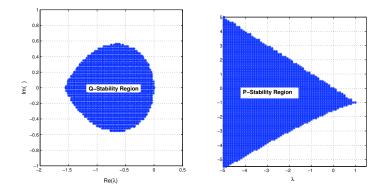


Figure: Left banner shows bounded Q-stability region for the test problem (20) with $\tau = 1$, using the fourth order scheme (s = 4) and $\gamma_{32} = 0.5$, $\gamma_{20} = 0$. However, the right banner shows unbounded P-stability region.

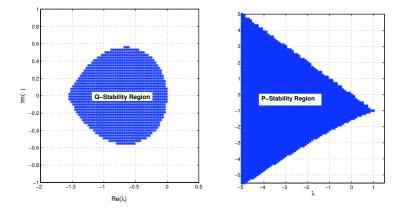


Figure: Left banner shows bounded Q-stability region for the test problem(20) with $\tau = 1$, using the fifth order scheme (s = 5) and $\gamma_{43} = 2/19$, $\gamma_{32} = 0$. However, the right banner shows unbounded P-stability region.

TU Dortmund University

Part 4:Numerical results

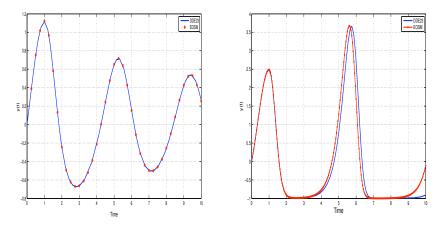
TU Dortmund University

Example

Consider the logistic DDE

$$y'(t) = -\lambda y(t-1)(1+y(t)), \quad t \ge 0, \phi(t) = 1, \qquad t \le 0.$$
(23)

TU Dortmund University



Solution for the logistic DDE for $(\lambda=1.5)$ (left) and for $(\lambda=2)$ (right) by EOSMs versus DDE23

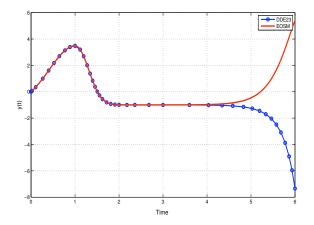


Figure: Solution for (23) $(\lambda = 3)$ by EOSMs versus DDE23.

TU Dortmund University

Numerical results

Example

We extend our analysis to solve a system of DDEs of the form

$$y'_1(t) = y_2(t) y'_2(t) = 1 - y_2(t-1) - y_1(t)$$
 $t \ge 0,$ (24)

with

$$y(0) = [y_1(0), y_2(0)]^T = [0, 0]^T, \qquad t \le 0$$

and analytical solution

$$y_1(t) = \begin{cases} 1 - \cos(t), & 0 \le t \le 1; \\ 1 - \cos(t) + \frac{1}{2}(t-1) + \cos(t-1)\frac{1}{2}\sin(t-1), & 1 \le t \le 2. \end{cases}$$
$$y_2(t) = \begin{cases} \sin(t), & 0 \le t \le 1; \\ \sin(t) + \frac{1}{2}(1-t)\sin(t-1), & 1 \le t \le 2. \end{cases}$$

TU Dortmund University

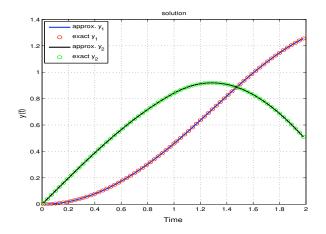


Figure: Solution for the system of DDEs (24) using EOSMs versus exact solution.

Example

Consider the varying-delay scalar DDE of the form

$$y'(t) = 1 - y(1 - \exp(1 - \frac{1}{t})), \qquad t \ge 1,$$

$$\phi(t) = \ln(t), \qquad 0 < t \le 1,$$
(25)

and analytical solution

$$y(t) = \ln(t), \quad t > 0.$$

TU Dortmund University

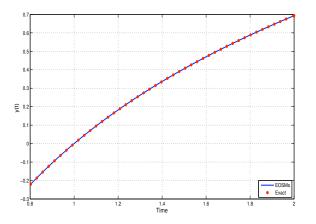


Figure: Solution for variable delay DDE (25) using EOSMs versus exact solution.

TU Dortmund University

Example

Consider the more general state-dependent DDE of the form

$$y'(t) = \frac{y(y(t) - \sqrt{2} + 1)}{2\sqrt{t}}, \qquad t \ge 1,$$

$$\phi(t) = 1, \qquad 0 < t \le 1.$$
(26)

and analytical solution:

$$y(t) = \sqrt{t}, \qquad 1 \le t \le 2.$$

TU Dortmund University

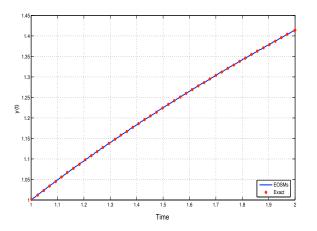


Figure: Solution for state dependent DDE (26) using EOSMs versus exact solution

Example

Consider the stiff DDE of the form

$$\begin{aligned} y'(t) &= -1000y(t) + q \ y(t-1) + c, & t \ge 0, \\ S1: & q = 997e^{-3}, \ c = 1000 - q \\ & y(t) = 1 + e^{(-3t)}, & t \ge 0, (\text{exact solution}) \\ S1: & q = 999e^{-1}, \ c = 1000 - q \\ & y(t) = 1 + e^{(-t)}, & t \ge 0, (\text{exact solution}) \\ S1: & q = 999.99e^{-0.01}, \ c = 1000 - q \\ & y(t) = 1 + e^{(-0.01t)}, & t \ge 0, (\text{exact solution}). \end{aligned}$$

The choice of parameters produces a stiff DDE. comparing the exact solution with the numerical results obtained by EOSMs for different values for the parameter q

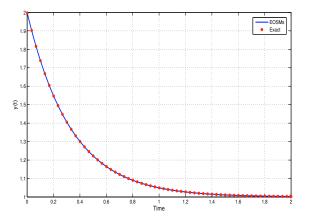


Figure: Solution for (27) ($q = 997e^{-3}$) using EOSMs versus exact solution.

TU Dortmund University

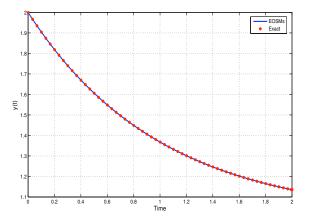


Figure: Solution for (27) ($q = 999e^{-1}$) using EOSMs versus exact solution.

TU Dortmund University

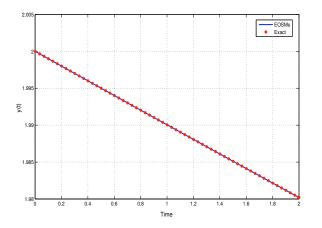


Figure: Solution for (27) ($q = 999.99e^{-0.01}$) using EOSMs versus exact solution.

TU Dortmund University

References

- Extende one-step methods for the numerical solution of ordinary differential equations: I. B. Jacques(1989)
- Stabilized fourth order extended methods for the numerical solution of ODEs: Chawla et. al (1994)
- Class of stabilized extended one-step methods for the numerical solution of ODEs:Chawla et. al (1995)
- Extended one-step methods for solving delay-differential equations:Ibrahim et al. (2014)
- A Class of Extended One-Step Methods for Solving Delay Differential Equations: Ibrahim et al. (2015)

Thanks for your attention!

Any questions?

TU Dortmund University