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Let us first provide EOSM applied to the initial value problem of
the ODE form

y/(t) - f(tvy(t))a 0<t<b,

y(0) = yo, t=0. 1)

an A-stable linear multistep method (LMM) can not exceed 2. To
overcome this "order barrier’ imposed by A-stability, so called
extended one-step A-stable methods of order up to five had
constructed by coupling several LMMs
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After discretization of the problem (1), one can get
m—1

Yntl = Yn + h{ aOfn + alfn+1 + Z ajfn+j] + /fn(h) s (2)
j=2
In order to make the discretization in (2) one-step, they introduce,
forj=2,....m—1,
j—1
Yn+s = Bjotn + Birttnr1 + h[ Yjofa + V1St + > Vjifnsil + Enj(h)
i=2
The extended one-step scheme of such problem takes the form

m—1
Yn+l = Yn + h[ aOfn + CVlfnJrl + Z ajfn+j] + Tn(h)a
j=2
Jj—1
Gt = BioYn + Bittnr1 + bl vjoSn + Vit Sar1 + Y Vjifrtd)
=2
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wher.e Qj, ﬁj(]; ,le, Y50, V51 and VYiis j = 2,3, ...m — 1 are real
coefficients

(67} aq (%) A —1
Boo | Ba1 Y20 Y21
B30 P31 Y30 V31 V32
Bm-10 | Bm-11 | Ym=1,0 | Ym=11 | Ym-12 | --- | Ym—1,m—2

Table: Coefficients of the extended one-step methods.
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m Jacques (1989) obtained an extended one-step third order
L-stable method by requiring that E,2(h) = O(h?) and this
method depend on a free parameter.

m Chawla et al.(1994) obtained a two-parameter family of fourth
order and A-stable methods by requiring that
En2(h) and E,3(h) = O(h®) ;there exists a one-parameter
sub-family of these methods which are, in addition, L-stable.

m Chawla et al.(1995) extended these ideas to obtain a
two-parameter family of fifth order and gave sub-families of
A-stable and L-stable methods.
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S5 B1_1 S5 31_1
12 12| 12 12 12| 12
5 -4 2 4 1 0] 0 2

A-stable scheme of Usmani and Agarwal(left) and L-stable scheme
of Jacques(right) .
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Fourth order methods (m = 4)
9 Br s 1
24 24 24 24
5 4| 2 4
28 -27 | 12 18 0

9 Br s 1

24 24 | 24 24

1 0] 0 2
2 |-l !
2 2

A-stable scheme (left) and L-stable scheme (right) of order four for
the ODEs (1) .
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Fifth order methods (m = 5)

o5T 323 T 53 19
720 360 30360 720

5 -4 2 4

28 27 12 18 0
1611 1592 | 712 966 12 2
19 19 19 19 19 19

L-stable scheme of order 5 for the ODEs (1) .
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We extend the above schemes to the DDEs

yi(t) = fla,y(t),y(a(t)), a<t<b,
y(t) = g(t), v<t<a.

Here f, o and g denote given functions with () <t fort > a
the function « is usually called the delay or lag function and vy is
unknown solution for ¢ > a. If the delay is a constant, it is called
the constant delay, if it is a function of only time, then it is called
the time dependent delay, if it is a function of time and the solution
y(t), then it is called the state dependent delay.
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The extended one-step scheme for DDE (3) is given by

m—1

Yntl = yn+h[ Ozofn+0é1fn+1 + Z OéjfnJern =0,1,...,.N —1,
=2

where f,1; = f(tn+jugn+j7yh(a(tn+j))) and
aj, j=2,3,...m — 1 are real coefficients. The function y" is
computed from

yh(t) =g(t) for t<a
y"(t) = Bjouk + Biryk+1 + A vjofr
— (5)
v fre + D Yiifrail
i—2

e <t <71k+1 k=0,1,...
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where 350, Bj1, vjo. 751 and ;; are real coefficients. The function
Un+; are computed from (5) when ¢t = t,,, ;. We will use ~ for the
coefficients of ¢,,;; as in the following form

i1
Untj = BjoYn + Bj1¥n+1 + h[ Fjofn + Vi1 fri1 + Z Yji frti]

- (6)

Scheme of third order (m = 3)
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In order to determine the coefficients ag, oy and o, we rewrite (4)
for m = 3 in the exact form

y<tn+1) = y(tn) +h [O‘Of@m y(tn)v y(O‘Un)))
+ alf(tn+1a y(tn+1)> y(a(tn+l)))
+ a2 f (tnt2, Y(tnr2), y(altniz)))] + H(tn+1)~7
We expand the left and right sides of (7) in the Taylor series at 'Ehg.
point t,,11, equate the coefficients up to the third order terms
O(h?) and solving the resulting system of equations, we obtain

2 1
ap = -5, al:ga Q2 = ——= (8)
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Ly
(tns) = 2y (E) ©)
where ¢, < & < t,,19. Substituting from (8) into (4) for m = 3, we
obtain N
Ynt+1l = Yn + ﬁ 5fn + 8fn+1 - fn+2 (10)
y'(t) = g(t) for t<a (11)

and 3" () with ¢ > a is defined by

Y (t) = Booyk + BorYk1 + B [y20 e + 21 o], for ty <t <tpy1; k=
(12)

In order to determine the coefficients 829, £21, 720 and 721, we

rewrite (12) in the exact form

y(t) =Baoy(tr) + Bary(try1) + hlyao f (L, y(tr), y(a(tr)))

oo flken yltke s y(alton )] + Eltesy). )
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Similarly, we expand the left and right sides of (13) with Taylor
series at point 751 and equate the coefficients up to the terms of
second order O(h?). We obtain the resulting system of equations

Boo + P21 =1
B20 — Y20 — Y21 = —4(2) (14)
Bao — 2720 = 6°(t)
where .
5(t) = E(t — tga1)- (15)
The solution of the above system (14) is
P20 =1— P
Y20 = %(1 — Ba1 — 6%(t)) (16)

Vo1 = %(52(75) +26(t) — Ba1 + 1)
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Bltin) = 12 @00+ 38%0) + 61 - yP ) (17)

where (351 is a free parameter and ¢, < 1 < tj1. Substituting
from (16) into (12), we obtain

y" (1) =(1 — Ba1)yk + Baryki1 + b [(1 = Bar — 6%(1)) fi

2
+(8%(t) +26(t) — Bor + 1) 1], for ty <t <tpi1; k=0,]
(18)
Finally, from ( 18), the approximation ¢, 2 is determined in the

form

Unt2 = (1 = B21)Yn + B21Ynt1 — g [Ba1 fn + (B21 — 4) frs1]. (19)

Equations (10), (18) and (19) are the basis of the third order
methods.

TU Dortmund University

Stabilized Extended One-Step Schemes for Stiff and Non-Stiff Delay Differential Equations



Extended One-Step Methods for DDEs Stability Analysis Numerical results

0000000000000 0e

Part 3: Stability Analysis

tep Schemes for Stiff and Non-Stiff Delay Differe Equations



Stability Analysis
©0000000

Consider the test equation:

y(t) = My(t) + py(t —7), t>0

y(t) =g(t), —1<t<o. (20)

Definition

(P-stability)

A numerical method, applied to (20) is said to be P-stable if under
the condition Re(\) < —p, the numerical solution satisfies

y(t,) — 0 as t — oo for all stepsizes h = g where s is positive

integer.
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Definition

(P-stability Region)

If X\ and x are real in (20), the region Sp in the (A, ) plane is
called the P— stability region if for any (\ , ) € Sp the numerical
solution of (20) satisfies y(t,,) — 0 as t — oo for the stepsize h
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Definition

(Q-stability Region)

If A =0 and p is complex in (20), the region (1) in the u—plane
is called the Q— stability region if for any 1 € (1) the numerical
solution y(t,) — 0 as t,, — oc.
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Applying the third order EOSM to the test problem (20), yields

24 — 2)\R(8 — Ba1)+ (M) (4 — Bar)]yns1 = [24 + 2\h(4 + Ba21)
+ (AR)?Ba1]yn + uh[(10 + A1 )y(tn — T)
+ (16 — Ar(4 = B21))y(tns1 — 7) = 2phy(tnye — 7
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The characteristic polynomial associated with (21) takes the form

Wi(z) = [24 — 2X (8 — Bo1) + X2(4 — fa)]25T
— [24 42X (4 + B21) + X?Ba1]2"
— Y10 + X Bo; + (16 — X (4 — Bo1))z — 227
=0, s=1,2,...

(22)

where X = Ah and Y = ph.
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m()

Re(h)

Figure: Left banner shows bounded Q-stability region for the test
problem (20) with 7 = 1, using the third order scheme (s = 3) and
B21 = 0. The right banner shows the unbounded P-stability region, with
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Figure: Left banner shows bounded Q-stability region for the test problem
(20) with 7 =1, using the fourth order scheme (s = 4) and ~y32 = 0.5,
90 = 0. However, the right banner shows unbounded P-stability region.
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Figure: Left banner shows bounded Q-stability region for the test
problem(20) with 7 = 1, using the fifth order scheme (s = 5) and
a3 = 2/19, v32 = 0. However, the right banner shows unbounded
P-stability region.
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Consider the logistic DDE

y(t) = =dy(t — (1 +y(t), t=0,
o(t) =1, t<0

(23)
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Time

Solution for the logistic DDE for (A = 1.5) (left) and for (A = 2)
(right) by EOSMs versus DDE23
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We extend our analysis to solve a system of DDEs of the form
1(t) = t
(1) = a0 o
yha(t) =1 —yo(t — 1) —y1(t)

with
y(0) = [y1(0),52(0)]" = [0,0]",  t<0

and analytical solution

() = 1 — cos(t), 0<t<1;

=1 1- cos(t) + 3(t — 1) + cos(t — 1)isin(t — 1), 1<t <[2.
() = sin(t), 0<t<1;

= sin(t) + 21 —t)sin(t — 1), 1<¢<2.
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solution
1.4 T
approx. y,
o exacty,
1.2 approx. y,
o exacty,

y(t)

Figure: Solution for the system of DDEs (24) using EOSMs versus exact
solution.
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Consider the varying-delay scalar DDE of the form

y)=1-y(l-exp(i-3), 21,
o(t) = 1n(t), 0<t<l,

(25)

and analytical solution

y(t) =1In(t), t>0.
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EOSMs
+  Exact

Figure: Solution for variable delay DDE (25) using EOSMs versus exact
solution.
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Consider the more general state-dependent DDE of the form

oyl —v2+1)
yl(t) = W :
o(t) =1, 0<t<1.

(26)

and analytical solution:
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1351 T

y(t)

Time

Figure: Solution for state dependent DDE (26) using EOSMs versus
exact solution
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Consider the stiff DDE of the form

y/(t) = —1000y(t) + q y(t — 1) + ¢, t>0,
S1 g=997¢73, ¢=1000—gq

y(t) =1+ (3, t > 0, (exact solution)
S1 g =999, ¢=1000—gq

y) =1+ e, t > 0, (exact solution)
S1 g =999.99¢ %01 ¢ =1000 — ¢

y(t) = 1 + (7001, t > 0, (exact solution).

(27)

The choice of parameters produces a stiff DDE. comparing the
exact solution with the numerical results obtained by EOSMs for
different values for the parameter ¢

TU Dortmund University

Stabilized Extended One-Step Schemes for Stiff and Non-Stiff Delay Differential Equations



Extended One-Step Methods for DDEs Stability Analysis Numerical results

0000000000 e000dq

Figure: Solution for (27) (¢ = 997e~3) using EOSMs versus exact
solution.
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Figure: Solution for (27) (¢ = 999¢~!) using EOSMs versus exact
solution.
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2.005

1.995

1.985

16 18 2
Time

Figure: Solution for (27) (¢ = 999.99¢~%1) using EOSMs versus exact
solution.
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Thanks for your attention!

Any questions?
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