Optimisation Techniques for Incompressible Flow Problems Prof. Dr. Stefan Turek, Prof. Dr. Wolfgang Achtziger

Michael Köster

Institute for Applied Mathematics and Numerics University of Dortmund

Doctoral seminar, 06.02.2007

(E) ► < E >

- What is Flow Control?
- Aims and results
- Recent developments and open problems

What is Flow Control? Aims and results Recent developments and open problems

What is Flow Control?

Formulate a minimisation problem with side constrains:

such that
$$\min_{q} J(u(q), p(q), q) = \text{drag, lift,...}$$

such that Navier Stokes (u, p) is fulfilled

What is Flow Control? Aims and results Recent developments and open problems

Background and Aims

Problems:

- Complex, general situations
 - \Rightarrow no gradient information available
- Behaviour even of simple algorithms in complex situations unknown
- \Rightarrow Test behaviour of simple algorithms
 - o derivative-free
 - in complex situations
 - with only few control variables
- \Rightarrow Provide accurate values for the optimiser

What is Flow Control? Aims and results Recent developments and open problems

What is Flow Control?

Example: Boat-like object in a flow

Aim: Find the best u_1, u_2 to minimise the *drag*.

Optimisation with PDE's Conclusion Recent developments and open problems

Results for the example: 1D and 2D optimisation

Relative error: Compass Search against Nelder Mead in 2D

- \Rightarrow Compass / Nelder Mead similar in 1D
- \Rightarrow Nelder Mead scales better in 2D
- \Rightarrow Nelder Mead may suffer from *simplex degeneration*

Optimisation Techniques for Incompressible Flow Problems

Optimisation with PDE's Conclusion Recent developments and open problems

Accuracy and arbitrary geometries

Enhanced accuracy and support for arbitrary objects with

- Mesh deformation
- ALE method deformation
- Fictitious boundary technique

What is Flow Control? Aims and results Recent developments and open problems

Methodical problems in the nonstationary case

Pressure fluctuations with Fictitious Boundary technique

What is Flow Control? Aims and results Recent developments and open problems

Methodical problems in the nonstationary case

Pressure fluctuations with Fictitious Boundary technique

What is Flow Control? Aims and results Recent developments and open problems

Methodical problems in the nonstationary case

Pressure fluctuations with Fictitious Boundary technique

What is Flow Control? Aims and results Recent developments and open problems

Methodical problems in the nonstationary case

Pressure fluctuations with Fictitious Boundary technique

What is Flow Control? Aims and results Recent developments and open problems

Open problems

- Get pressure fluctuations under control ⇒ theoretically and practically
- Use other derivative-free optimisation algorithms (TRIOPT, DIRECT).
- Test the algorithms in the nonstationary case.

What is Flow Control? Aims and results Recent developments and open problems

Methodical problems in the nonstationary case

Nonstationary simulation, heat conduction equation

 \Rightarrow

No deformation after t=0.1 sec

