Efficiently Solving Optimal Control Problems in CFD using Space-Time Multigrid Techniques Michael Hinze, Stefan Turek

Part of the SPP1253: Optimization with PDE's

Michael Köster

Institute for Applied Mathematics TU Dortmund

Annual Meeting, 21. - 23.09.2008

Distributed Control for the nonstationary Navier-Stokes equation with tracking-type functional for a given *z*:

$$J(y, u) = \frac{1}{2} ||y - z||_Q^2 + \frac{\alpha}{2} ||u||_Q^2 + \frac{\gamma}{2} ||y(T) - z(T)||_{\Omega}^2 \to \text{min!}$$

on $Q = \Omega \times [0, T]$ such that

$$y_t - \nu \Delta y + (y \nabla)y + \nabla p = u \text{ in } Q$$

 $-\nabla \cdot y = 0 \text{ in } Q$ + BC

Design goals for a solver

Moderate performance measure; for *C* not too large:

 $\frac{\text{effort for optimization}}{\text{effort for simulation}} \leq C$

By modern CFD-techniques:

effort for simulation = O(N) $\stackrel{!}{\Rightarrow}$ effort for optimization = O(N)

Idea:

- One-shot approach \rightarrow Newton + Multigrid in space-time.
- Efficient + accurate CFD \rightarrow Multigrid + FEM in space

Design goals for a solver

Moderate performance measure; for *C* not too large:

 $\frac{\text{effort for optimization}}{\text{effort for simulation}} \leq C$

By modern CFD-techniques:

effort for simulation = O(N) $\stackrel{!}{\Rightarrow}$ effort for optimization = O(N)

Idea:

- One-shot approach \rightarrow Newton + Multigrid in space-time.
- Efficient + accurate CFD → Multigrid + FEM in space

(周) イヨト イヨト

Corresponding KKT-System:

- $y_t \nu \Delta y + (y \nabla) y + \nabla p = u$ in Q $\nabla y_t = 0$ in Q
 - $-\nabla \cdot y = 0$ in Q

$$\begin{aligned} -\lambda_t - \nu \Delta \lambda - (\mathbf{y} \nabla) \lambda + (\nabla \mathbf{y}) \lambda + \nabla \xi &= (\mathbf{y} - \mathbf{z}) & \text{in } \mathbf{Q} \\ -\nabla \cdot \lambda &= \mathbf{0} & \text{in } \mathbf{Q} \end{aligned}$$

$$u = -\frac{1}{\alpha}\lambda$$
 in Q

・ 同 ト ・ ヨ ト ・ ヨ ト …

- + boundary conditions
- + initial condition
- + terminal condition $\lambda(T) = \gamma(y(T) z(T))$ in Ω

Corresponding KKT-System:

$$y_t + N(y)y + \nabla p + \frac{1}{\alpha}\lambda = 0 \quad \text{in } Q$$

$$-\nabla \cdot y = 0 \quad \text{in } Q$$

$$\begin{aligned} -\lambda_t + N^*(\mathbf{y})\lambda + \nabla\xi - \mathbf{y} &= -z \quad \text{in } Q \\ -\nabla \cdot \lambda &= 0 \quad \text{in } Q \end{aligned}$$

< ∃→

Corresponding KKT-System:

$$\begin{pmatrix} y_t \\ -\lambda_t \\ 0 \\ 0 \end{pmatrix} + \underbrace{\begin{pmatrix} N(y) & \frac{1}{\alpha} & \nabla & \\ -I & N^*(y) & \nabla \\ -\nabla \cdot & 0 & \\ & -\nabla \cdot & 0 \end{pmatrix}}_{\begin{pmatrix} \tilde{N}(y) & \nabla \\ -\nabla \cdot & 0 \end{pmatrix}} \begin{pmatrix} y \\ \lambda \\ p \\ \xi \end{pmatrix} = \begin{pmatrix} 0 \\ -z \\ 0 \\ 0 \end{pmatrix}$$

\Rightarrow saddle point structure

Michael Köster Space-Time-Multigrid for Optimal Control in CFD

 $\equiv \rightarrow$

 <u>Time discretisation</u>: Backward Euler (later: 2nd order Crank-Nicolson, FS-θ)

$$\frac{\mathbf{y}_i - \mathbf{y}_{i-1}}{\Delta t} + \mathbf{N}(\mathbf{y}_i)\mathbf{y}_i + \nabla \mathbf{p}_i + \frac{1}{\alpha}\lambda_i = \dots$$
$$\frac{\lambda_i - \lambda_{i+1}}{\Delta t} + \mathbf{N}^*(\mathbf{y}_i)\lambda_i + \nabla \xi_i - \mathbf{y}_i = \dots$$

Space discretisation:

LBB-stable Finite Elements (\tilde{Q}_1/Q_0 , later Q_2/P_1) on general 2D meshes (later: 3D)

< Ξ →

 \Rightarrow Space–time system

$$A(x)x = b$$

Here (for *n* timesteps, $x_k = x(t_k)$):

$$x = (\underbrace{y_0, \lambda_0, p_0, \xi_0}_{x_0 = x(t_0)}, \dots, \underbrace{y_n, \lambda_n, p_n, \xi_n}_{x_n = x(t_n)})$$

Michael Köster Space-Time-Multigrid for Optimal Control in CFD

< ∃⇒

A(x) has a very special structure! E.g. for 2 timesteps:

 \rightarrow Sparse, (block) tridiagonal system

Design of a One-Shot solver

Nonlinearity: Newton method for quadratic convergence

$$x^{i+1} = x^i + A'^{-1}(x^i)(b - A(x^i)x^i)$$

• Linear subproblems: space-time Multigrid solver

 \rightarrow Convergence rates independent of refinement level of the space-time mesh

.⊒...>

Space-time multigrid ingredients

Essential multigrid components:

- Mesh hierarchy for a space-time cylinder $Q = \Omega \times [0, T]$: Choose arbitrary space-time coarse mesh and refine!
- Prolongation/Restriction in space + time.
 Combination of FE in space & FD in time.
- An efficient smoother! E.g. with $\tilde{A} := A'(x^i)$:

$$\mathbf{v}^{j+1} = \mathbf{v}^j + \omega \mathbf{P}^{-1}(\mathbf{b} - \tilde{\mathbf{A}}\mathbf{v}^j), \qquad j = 1, ..., \text{NSM}$$

What to use as preconditioner *P*?

프 🖌 🛪 프 🛌

Space-time multigrid ingredients

Essential multigrid components:

- Mesh hierarchy for a space-time cylinder $Q = \Omega \times [0, T]$: Choose arbitrary space-time coarse mesh and refine!
- Prolongation/Restriction in space + time.
 Combination of FE in space & FD in time.
- An efficient smoother! E.g. with $\tilde{A} := A'(x^i)$:

$$\mathbf{v}^{j+1} = \mathbf{v}^j + \omega \mathbf{P}^{-1}(\mathbf{b} - \tilde{\mathbf{A}}\mathbf{v}^j), \qquad j = 1, ..., \text{NSM}$$

What to use as preconditioner P?

< 三→ -

Space-time discretisation and preconditioner

 \tilde{A} in compressed form (omitting *B* and B^{T} here):

(NST –M	NST*		$-\frac{M}{\Delta t}$			
	$-\frac{M}{\Delta t}$		NST	$\frac{1}{\alpha}M$			
			-M	NST*		$-\frac{M}{\Delta t}$	
			$-\frac{M}{\Delta t}$		NST	$\frac{1}{\alpha}M$	
					- <i>M</i>	NST*	$-\frac{M}{\Delta t}$
Ĺ							/

 \Rightarrow Block-Jacobi preconditioner:

Space-time discretisation and preconditioner

 \tilde{A} in compressed form (omitting *B* and B^T here):

$\begin{pmatrix} NST \\ -M \end{pmatrix}$	NST*		$-\frac{M}{\Delta t}$			
$-\frac{M}{\Delta t}$		NST	$\frac{1}{\alpha}M$			
		- <i>M</i>	NST*		$-\frac{M}{\Delta t}$	
		$-\frac{M}{\Delta t}$		NST	$\frac{1}{\alpha}M$	
				-M	NST*	$-\frac{M}{\Delta t}$
\langle						/

 \Rightarrow Block-Jacobi preconditioner:

Space-time discretisation and preconditioner

 \tilde{A} in compressed form (omitting *B* and B^T here):

$\begin{pmatrix} NST \\ -M \end{pmatrix}$	NST*		$-\frac{M}{\Delta t}$			
$-\frac{M}{\Delta t}$		NST	$\frac{1}{\alpha}M$			
		- <i>M</i>	NST∗		$-\frac{M}{\Delta t}$	
		$-\frac{M}{\Delta t}$		NST	$\frac{1}{\alpha}M$	
				-M	NST*	$-\frac{M}{\Delta t}$
						/

 \Rightarrow Symmetric Gauß-Seidel-like preconditioner $P := P_{SGS}$. In every timestep:

$$\begin{pmatrix} -\frac{M}{\Delta t} & 0\\ 0 & 0 \end{pmatrix} \mathbf{v}_{i-1} + \begin{pmatrix} NST & \frac{1}{\alpha}M\\ -M & NST^* \end{pmatrix} \mathbf{v}_i + \begin{pmatrix} 0 & 0\\ 0 & -\frac{M}{\Delta t} \end{pmatrix} \mathbf{v}_{i+1} = \dots$$
$$\rightarrow \mathbf{v}_i$$

Space-time preconditioner

<u>Essential</u>: To use $P_{Jac/SGS}^{-1}$, apply for every timestep:

$$\begin{pmatrix} NST & \frac{1}{\alpha}M & B \\ -M & NST^* & B \\ \hline B^T & 0 \\ B^T & 0 \end{pmatrix}^{-1}$$

saddle point structure \Rightarrow use efficient CFD techniques!

- Smoother: mod. LPSC (VANKA-like) → Primal and dual coupled!

- Optimal control problem: Navier–Stokes, *Re* = 20
- <u>Coarse mesh</u>: 1404 DOF's in space, 5 timesteps, $\Delta t := 0.2$ \Rightarrow 8 424 DOF's, \times 8 per level

< ∃ >

Convergence of the Newton solver

			Sim	Optim	isation		
Δt	Space-Lv.	#NL	#MG	⊘#NL	⊘#MG	#NL	#MG
1/20	3	63	312	3	16	4	24
1/40	4	123	709	3	18	4	14
1/80	5	246	1589	3	20	4	13

- Nonlinear solver gained 5 digits
- Space-time MG gained 2 digits per step
- Space-preconditioner gained 2 digits per step

Convergence of the Newton solver

Δt	Space-Lv.	Time sim.	Time opt.	Time opt / Time sim.
1/20	3	27	917	34.0
1/40	4	209	4346	20.7
1/80	5	2227	55174	24.8

Optimisation is $C \approx 20 - 30 \times$ more expensive than simulation \rightarrow independent of the refinement level

→ Aim: Factor 10-15 due to "code optimisation"!

4 3 b

Convergence of the Newton solver

Δt	Space-Lv.	Time sim.	Time opt.	Time opt / Time sim.
1/20	3	27	917	34.0
1/40	4	209	4346	20.7
1/80	5	2227	55174	24.8

Optimisation is $C \approx 20 - 30 \times$ more expensive than simulation \rightarrow independent of the refinement level

 \rightarrow Aim: Factor 10-15 due to "code optimisation"!

Convergence of the solver for different α and γ

α	0.05		0.	01	0.005	
γ	#NL	#MG	#NL	#MG	#NL	#MG
0	5	15	5	15	5	16
0.1	5	15	5	15	5	17
0.3	5	15	5	20	5	23
0.5	5	16	6	29	5	79

 $\Delta t = 1/40$, Space-level 4

 \Rightarrow Smaller α + larger $\gamma \rightarrow$ worse convergence rates

< 三→ ---

Numerical example: Flow-around-cylinder

Solution quality: Analysis of the drag

Michael Köster Space-Time-Multigrid for Optimal Control in CFD

Numerical example: Flow-around-cylinder

Solution quality: Analysis of the drag

Numerical example: Flow-around-cylinder

Solution quality: Analysis of the drag

Michael Köster Space-Time-Multigrid for Optimal Control in CFD

Outlook

Further steps (till summer 2009):

- 2nd-order Crank-Nicolson scheme
- FEM-stabilisation (EO-FEM/interior penalty)
 → higher RE numbers
- improved smoothers for the space-time problem
- incorporate constraints

・ 回 ト ・ ヨ ト ・ ヨ ト

Outlook

Future plans for new period:

- Treatment of adapted meshes in space and time
- FEM & solver improvements
 - \rightarrow solver behaviour for α/γ , Q_2/P_1 , Stabil., inexact Newton
- HPC / improved algorithms \rightarrow necessary for 3D!
- boundary control
- complex CFD (non-Newtonian, non-isothermal fluids, FSI)

(画) (目) (目)

Structure of A(x):

< ∃⇒

Structure of A'(x):

Michael Köster Space-Time-Multigrid for Optimal Control in CFD

< ∃⇒

Solution quality: Analysis of the drag

Solution quality: Analysis of the drag

Michael Köster Space-Time-Multigrid for Optimal Control in CFD

Solution quality: Analysis of the drag

Michael Köster Space-Time-Multigrid for Optimal Control in CFD

Numerical example:

Flow-around-cylinder with pulsating BC

- Domain: Flow-around-cylinder (like above), T = 8.
- Coarse mesh: 1404 DOF's in space, 20 timesteps with Δt = 0.4.
- Target flow z: Parabolic inflow with max. velocity

$$U_{\max}(t) := 0.15 \cdot \left(1 + \sin(rac{t+3}{2}\pi)\right)/2$$

Optimisation: Natural boundary conditions at inflow

< 3 b

・ロト ・回ト ・ヨト ・ヨト

Checkpointing in the One-shot approach

- Checkpoints \rightarrow nonlinear subproblems of the same kind.
- High computational costs necessary for recomputation
 → due to strong coupling by LPSC!

4.35.5