
Shallow Water
Derivation and Applications

Christian Kühbacher

Technische Universität Dortmund

May 28, 2009

The 2d Shallow Water Equations Derivation from basic conservation laws Solutions to SWE problems



Overview

1 The 2d Shallow Water Equations

2 Derivation from basic conservation laws

3 Solutions to SWE problems

The 2d Shallow Water Equations Derivation from basic conservation laws Solutions to SWE problems



Overview

1 The 2d Shallow Water Equations

2 Derivation from basic conservation laws

3 Solutions to SWE problems

The 2d Shallow Water Equations Derivation from basic conservation laws Solutions to SWE problems



Basic properties

The shallow water equations (SWE) are

are a set of PDEs, that describe fluid-flow-problems

are derived from the physical conservation laws for the mass and
momentum

are valid for problems in which vertical dynamics can be neglected
compared to horizontal effects

are a 2d model, which is derived from a 3d model by depth averaging
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Is “shallow water” a good name?

For two reasons the name shallow water is not exact

The fluid doesn’t have to be water
For example wheather forecasting was done with a modification of
the SWE

The fluid doesn’t necessarily have to be shallow
For example a tsunami wave on the ocean (approx. 5 km deep) can
be a SW wave
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Tsunami
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Some examples

The SWE have been applied to

Tsunamis prediction

Atmospheric flows

Storm surges

Flows around structures (pier)

Planetary flows
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Counterexamples

The SWE can not be applied, when

3d effects become essential

Waves become too short or too
high
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Mass conservation

Conservation of mass

∂

∂t
̺+∇ · (̺v) = 0

̺ = Density

v = (u, v ,w) = Velocity
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Simplified form

Mass continuity

∂

∂x
u +
∂

∂y
v +
∂

∂z
w = 0

v = (u, v ,w) = Velocity
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Momentum conservation

Conservation of momentum

∂

∂t
(̺v) +∇ · (̺v ⊗ v + pI − Π) = ̺g

̺ = Density

v = (u, v ,w) = Velocity

p = Pressure

Π = Viscosity

g = Body force vector (gravitation)
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Momentum conservation

Conservation of momentum

∂

∂t
v +∇ · (v ⊗ v) +

1

̺
∇ · pI = g

̺=Density

v = (u, v ,w) = Velocity

p = Pressure

g = Body force vector (gravitation)
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Momentum conservation

Conservation of momentum

∂

∂t
v +∇ · (v ⊗ v) +

1

̺
∇ · pI =





0
0
−g





̺ = Density

v = (u, v ,w) = Velocity

p = Pressure

g = Body force vector (gravitation)
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Momentum conservation

Conservation of momentum

∂

∂t
v +∇ · (v ⊗ v) = −

1

̺
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Simplified form

Conservation of momentum

∂

∂t
u + u

∂

∂x
u + v

∂

∂y
u + w

∂

∂z
u = −

1

̺

∂

∂x
p

∂

∂t
v + u

∂

∂x
v + v

∂

∂y
v + w

∂

∂z
v = −

1

̺

∂

∂y
p

∂

∂t
w + u

∂

∂x
w + v

∂

∂y
w + w

∂

∂z
w = −

1

̺

∂

∂z
p − g

The 2d Shallow Water Equations Derivation from basic conservation laws Solutions to SWE problems



Simplified form

Mass continuity

∂

∂x
u +
∂

∂y
v +
∂

∂z
w = 0

Conservation of momentum

∂

∂t
u + u

∂

∂x
u + v

∂

∂y
u + w

∂

∂z
u = −

1

̺

∂

∂x
p

∂

∂t
v + u

∂

∂x
v + v

∂

∂y
v + w

∂

∂z
v = −

1

̺

∂

∂y
p

∂

∂t
w + u

∂

∂x
w + v

∂

∂y
w + w

∂

∂z
w = −

1

̺

∂

∂z
p − g

The 2d Shallow Water Equations Derivation from basic conservation laws Solutions to SWE problems



Solveability

We have obtained four PDEs for the four unknowns

Given appropriate initial and boundary conditions, these equations
can be solved

Boundary conditions have to be applied to the surface

BUT

The position of the surface is not
known a priori!
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Variables
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Simplified form

Mass continuity

∂
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Main simplification

Primary assumption in SW-Theory

Horizontal scales (wave length l) are much larger, than vertical scales
(undistubed water heigth h)

∂

∂x
u +
∂

∂y
v

︸ ︷︷ ︸

≈
U
l

+
∂

∂z
w

︸ ︷︷ ︸

≈
W
h

= 0

⇓

W ≈ U
h

l
, where

h

l
≪ 1
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Boundary layer theory

Neglegt vertical accelerations

Boundary layer assumption

d

dt
w = 0

So you can think of the SWE as a boundary layer.
This explains the name “shallow”.
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Hydrostatic pressure

∂

∂z
p = −̺g

Integrate this equation

Hydrostatic pressure distribution

p = g

∫ s

z

̺ dz + pa
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Pressure gradient

Assuming constant density along the z-axis, we obtain

p = ̺g(s − z) + pa

Pressure gradient

∂

∂x
p = ̺g

∂

∂x
s

∂

∂y
p = ̺g

∂

∂y
s
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Horizontal mean velocity

The pressure gradient

∂

∂x
p = ̺g

∂

∂x
s

∂

∂y
p = ̺g

∂

∂y
s

is independent of the variable z

is responsible for horizontal accelerations

The horizontal velocities u, v

are independent of the variable z

can be interpreted as vertical mean velocities
∂

∂z
u = ∂

∂z
v = 0
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Depth averaging

∫ s

b

∂

∂x
u +
∂

∂y
v +
∂

∂z
w dz = 0

Mass continuity

∂

∂t
h +
∂

∂x
(hu) +

∂

∂y
(hv) = 0

The 2d Shallow Water Equations Derivation from basic conservation laws Solutions to SWE problems



Depth averaging

∫ s

b

∂

∂x
u +
∂

∂y
v +
∂

∂z
w dz = 0

Mass continuity

∂

∂t
h +
∂

∂x
(hu) +

∂

∂y
(hv) = 0

The 2d Shallow Water Equations Derivation from basic conservation laws Solutions to SWE problems



Simplified form

Mass continuity in conservative form

∂

∂t
h +
∂

∂x
(hu) +

∂

∂y
(hv) = 0

Conservation of momentum

∂

∂t
u + u

∂

∂x
u + v

∂

∂y
u = −g

∂

∂x
s

∂

∂t
v + u

∂
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v + v

∂
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∂
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Simplified form

Mass continuity in conservative form

∂

∂t
h +
∂

∂x
(hu) +

∂

∂y
(hv) = 0

Momentum equations in conservative form

∂

∂t
(hu) +

∂

∂x
(hu2 +

1

2
gh2) +

∂

∂y
(huv) = −gh

∂

∂x
b

∂

∂t
(hv) +

∂

∂x
(huv) +

∂

∂y
(hv2 +

1

2
gh2) = −gh

∂

∂y
b
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Final form of the equations I

SWE I

∂

∂t
h +
∂

∂x
(hu) +

∂

∂y
(hv) = 0

∂

∂t
(hu) +

∂

∂x
(hu2 +

1

2
gh2) +

∂

∂y
(huv) = −gh

∂

∂x
b

∂

∂t
(hv) +

∂

∂x
(huv) +

∂

∂y
(hv2 +

1

2
gh2) = −gh

∂

∂y
b

h : Water heigth
u, v : Depth-averaged velocity in x- and y-direction
b : Function describing the bottom profile
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SWE I
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∂t
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∂x
(hu2 +

1

2
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∂

∂y
(huv) = −gh

∂

∂x
b

∂

∂t
(hv) +

∂

∂x
(huv) +

∂

∂y
(hv2 +

1

2
gh2) = −gh

∂

∂y
b

h : Water heigth
u, v : Depth-averaged velocity in x- and y-direction
b : Function describing the bottom profile
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Final form of the equations II

SWE II

∂

∂t
Q +

∂

∂x
F (Q) +

∂

∂y
G(Q) = Sb(Q)

Q = (h, hu, hv)⊤ Vector of conservered variables
F (Q) = (hu, hu2 + 1

2
gh2, huv)⊤ Flux in x-direction

G(Q) = (hv , huv , hv2 + 1
2
gh2)⊤ Flux in y-direction

Sb = (0,−ghbx ,−ghby)
⊤ Source term for bottom profile

The 2d Shallow Water Equations Derivation from basic conservation laws Solutions to SWE problems



Final form of the equations II

SWE II

∂

∂t
Q +

∂

∂x
F (Q) +

∂

∂y
G(Q) = Sb(Q)

Q = (h, hu, hv)⊤ Vector of conservered variables
F (Q) = (hu, hu2 + 1

2
gh2, huv)⊤ Flux in x-direction

G(Q) = (hv , huv , hv2 + 1
2
gh2)⊤ Flux in y-direction

Sb = (0,−ghbx ,−ghby)
⊤ Source term for bottom profile

The 2d Shallow Water Equations Derivation from basic conservation laws Solutions to SWE problems



Extensions

Coriolis forces

Wind shear stress

Multilayer models

Additional transport equations (heat, dissolved substances, sediment
particles)

The Boussinesq Equations (to model shorter and steeper waves) can
be considered as an extension to the SWE
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Final remarks

The SWE are not completely 2d

The resulting 2d velocity field is not divergence-free

There are 3d models, but as the detph-averaging is a very important
part of the SWE, they are usually just called boundary layer models
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3 Solutions to SWE problems

The 2d Shallow Water Equations Derivation from basic conservation laws Solutions to SWE problems



Melitta test case

Our first test case will show us, that
the SWE can produce reasonable
solutions

Its solution is well known from the
famous tv ad of melitta :-)
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Analytical solutions

1d dambreak problem

∂

∂t

[
h

hu

]

+
∂

∂x

[
hu

hu2 + 1
2
gh2

]

= 0.

h0 :=

{
hl x < 0
hr x > 0

u0 := 0
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1d dambreak
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Generalisation to 2d

There are 2d versions of the dambreak problem.

First we will consider a water revervoir break, then we will observe the
solution of an asymmetric dambreak problem.
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2d circular dambreak
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2d circular dambreak
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2d asymmetric dambreak
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2d asymmetric dambreak
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Flow around a pillar

Floodwave flowing around a pillar

Computational grid
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Flow around pillar
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Flow around pillar
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Nonlinear hyperbolic charakter

In our last test case we observe the nonlinear hyperbolic character of the
SWE.
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Nonlinear hyperbolic charakter
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Nonlinear hyperbolic charakter
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The end
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