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In this note, we review some new approaches to enforcing discrete maximum
principles in continuous high-order finite element discretizations of hyperbolic con-
servation laws. As a model problem, we consider the linear advection equation

(1)
∂u

∂t
+∇ · (vu) = 0 in Ω,

where v is a given velocity field and Ω is the domain of interest. A homogeneous
flux boundary condition is imposed weakly on the inflow boundary of Ω. The
standard Galerkin discretization leads to the semi-discrete system [5, 6]

(2) MC
du

dt
+Au = 0,

where MC = {mij} is the consistent mass matrix, A = {aij} is the discrete trans-
port operator, and u = {ui} is the vector of time-dependent nodal values associated
with globally continuous Lagrange or Bernstein basis functions ϕ1, . . . , ϕNdof

.
Following the derivation of algebraic flux correction (AFC) schemes [5] for P1

and Q1 finite element discretizations, we write system (2) in the form

(3) ML
du

dt
+ (A−D)u = f

(
u,

du

dt

)
,

whereML = {δij
∑

j mij} is the lumped mass matrix andD = {dij} is a symmetric
perturbation matrix defined in terms of the artificial diffusion coefficients

(4) dij =

{
max{aij , 0, aji} if j 6= i,

−
∑

k 6=i dik if j = i.

By definition of ML and D, the low-order discrete upwind approximation

(5) ML
du

dt
+ (A−D)u = 0

is bound-preserving [5, 8]. Hence, any violations of discrete maximum principles
are caused by the antidiffusive term f (u, u̇) = (ML −MC)u̇ − Du. To suppress
undershoots and overshoots, we decompose fi =

∑
e f

e
i into edge or element con-

tributions fei and apply adaptively chosen correction factors αe ∈ [0, 1].

The simplest algebraic limiting techniques enforce local maximum principles via
postprocessing based on the following predictor-corrector strategy [4, 5, 8]:

1. Calculate a bound-preserving low-order approximation ūn+1 using (5).
2. Add a sum of limited antidiffusive edge/element contributions to obtain

(6) un+1
i = ūn+1

i +
∆t

mi

∑
e

αefei ,
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where ∆t is the time step and mi is the i-th diagonal entry of ML. Adopting
the design philosophy of flux-corrected transport (FCT) algorithms, the correction
factors αe are chosen so as to guarantee that ūmin

i ≤ un+1
i ≤ ūmax

i , where the
bounds ūmax

i and ūmin
i are defined as local maxima and minima of ūn+1 [8]. Hence,

the limited antidiffusive correction is local extremum diminishing (LED).

The predictor-corrector limiting strategy is ideally suited for numerical solution
of evolutionary problems using small time steps. However, it is not to be recom-
mended for steady-state computations since direct manipulation of the degrees of
freedom at the antidiffusive correction stage prevents convergence to stationary
solutions and the levels of numerical diffusion depend on the (pseudo-)time step.
Instead of calculating and correcting a low-order predictor, a limited antidiffusive
term f̄ can be incorporated into the residual of the nonlinear system

(7) M̄
du

dt
+ Āu = f̄

(
u,

du

dt

)
.

The solution-dependent correction factors αe for the edge/element contributions
fei (u, u̇) to f̄i =

∑
e α

efei are defined so that f̄i = 0 whenever ui is a local maximum
or minimum. In contrast to predictor-corrector approaches, monolithic limiting
techniques of this kind constrain the perturbation of the Galerkin system (2) in an
iterative manner [2, 5]. The recently developed theory of algebraic flux correction
schemes [3] provides a set of sufficient conditions for well-posedness of nonlinear
discrete problems and convergence of iterative solvers in the steady state limit.
Limiter functions that possess all desired theoretical properties in the context of
P1 and Q1 finite element approximations can be found in [6].

The extension of algebraic limiting to high-order piecewise-polynomial approx-
imations calls for the use of finite element basis functions ϕi which guarantee that
the numerical solution uh =

∑
i uiϕi is bounded by the maxima and minima of

its coefficients ui not only at the nodal points but also in-between. In contrast
to high-order Lagrange elements, the Bernstein basis representation of uh does
provide this property. As shown in [1, 8], FCT-like limiting techniques are appli-
cable to arbitrary-order Bernstein-Bèzier elements but require careful localization
to preserve the high-order accuracy of the target scheme for smooth data.

Another promising approach to constraining high-order continuous Galerkin
discretizations is the use of limiters in the basis functions of partitioned finite el-
ement spaces, as proposed in [7]. Let Vph,p = span{ϕH

1 , . . . , ϕ
H
Ndof
} denote the

space of continuous piecewise-polynomial functions such that uh|K ∈ Pp(K) or
uh|K ∈ Qp(K) for each uh ∈ Vph,p, p ∈ N and each element K ∈ Tph of a con-
forming finite element mesh Tph. Using a P1/Q1 approximation on elements of the
embedded submesh Th, we define the space Vh,1 = span{ϕL

1 , . . . , ϕ
L
Ndof
}. To design

an adaptive finite element scheme which employs the high-order approximation
uHh in ‘smooth’ cells and the low-order approximation uLh in ‘troubled’ cells, we
define the partitioned space Vh(αh) := span{ϕ1, . . . , ϕNdof

} ⊂ Vh,p+1 in terms of

(8) ϕi(x) = αh(x)ϕH
i (x) + (1− αh(x))ϕL

i (x), x ∈ Ω̄, i = 1, . . . , Ndof ,
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where αh is a blending function which yields a convex average of ϕH
i and ϕL

i . The
traditional approach to hp-adaptivity in finite element methods is to use piecewise-
constant basis selectors (αh|K ≡ 1 or αh|K ≡ 0 for K ∈ Tph). To ensure continuity
of traces at common boundaries of adjacent mesh cells, this adaptation strategy
requires special treatment of ‘hanging’ nodes and is difficult to implement. More-
over, the outcome depends on many binary decisions and small changes of the
data may produce entirely different finite element spaces. To avoid the theoretical
and practical difficulties associated with this methodology, the use of continuous
blending functions αh =

∑
i αiϕ

L
i was proposed in [7]. The partition of unity (PU)

parameters αi ∈ [0, 1] may be defined using error indicators, smoothness criteria,
and/or a priori information about location of internal/boundary layers. Moreover,
the use of artificial diffusion operators and limiters can be restricted to troubled
cells where the blending function αh is set to zero by a smoothness indicator. Nu-
merical examples illustrating the potential of using continuous blending functions
in partitioned space and time discretizations can be found in [7].

In summary, a finite element approximation can be constrained to satisfy dis-
crete maximum principles by using limiters to combine the degrees of freedom,
edge/element contributions, and/or basis functions corresponding to a high-order
target scheme and its bound-preserving low-order counterpart. The combination of
limiting techniques with hp-adaptivity based on the PU approach provides a very
general framework for robust, accurate, and physics-compatible discretization of
conservation laws on general meshes. Further efforts are currently required to ex-
tend the theoretical foundations of algebraic limiting [3] to high-order / partitioned
FEM and develop more efficient iterative solvers for nonlinear systems.

References

[1] R. Anderson, V. Dobrev, Tz. Kolev, D. Kuzmin, M. Quezada de Luna, R. Rieben, V. Tomov,

High-order local maximum principle preserving (MPP) discontinuous Galerkin finite element
method for the transport equation. J. Comput. Phys. 334 (2017), 102–124.

[2] S. Badia and J. Bonilla, Monotonicity-preserving finite element schemes based on differen-
tiable nonlinear stabilization. Computer Methods Appl. Mech. Engrg. 313 (2017), 133-158.

[3] G. Barrenechea, V. John, and P. Knobloch, Analysis of algebraic flux correction schemes.

SIAM J. Numer. Anal. 54 (2016), 2427–2451.
[4] J.-L. Guermond, M. Nazarov, B. Popov, Y. Yang, A second-order maximum principle pre-

serving Lagrange finite element technique for nonlinear scalar conservation equations. SIAM
J. Numer. Anal. 52 (2014), 2163–2182.

[5] D. Kuzmin, Algebraic flux correction I. Scalar conservation laws. In: D. Kuzmin, R. Löhner
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