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Abstract

This work introduces a new type of constrained algebraic stabilization for con-
tinuous piecewise-linear finite element approximations to the equations of ideal
magnetohydrodynamics (MHD). At the first step of the proposed flux-corrected
transport (FCT) algorithm, the Galerkin element matrices are modified by
adding graph viscosity proportional to the fastest characteristic wave speed.
At the second step, limited antidiffusive corrections are applied and divergence
cleaning is performed for the magnetic field. The limiting procedure developed
for this stage is designed to enforce local maximum principles, as well as posi-
tivity preservation for the density and thermodynamic pressure. Additionally,
it adjusts the magnetic field in a way which penalizes divergence errors without
violating conservation laws or positivity constraints. Numerical studies for 2D
test problems are performed to demonstrate the ability of the proposed algo-
rithms to accomplish this task in applications to ideal MHD benchmarks.

Keywords: hyperbolic systems, ideal MHD equations, positivity preservation,
finite elements, flux-corrected transport, limiting, divergence cleaning

1. Introduction

In recent years, significant advances have been made in the analysis and
design of physics-compatible finite element methods for nonlinear hyperbolic
systems. In particular, the principle of invariant domain preservation was intro-
duced by Guermond and Popov [17] as a useful generalization of scalar discrete
maximum principles to systems of conserved quantities [17]. Artificial diffusion
operators and localized edge-based flux-corrected transport (FCT) algorithms
based on this design criterion were proposed in [18, 19, 20]. Similar algebraic
approaches to construction of FCT-like finite element schemes for systems of
conservation laws were explored in [8, 13, 25, 28]. The synchronized and se-
quential limiting techniques developed in these publications make it possible
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to constrain a set of coupled conserved variables in a manner which guaran-
tees the validity of relevant maximum principles for nonlinear functions of these
variables. In the context of ideal MHD, a well-designed limiter must guarantee
positivity preservation for the density and pressure (internal energy).

Custom-made positivity-preserving limiters for the ideal MHD system were
proposed in [4, 8, 10]. Similarly to limiters for the Euler equations, their design
relies on the assumption that the underlying low-order scheme produces phys-
ically admissible solutions. As shown by Wu and Shu [43, 44, 45], the validity
of this assumption cannot be guaranteed for Riemann problems with discontin-
uous magnetic fields and numerical approximations violating a discrete form of
the divergence-free condition. However, a rigorous proof of positivity preserva-
tion could be obtained for the nonconservative Godunov-Powell form [34] of the
MHD system discretized using a discontinuous Galerkin (DG) method [44].

Another important recent development is the advent of Multi-dimensional
Optimal Order Detection (MOOD) methods based on the idea of a posteriori
limiting [30, 42, 46, 47]. Instead of constraining numerical fluxes, element con-
tributions, or gradients to keep the quantities of interest in the admissible range,
MOOD approaches evolve the numerical solution using a standard high-order
method. If violations of physical or numerical admissibility conditions are de-
tected in any mesh cell, the restriction of the high-order candidate solution to
this cell is rejected and an admissible approximation is calculated using a bound-
preserving subcell finite volume scheme. Such a posteriori fixes are well suited
for finite volume and discontinuous Galerkin methods. The MOOD paradigm
can also be used for selective activation of artificial viscosity or adaptive choice
of the limiting strategy for continuous finite elements (cf. [2, 26]).

A robust scheme for solving the MHD equations must incorporate a mecha-
nism for avoiding (unbounded growth of) divergence errors in numerical approx-
imations to the magnetic field [9, 40, 41]. This requirement can be satisfied, e.g.,
by using constrained transport (CT) schemes [6, 14, 21, 35], mixed finite elements
[8, 23], penalizing source terms [34], or various divergence cleaning procedures
[12]. Many ways of keeping the magnetic field approximately divergence-free
are closely related to numerical methods for the incompressible Navier-Stokes
equations (projection schemes, grad-div stabilization, artificial compressibility
methods). Unfortunately, most of them lead to numerical schemes that are
nonconservative or may produce spurious undershoots/overshoots.

In this paper, we present a new localized version of the element-based FCT
algorithm developed in [8]. The proposed methodology constrains the numerical
solution of the MHD system to stay in the admissible set using a priori limit-
ing to enforce local maximum principles for the density and other quantities of
interest. Additional a posteriori limiting is performed if negative values of the
thermodynamic pressure are detected. At the a priori limiting stage, changes of
the conserved quantities are constrained in a synchronized or sequential manner.
The calculation of correction factors for the synchronized FCT limiter is based
solely on the density constraints. The sequential FCT algorithm is based on the
methodology developed in [13, 22] for continuous and discontinuous Galerkin
discretizations of the Euler equations. Imposing local maximum principles on
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the density, velocity, specific total energy, and magnetic field, it uses different
correction factors for different variables. Both versions of the a priori limiter
guarantee positivity preservation for the density field. The positivity-preserving
pressure fix is based on a simplified version of the synchronized limiter devel-
oped in [8]. In contrast to fully synchronized a priori limiters for MHD, the
new FCT scheme does not automatically smear the magnetic field in regions
of constant density and vice versa. Moreover, it features embedded divergence
cleaning based on localized grad-div penalization. The corresponding penalty
terms are built into the antidiffusive element contributions to the magnetic field,
leading to a conservative and bound-preserving correction procedure. The nu-
merical results for standard MHD benchmarks illustrate the shock-capturing
and divergence cleaning capabilities of the proposed FCT method.

2. Continuous finite element discretization

We consider the conservative form of the ideal compressible MHD equations

∂U

∂t
+∇ · F(U) = 0, (1)

where

U =


ρ
ρu
ρE
B

 , F(U) =


ρu

ρu⊗ u + ptotI −B⊗B
ρEu + ptotu−B(u ·B)

u⊗B−B⊗ u

 . (2)

The conserved quantities are the density ρ, momentum ρu, total energy ρE,
and the magnetic field B. The velocity u = ρu

ρ and total pressure

ptot = p+
1

2
|B|2 (3)

are derived quantities. The thermal pressure p is related to the density and
internal energy by an equation of state. The EOS for ideal gases reads

p = (γ − 1)

(
ρE − ρ|u|2

2
− 1

2
|B|2

)
, (4)

where γ is the adiabatic constant (the ratio of specific heats). The value of γ
depends on the physical properties of the gas.

Let Ω ⊂ Rd, d ∈ {1, 2, 3} be a bounded domain. To formulate a well-posed
initial-boundary value problem, we prescribe an initial condition

U(·, 0) = U0 in Ω (5)

and characteristic boundary conditions of the form

F · n = H(U,U∞), on ∂Ω, (6)
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where n is the unit outward normal and U∞ is a state depending on the internal
and/or external values of the conserved quantities. The proper definition of U∞
depends on the number of incoming waves, i.e., on the type of the boundary
(inlet, outlet, reflecting wall etc). Substituting (6) into the weak form∫

Ω

w
∂U

∂t
dx−

∫
Ω

∇w · F(U) dx +

∫
∂Ω

F · nds = 0 ∀w ∈W (7)

of system (1), we restrict the test function space W ⊂ L2(Ω) to the space
Wh ⊂ W spanned by piecewise-polynomial basis functions ϕ1, . . . , ϕNh . In
the current implementation, we use linear (P1) Lagrange finite elements but the
methodology to be presented is applicable to multilinear (Q1) approximations on
tensor product meshes as well. In both cases, the basis functions form a partition
of unity, i.e.,

∑Nh
i=1 ϕi ≡ 1, and the coefficients of the numerical solution

Uh =

Nh∑
j=1

Ujϕj , (8)

represent the time-dependent values of Uh at the mesh vertices. Instead of
approximating F(U) by F(Uh), we use the group finite element interpolant

Fh(Uh) =

Nh∑
j=1

Fjϕj , (9)

where Fj is the shorthand notation for F(Uj). The restrictions of globally de-
fined functions to element Ke of a conforming mesh Th will be denoted using the
superscript e. The numbers of elements containing node i will be stored in the
integer set Ei ⊂ {1, . . . , Eh}. The set containing the numbers of nodes belonging
to element Ke will be denoted by N e. The numbers of nodes belonging to the
same elements as node i will be stored in the set Ni =

⋃
e∈Ei N

e.
Substituting (8) and (9) into (7) with w ∈ {ϕ1, . . . , ϕNh} and integrating by

parts, we obtain the system of nonlinear semi-discretized equations∑
e∈Ei

∑
j∈N e

me
ij

dUj
dt

= −
∑
e∈Ei

∑
j∈N e

ceij · Fj +Gi, i = 1, ..., Nh, (10)

where

me
ij =

∫
Ke

ϕiϕj dx, ceij =

∫
Ke

ϕi∇ϕj dx, (11)

and

Gi =
∑
e∈Ei

∫
∂Ke∩∂Ω

ϕi[Fh · n−H(Uh, U∞)] ds. (12)
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Summation over e ∈ Ei in formulas like (10) is called element-by-element
assembly. It yields the global consistent mass matrix MC = {mij}Nhi,j=1 and the
discrete gradient operator C = {cij}Nhi,j=1 with entries

mij =
∑

e∈Ei∩Ej

me
ij , cij =

∑
e∈Ei∩Ej

ceij . (13)

Note that

ceij =

∫
Ke

ϕi∇ϕj dx = −ceji +

∫
∂Ke

ϕiϕjnds,

cij =

∫
Ω

ϕi∇ϕj dx = −cji +

∫
∂Ω

ϕiϕjn ds.

It follows that cij + cij = 0 if ϕi ≡ 0 or ϕj ≡ 0 on ∂Ω. Moreover, we have

Nh∑
j=1

cij = 0,
∑
j∈N e

ceij = 0 ∀e ∈ {1, . . . , Eh} (14)

since the basis functions ϕj sum to unity and their gradients sum to zero.
Using MC and C, system (10) can be written in the compact matrix form

MC
dU

dt
= −C · F +G, (15)

where U = {Ui}Nh×(2d+2)
i=1 is the array of nodal states, F = {Fj}Nh×(2d+2)

j=1 is the
array of nodal fluxes, and G = {Gi}Nh×(2d+2)

i=1 is the array of surface integrals
containing the weakly imposed boundary conditions. The initial values U(0) of
the degrees of freedom are obtained using a conservative and bound-preserving
projection [26] of the possibly discontinuous initial data U0.

Introducing the lumped mass matrix ML = {δijmi} with diagonal entries

mi =
∑
e∈Ei

me
i =

Nh∑
j=1

mij =

∫
Ω

ϕi dx, (16)

where me
i =

∑
j∈N e m

e
ij =

∫
Ke ϕi dx, the equivalent representation

ML
dU

dt
= [(ML −MC)M−1

C + I](−C · F +G) (17)

of (15) as a system of ordinary differential equations (ODEs) is obtained. That
is, the addition of the mass correction term (ML −MC)M−1

C (−C · F + G) to
the right-hand side of the lumped-mass approximation

ML
dU

dt
= −C · F +G (18)

produces an ODE system which is equivalent to the Galerkin scheme (15).
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3. Low-order artificial viscosity

Since Uh and Fh are continuous on the internal faces of the finite element
mesh, upwinding techniques based on MHD Riemann solvers [3, 4, 5] cannot
be used to manipulate the numerical fluxes directly. Following [8, 18, 26], we
will stabilize the lumped-mass Galerkin system (18) by adding some artificial
viscosity. The resulting low-order approximation will be of the form

ML
dU

dt
= −C · F +DU +G, (19)

where D = {dij}Nhi,j=1 is a discrete diffusion operator with entries

dij =
∑

e∈Ei∩Ej

deij . (20)

Let i ∈ {1, . . . , Nh} be the global number of a nodal point xi ∈ Ω located in
the interior of the computational domain. Then the boundary term Gi vanishes
and the i-th equation of system (18) reduces to∑

e∈Ei

me
i

dUi
dt

= mi
dUi
dt

= −
∑
j∈Ni

cij · Fj = −
∑
e∈Ei

∑
j∈N e

ceij · Fj . (21)

If this ODE is discretized in time using an explicit strong stability preserving
(SSP) Runge-Kutta method [16], each stage requires an update of the form∑

e∈Ei

me
i Ūi =

∑
e∈Ei

me
iUi −∆t

∑
e∈Ei

∑
j∈N e

ceij · Fj , (22)

where ∆t is the time step and me
i =

∑
j∈N e m

e
ij =

∫
Ke ϕi dx is a diagonal entry

of the lumped element mass matrix. The states Ui and fluxes Fj are defined
using the nodal values of Uh at the previous time step or Runge-Kutta stage.

Using the zero sum property (14), equation (22) can be written as follows:∑
e∈Ei

me
i Ūi =

∑
e∈Ei

me
iUi −∆t

∑
e∈Ei

∑
j∈N e\{i}

ceij · (Fj − Fi) (23)

or, equivalently,

Ūi =

∑
e∈Ei m

e
i Ū

e
i∑

e∈Ei m
e
i

, Ūei = Ui −
∆t

me
i

∑
j∈Ni

ceij · (Fj − Fi). (24)

That is, the uniquely defined new state Ūi can be interpreted as a convex average
of the auxiliary states Ūei . If all of them belong to the convex set

G =

{
[ρ, ρu, ρE,B]T : ρ > 0, ρE − ρ|u|2

2
− 1

2
|B|2 > 0

}
(25)
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of physically admissible states, then Ūi will be in this set as well [18, 44].

In the fully discrete version of our low-order scheme (19), we replace Ūei with

ULi = Ui +
∆t

me
i

∑
j∈Ni\{i}

[−ceij · (Fj − Fi) + deij(Uj − Ui)] (26)

using the artificial diffusion coefficients (cf. [8, 18, 31])

deij =


max{λmax(neij , Ui, Uj), λmax(neji, Ui, Uj)} if i ∈ N e, j ∈ N e\{i},
−
∑
k∈N e\{i} d

e
ik if j = i ∈ N e,

0 otherwise,
(27)

where neij =
ceij
|ceij |

and λmax(n, UL, UR) is the fastest characteristic speed for the
one-dimensional Riemann problem to be defined below.

To motivate definition (27) of deij and verify if Ūe,Li ∈ G at least for suffi-
ciently small time steps ∆t, we introduce (cf. [18, 44])

Ūe,Lij =
Uj + Ui

2
−

ceij · (Fj − Fi)

2deij
(28)

and write (26) in the equivalent form

Ūe,Li =

1− 2∆t

me
i

∑
j∈Ni\{i}

deij

Ui +
2∆t

me
i

∑
j∈Ni\{i}

deijŪ
e,L
ij . (29)

It follows that Ūe,Li ∈ G whenever Ūe,Lij ∈ G for all j ∈ Ni\{i} and

2∆t

me
i

∑
j∈Ni\{i}

deij ≤ 1. (30)

Let Ū(n, UL, UR) denote the exact solution to the 1D Riemann problem

∂U

∂t
+ (n · ∇)(n · F(U)) = 0, (31)

U(x, 0) =

{
UL x < 0,

UR x > 0,
(32)

where n ∈ Rd is a unit vector that determines the direction of wave propagation.
According to Guermond et al. [18], the bar state Ūe,Lij is a space average of

Ū(neij , Ui, Uj) for neij =
ceij
|ceij |

at the artificial time τeij = |ceij |/(2deij) if

τeijλmax(neij , Ui, Uj) ≤
1

2
, (33)
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where λmax is the fastest wave speed. Definition (27) is motivated by this
analysis but does not generally guarantee that Ūe,Lij ∈ G. The reasons for
this are twofold. First, an upper bound for the guaranteed maximum speed
(GMS) [18] is difficult to obtain for the MHD system. Following [8], we approx-
imate λmax(neij , Ui, Uj) in formula (27) by the maximum of λmax(neij , Ui, Ui) and
λmax(neij , Uj , Uj). Second, the analysis of Wu and Shu [44] indicates that the
exact solution of the Riemann problem for the conservative form (1) of the ideal
MHD system may fail to stay in the admissible set G if Bi 6= Bj .

In view of the equivalence between lumped-mass continuous Galerkin meth-
ods and centered finite volume / piecewise-constant DG methods on dual meshes
[20, 37, 38], a provably positivity-preserving low-order discretization of the non-
conservative Godunov-Powell form could be constructed as in [44]. However,
the occurrence of nonphysical states ŪLij /∈ G is so unlikely that a posteriori
control (cf. [26]) appears to be a better way to enforce positivity preservation.

Direct correction of nonphysical states bar ŪLij /∈ G (if any) would be the sim-
plest possibility to ensure that the state ULi is physically admissible. Similarly
to [44], this approach would lead to (slightly) nonconservative approximations.
To enforce positivity preservation in a conservative manner, we will use the
representation of ULi as a convex combination of auxiliary states

Ũe,Li = Ui +
∆t

me
i

∑
j∈N e

[−ceji · Fj + deij(Uj − Ui)] (34)

such that ∑
e∈Ei

me
i Ũ

e,L
i =

∑
e∈Ei

me
iU

L
i =

∑
e∈Ei

me
i Ū

e,L
i (35)

and, additionally, ∑
i∈N e

me
i Ũ

e,L
i =

∑
i∈N e

me
iUi (36)

since
∑
i∈N e c

e
ji = 0 and deij = −deji by (27). If Ũe,Li /∈ G, then there exists

βei ∈ [0, 1] such that Ui + βe[Ũe,Li − Ui] ∈ G for all βe ∈ [0, βei ]. A methodology
for calculating such nodal correction factors is presented in Section 5.3. Using
βe = mini∈N e β

e
i for all e ∈ Ei, the conservative limited version

ULi = Ui +
1∑

e∈Ei m
e
i

∑
e∈Ei

me
iβ
e[Ũe,Li − Ui] (37)

of (26) can be employed to rule out failures due to the lack of positivity preser-
vation. The idea of using physics-aware limiters to constrain the contribution of
nonphysical states Ũe,Li /∈ G makes it possible to enforce global bounds even in
situations when the exact solution of the problem at hand violates them due to
modeling errors (cf. [24, 15]). In such situations, the use of βe < 1 is justified
by the need to prevent convergence to a bound-violating result. On the other
hand, it is essential to use βe = 1 whenever Ũe,Li ∈ G for all i ∈ N e. In our
experience, the low-order method (18) based on (27) is very unlikely to produce
Ũe,Li 6∈ G and, therefore, no a posteriori fixes are required in practice.
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4. FCT correction and divergence cleaning

At the second stage of our flux-corrected transport (FCT) algorithm, we
will correct the low-order approximation ULi ∈ G by adding limited element
contributions which should remove excessive artificial diffusion, reduce phase
errors due to mass lumping, and penalize divergence errors in the finite element
approximation to the magnetic field. The outcome of this correction will be

UCi = ULi +
1

mi

∑
e∈Ei

me
iF

e,C
i =

1∑
e∈Ei m

e
i

∑
e∈Ei

me
iU

e,C
i , (38)

where
Ue,Ci = ULi + F e,Ci (39)

and F e,Ci are element contributions satisfying the zero sum condition∑
i∈N e

me
iF

e,C
i = 0 ∀e ∈ {1, . . . , Eh}. (40)

Similarly to the optional failsafe correction (37) of the low-order solution, phys-
ical admissibility is guaranteed at least for the trivial choice F e,Ci = 0 ∀e ∈ Ei.
To obtain a more accurate approximation UCi ∈ G, the vector of element contri-
bution F e,C should approximate a given target F e,T as accurately as possible
without producing unacceptable values of the quantities of interest.

The overall performance of an FCT algorithm depends on the quality of
the low-order predictor UL, on the choice of the limiting target F e,T , on the
imposed constraints, and on the limiting strategy which is used to enforce these
constraints subject to (40). Using (19) to calculate the time derivatives

U̇L = M−1
L (−C · F +DU +G), (41)

we define the element contributions for the FCT correction step as follows:

F e,Ti =
1

me
i

∆t ∑
j∈N e\{i}

[me
ij(U̇

L
i − U̇Lj ) + deij(U

L
i − ULj )] + Ψei

 . (42)

The fluxes me
ij(U̇

L
i − U̇Lj ) reduce mass lumping errors and stabilize the oscilla-

tory Galerkin scheme [27]. The antidiffusive fluxes deij(ULi − ULj ) steepen the
gradients of the finite element solution. The additional term

Ψei = [0,0, 0, ceiψ
e]T , cei =

∑
j∈N e

ceji =

∫
Ke

∇ϕi dx (43)

performs divergence cleaning using the solution ψe of the local problem

Be,T
i = BH

i +
1

me
i

ceiψ
e ∀i ∈ N e, (44)
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ε
|Ke|
(he)2

ψe +
∑
j∈N e

cej ·B
e,T
j = 0, (45)

where ε ≥ 0 is a dimensionless penalty parameter, |Ke| =
∫
Ke 1 dx =

∑
i∈N e m

e
i

is the volume of Ke, he = d
√
|Ke| is the local mesh size and

BH
i = BL

i +
∆t

mi

∑
e∈Ei

∑
j∈N e\{i}

[me
ij(Ḃ

L
i − ḂL

j ) + deij(B
L
i −BL

j )]. (46)

Substituting (44) into (45), we obtain the Schur complement equationε |Ke|
(he)2

+
∑
j∈N e

|cej |2

me
j

ψe = −
∑
j∈N e

cej ·BH
j . (47)

Note that |K
e|

(he)2 = (he)d−2 and |c
e
j |

2

mej
= O((he)d−2) have the same dimensions.

The so-defined ψe corresponds to a mixed finite element discretization of

Be,T +∇ψe = Be,H , ε(he)−2ψe +∇ ·Be,T = 0 in Ke,

ψe = 0 on ∂Ke
(48)

using linear approximations Be,T
h ,Be,H

h ∈ P1(Ke), a constant approximation
ψeh ∈ P0(Ke), and mass lumping. The penalty term ceiψ

e can be interpreted
as a localized version of (he)2

ε ∇(∇ · Be,H). Grad-div stabilization of this kind
is frequently used to reinforce the weakly imposed divergence-free constraint in
finite element methods for the incompressible Navier-Stokes equations [32]. It
is also well suited for divergence cleaning in the context of MHD [12, 31].

The embedding of 1
mei

ceiψ
e into the element contributions (42) satisfying the

zero sum condition
∑
i∈N e m

e
iF

e,T
i = 0 makes it possible to perform localized

explicit corrections without violating conservation laws and maximum princi-
ples. To see how (44) reduces the divergence error, let us inspect the divergence
of the assembled target BT

h , the nodal values of which are defined by

BT
i =

1

mi

∑
e∈Ei

me
iB

e,T
i = BH

i +
1

mi

∑
e∈Ei

ceiψ
e. (49)

For simplicity, assume that the mesh is uniform. Then (47) can be written as

ψe = −τ
∑
j∈N e c

e
j ·BH

j , where τ =
(
ε |K

e|
(he)2 +

∑
j∈N e

|cej |
2

mej

)−1

. Substituting ψe

into (49), we find that the nodal values of BT
h and BH

h are related by

BT
i = BH

i −
τ

mi

∑
e∈Ei

cei
∑
j∈N e

cej ·BH
j . (50)

For linear finite elements, the divergence of Be
h ∈ P1(Ke) is given by

divBe
h =

1

|Ke|
∑
i∈N e

cei ·Bi.
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Let ẽ ∈ {1, . . . , Eh} be the number of the element under investigation. The
divergence correction step defined by formula (50) yields

divBẽ,T
h = divBẽ,H

h − τ
∑
i∈N ẽ

∑
e∈Ei

cẽi · cei
mi

divBe,H
h

=

(
1− τ

∑
i∈N ẽ

|cẽi |2

mi

)
divBẽ,H

h − τ
∑
i∈N ẽ

∑
e∈Ei\{ẽ}

cẽi · cei
mi

divBe,H
h ,

where we have used the assumption that the mesh size is uniform. Note that
−cẽi ·c

e
i

mi
is an entry of the sparse Eh×Eh finite element matrix corresponding to

the mixed P1P0 discretization of the Laplace operator. Hence, the divergence
error is dampened in the same way as the solution of the heat equation which
is advanced in (pseudo-)time using the forward Euler method. By definition of
τ = τ(ε), we have τ(ε)

∑
i∈N ẽ

|cẽi |
2

mi
≤ 1 for any ε ≥ 0. For stability reasons, it

is worthwhile to choose ε large enough to satisfy the more restrictive condition
τ(ε)

∑
i∈N ẽ

∑
e∈Ei

|cẽi ·c
e
i |

mi
≤ 1, i.e., ε ≥ (he)2

|Ke|
∑
i∈N ẽ

∑
e∈Ei\{ẽ}

|cẽi ·c
e
i |

mi
.

5. Limiting procedures for MHD

Let F e,Ti =
[
fe,ρi , fe,ρui , fe,ρEi , fe,Bi

]T
be defined by (42). For F e,Ci = F e,Ti ,

the FCT correction step (39) will produce the target approximation

ρe,Ti = ρLi + fe,ρi , (51)

(ρu)e,Ti = (ρu)Li + fe,ρui , (52)

(ρE)e,Ti = (ρE)Li + fe,ρEi , (53)

Be,T
i = BL

i + fe,Bi . (54)

In general, the FCT limiter for F e,Ci should be designed to guarantee that

Ue,Ci (αe) = [ρei , (ρu)ei , (ρE)ei ,B
e
i ]
T

is physically admissible, i.e., Ue,Ci ∈ G. Additionally, scalar quantities of interest
may be constrained to satisfy local maximum principles of the form

vmin
i ≤ v(Ue,Ci (αe)) ≤ vmax

i ∀i ∈ N e, (55)

where v may represent, e.g., density, energy or a component of a vector field.
Let G̃i denote the set of states that satisfy (55) for v = ρ and, possibly,

for additional quantities of interest. To construct a physically admissible FCT
approximation Ue,Ci (αe) ∈ G̃i ∩ G, we will first calculate Ũe,Ci ∈ G̃i using an
a priori limiter which guarantees the validity of local maximum principles. If
Ũe,Ci ∈ G for all i ∈ N e, then Ue,Ci = Ũe,Ci is physically admissible and no
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further limiting is required. In the case Ũe,Ci /∈ G, positivity-preserving FCT
states Ue,Ci ∈ G can be calculated using additional a posteriori limiting.

In the remainder of this section, we focus on the derivation of correction
factors αe for a priori and a posteriori FCT limiters. Correction factors βe for
the failsafe a posteriori control (37) of ULi can be determined similarly.

5.1. Synchronized a priori limiting
In synchronized limiters for the equations of gas dynamics [18, 26, 28] and

MHD [8], the same correction factor αe ∈ [0, 1] is used for each component of
F e,Ci = αeF e,Ti . The resulting approximation Ũe,Ci ∈ G̃i is defined by

ρ̃ei = ρLi + αefe,ρi , (56)

(̃ρu)
e

i = (ρu)Li + αefe,ρui , (57)

(̃ρE)
e

i = (ρE)Li + αefe,ρEi , (58)

B̃e
i = BL

i + αefe,Bi . (59)

Given a low-order approximation ULi , the correction factor αe = αe,ρ can be
chosen to guarantee the validity of the local maximum principle

ρmin
i ≤ ρ̃ei = ρLi + αe,ρfe,ρi ≤ ρmax

i , (60)

where the bounds ρmin
i and ρmax

i are defined by

ρmin
i = min

j∈Ni
ρLj , ρmax

i = max
j∈Ni

ρLj . (61)

Note that ρmin
i ≥ 0 provided ULi ∈ G. Therefore, the corrected density approx-

imation ρ̃ei will be nonnegative as well. It is easy to verify that (60) holds for
αe,ρ ∈ [0, αe,ρi ], where αe,ρi is defined as follows [11, 13, 29]:

αe,ρi =


min

{
1,

ρmax
i −ρLi
fe,ρi

}
if fe,ρi > 0,

1 if fe,ρi = 0,

min
{

1,
ρmin
i −ρLi
fe,ρi

}
if fe,ρi < 0.

(62)

To guarantee the validity of (60) for all i ∈ N e, we use the correction factor

αe,ρ = min
i∈N e

αe,ρi . (63)

Localized FCT limiters of this kind were proposed in [11, 29] and used to con-
strain the density field in [13]. As explained in [13], the correction procedure
based on (62) and (63) represents an algebraic version of the Barth-Jespersen
slope limiter [7] for finite volume and discontinuous Galerkin methods.

Local maximum principles for (ρE)ei and other quantities of interest can
enforced similarly (see [8, 18, 28]). However, the imposition of additional con-
straints in the context of synchronized a priori limiting leads to more diffusive
results and degrades the rates of convergence to smooth exact solutions.
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5.2. Sequential a priori limiting
Sequential limiting approaches make it possible to use different correction

factors for different conserved variables. A sequential a priori limiter for the
Euler equations was proposed in [13]. In this section, we extend it to the ideal
MHD system. Introducing the averaged low-order approximations [13]

ūe,L =

∑
i∈N e m

e
i (ρu)Li∑

i∈N e m
e
iρ
L
i

, Ēe,L =

∑
i∈N e m

e
i (ρE)Li∑

i∈N e m
e
iρ
L
i

(64)

and the associated antidiffusive element contributions

ge,ρui = fe,ρui + (ρu)Li − ρei ūe,L, (65)

ge,ρEi = fe,ρEi + (ρE)Li − ρei Ēe,L, (66)

we define the limited conserved quantities

ρ̃ei = ρLi + αe,ρfe,ρi , (67)

(̃ρu)
e

i = ρ̃ei ū
e,L + αe,ρuge,ρui , (68)

(̃ρE)
e

i = ρ̃ei Ē
e,L + αe,ρEge,ρEi , (69)

B̃e
i = BL

i + αe,Bfe,Bi , (70)

where αe,ρu = diag{αe,ρu1 , . . . , αe,ρud} and αe,B = diag{αe,B1 , . . . , αe,Bd} are
diagonal matrices. The choice αe,ρ = αe,ρu1 = · · · = αe,ρud = αe,ρE = αe,B1 =
· · · = αe,Bd = 1 corresponds to the high-order target defined by (51)–(54). The
trivial choice αe,ρ = αe,ρu1 = · · · = αe,ρud = αe,ρE = αe,B1 = · · · = αe,Bd = 0
corresponds to the low-order approximation ULi ∈ G. Nontrivial correction
factors can be chosen to guarantee that Ũe,C ∈ G̃i, where G̃i is the set of states
satisfying local maximum principles of the form (55) for the density, velocity
components, specific total energy, and components of the magnetic field.

The density correction factor αe,ρ can be calculated using (63) with αe,ρi
defined by (62). The second scalar variable to be limited is the total energy.
Following [13], we constrain it to satisfy the local maximum principle

ρ̃eiE
min
i ≤ ρ̃ei Ēe,L + αe,ρEge,ρEi ≤ ρ̃eiEmax

i , (71)

where
Emin
i = min

e∈Ei
Ēe,L, Emax

i = max
e∈Ei

Ēe,L. (72)

It is easy to verify that conditions (71) are satisfied for αe,ρE ≤ αe,ρEi , where

αe,ρEi =


min

{
1,

ρ̃ei (E
max
i −Ēe,L)

ge,ρEi

}
if ge,ρEi > 0,

1 if ge,ρEi = 0,

min
{

1,
ρ̃ei (E

min
i −Ēe,L)

ge,ρEi

}
if ge,ρEi < 0.

(73)
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To enforce these conditions for all i ∈ N e, we use αe,ρE = mini∈N e α
e,ρE
i .

At the next step of the sequential limiting process, we constrain the momen-
tum to satisfy the directional local maximum principles (cf. [22])

ρ̃eiu
min
i,k ≤ (ρ̃ei ū

e,L + αe,ukge,ρui ) · ek ≤ ρ̃eiumax
i,k , (74)

where
umin
i,k = min

e∈Ei
(ūe,L · ek), umax

i,k = max
e∈Ei

(ūe,L · ek) (75)

are the bounds corresponding to projections onto ek, k ∈ {1, . . . , d}. In this
work, we use the unit vectors ek of the Cartesian coordinate system. An upper
bound αe,ρuk for correction factors satisfying conditions (74) for all nodes i ∈ N e

can be determined similarly to αe,ρ and αe,ρE . For details and alternative choices
of orthogonal limiting directions, we refer the reader to [22].

The limiter for the magnetic field is similar to that for the momentum. We
impose the directional local maximum principles

Bmin
i,k ≤ Be

i · ek = (BL
i + αe,Bkge,Bi ) · ek ≤ Bmax

i,k (76)

using the nodal bounds

Bmin
i,k = min

e∈Ei
(BL

i · ek), Bmax
i,k = max

e∈Ei
(BL

i · ek). (77)

The outcome of the a priori limiting stage is Ũe,C ∈ G̃i defined by (67)–(70).

5.3. Synchronized a posteriori limiting
The approximation Ũe,Ci ∈ G̃i belongs to the set G of physically admissible

states if and only if the thermodynamic pressure p(Ũe,Ci ) is nonnegative. If this
is not the case, an a posteriori pressure fix should be performed. Let

ρei = ρLi + αe,pf̃e,ρi , (78)

(ρu)ei = (ρu)Li + αe,pf̃e,ρui , (79)

(ρE)ei = (ρE)Li + αe,pf̃e,ρEi , (80)

Be
i = BL

i + αe,pf̃e,Bi (81)

be defined using the a priori limited antidiffusive element contributions

f̃e,ρi = ρ̃ei − ρLi , (82)

f̃e,ρui = (̃ρu)
e

i − (ρu)Li , (83)

f̃e,ρEi = (̃ρE)
e

i − (ρE)Li , (84)

f̃e,Bi = B̃e
i −BL

i (85)

and a synchronized correction αe,p such that the pressure constraints

pei = (γ − 1)

(
(ρE)ei −

|(ρu)ei |2

2ρei
− |B

e
i |2

2

)
≥ 0 (86)
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hold for all i ∈ N e. Substituting (78)–(81) into (86), we find that (86) holds if

P ei (αe) ≥ Qei :=
|(ρu)Li |2

2
− ρLi

(
(ρE)Li −

|BL
i |2

2

)
= − ρ

L
i p

L
i

γ − 1
, (87)

where

P ei (α) = α

(
ρLi (f̃e,ρEi −BL

i · f̃
e,B
i ) +

(
(ρE)e,Li − |B

L
i |2

2

)
f̃e,ρi − (ρu)Li · f̃

e,ρu
i

)
+ α2

(
(f̃e,ρE −BL

i · f̃
e,B
i )f̃e,ρi − |f̃

e,ρu
i |2

2
− (ρLi + αf̃e,ρi )

|f̃e,Bi |2

2

)
.

Since αn ≤ α for α ∈ [0, 1] and n ∈ N, the estimate P ei (α) ≥ αRei holds for

Rei = ρLi (f̃e,ρEi −BL
i · f̃

e,B
i ) +

(
(ρE)e,Li − |B

L
i |2

2

)
f̃e,ρi − (ρu)Li · f̃

e,ρu
i

+ min

{
0, (f̃e,ρE −BL

i · f̃
e,B
i )f̃e,ρi − |f̃

e,ρu
i |2

2
− (ρLi + max{0, f̃e,ρi })

|f̃e,Bi |2

2

}
.

To satisfy the pressure constraints for all nodes of element Ke, we set

αe,p = min
i∈N e

{
min

{
1,

Qei
Rei

}
if Rei < 0,

1 otherwise.
(88)

In general, the synchronized a posteriori limiter may be configured to enforce
global or local maximum principles leading to constraints of the form

Qe,min
i ≤ P ei (α) ≤ Qe,max

i , (89)

where P ei (α) is a polynomial in α. The simplest way to limit such polynomials
is to linearize the inequality constraints as proposed in [8, 28]. Note that

Qei ≥ 0, 0 ≤ P ei (α) ≤ αRei ∀α ∈ [0, ᾱ] (90)

implies

P ei (α) ≤ Qei ∀α ∈
[
0,min

{
ᾱ,
Qei
Rei

}]
. (91)

To ensure that P ei ≤ Qei holds for all i ∈ N e, the value of α should satisfy

α ≤ min
i∈N e

{
min

{
ᾱ,

Qei
Rei

}
if Rei > 0,

ᾱ otherwise.
(92)

An upper bound for correction factors α satisfying P ei ≥ Qei can be derived
similarly. Synchronized a priori limiters of this kind were used to constrain ρp
in FCT algorithms for the Euler equations [28] and ideal MHD [8].
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5.4. Positivity preservation
After a priori limiting (as described in Sections 5.1-5.2) and a posteriori lim-

iting (as described in Section 5.3), the localized element-based FCT algorithm
produces nodal states Ue,Ci = [ρei , (ρu)ei , (ρE)ei ,B

e
i ]
T belonging to the subset

G̃i ∩ G of the invariant set G defined by (25). Since the pressure p(U) defined
by the equation of state (4) is a concave function of U for ρ > 0, substitution
of Ue,Ci into (38) will produce a positivity-preserving convex average UCi ∈ G.
This property can easily be shown using Jensen’s inequality [13, 22].

The convexity argument makes it possible to enforce positivity preservation
by limiting the nodal states associated with different elements (or edges [18, 20])
independently. Positivity-preserving limiters of this kind are well suited for
continuous and discontinuous Galerkin approximations alike [13, 20].

6. Summary of the FCT algorithm

In summary, the new FCT scheme for calculating constrained approxima-
tions UCi ∈ G to the solution of system (1) involves the following steps:

1. Advance U in time using the low-order method presented in Section 3.
2. For each element e ∈ {1, . . . , Eh}, calculate the nodal states Ũe,Ci ∈ G̃i

using the synchronized a priori limiter presented in Section 5.1 or the
sequential a priori limiter presented in Section 5.2.

3. If Ũe,Ci ∈ G, then set Ue,Ci = Ũe,Ci . Otherwise, calculate Ue,Ci ∈ G using
the synchronized a posteriori limiter presented in Section 5.3.

4. Assemble the FCT solution UCi from the corrected states Ue,Ci using (38).

Although the positivity preservation property of the low-order method was dis-
cussed in the context of forward Euler /explicit SSP Runge-Kutta time dis-
cretizations, the low-order predictor UL can also be calculated using implicit
SSP time integration for the nonlinear system (19). As long as no formal proof
of positivity preservation can be obtained for the given method, the validity of
resulting approximations can be verified a posteriori and enforced as in (37).

7. Numerical examples

In this section, we perform numerical studies for two standard MHD bench-
marks. The methods under investigation are abbreviated as follows:

LO low-order scheme (Section 3) without any corrections;
FCT-A localized element-based FCT with synchronized a priori limiting

(Section 5.1) and synchronized a posteriori limiting (Section 5.3);
FCT-B localized element-based FCT with sequential a priori limiting

(Section 5.2) and synchronized a posteriori limiting (Section 5.3).
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The two-dimensional implementation of these methods is based on the open-
source finite element library FEniCS [1]. For comparison purposes, reference
solutions are calculated numerically using the Athena MHD code [39] on fine
grids. The global divergence errors are measured using the L2 norm of the
piecewise-linear finite element approximation, denoted by

‖Bh‖div =

(∫
Ω

(∇ ·Bh)2 dx

) 1
2

.

The low-order solution is advanced in time using the Crank-Nicolson method
and remains in the invariant set G. Therefore, no need for invariant domain
preserving a posteriori fixes of the form (37) was found in this study.

7.1. MHD rotor problem
The first test is a variation of the two-dimensional rotor problem [6, 40]. The

domain is Ω = (0, 1)2 and the solution is initialized by [8]

[uz, Bx, By, Bz, p] =

[
0,

2.5√
4π
, 0, 0, 0.5

]
,

[ρ, ρux, ρuy] =


[1, 0, 0] if r > r1,

[10, 100(0.5− y), 100(x− 0.5)] if r < r0,

[1 + 9f, 100f(0.5− y), 100f(x− 0.5)] otherwise,

where

r =
√

(x− 0.5)2 + (y − 0.5)2, r0 = 0.1 r1 = 0.115, f =
r1 − r
r1 − r0

.

Computations are performed on a uniform mesh of linear finite elements using
the mesh size h = 1

200 and time step ∆t = 10−4. Figure 1 presents snapshots
of the density and thermal pressure at the final time T = 0.295. It can be
seen that FCT corrections of the strongly smeared low-order solution lead to
marked improvements. Although the FCT-B algorithm imposes local maximum
principles not only on the density but also on the specific total energy, velocity,
and the magnetic field, the sequential approach to a priori limiting makes it less
diffusive than the FCT-A version in which the density correction factor is used
to limit the changes of all conserved quantities at the a priori stage. In Figure 2,
we compare the ρ and p profiles along the line x = y to the Athena [39] reference
solution obtained using a third-order method on a uniform grid of 400 × 400
cells. This comparison confirms that both FCT schemes are more accurate than
the underlying low-order (LO) method and that the fully synchronized FCT-A
limiter produces more diffusive results than the FCT-B version.

All FCT results presented so far were calculated using the built-in divergence
cleaning capability introduced in Section 4. In Figure 3, we show the evolution
of divergence errors ‖Bh‖div for FCT simulations without and with using the
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penalization term Ψei in formula (42) for the element contributions to be limited.
It can be seen that the activation of Ψei prevents unbounded growth of ∇·Bh in
FCT-A and FCT-B simulations alike. The presented numerical solutions were
obtained using the penalization parameter ε = 1.

(a) LO (b) FCT-A (c) FCT-B

Figure 1: MHD rotor problem. Snapshots of the density (top) and thermal pressure (bottom)
at T = 0.295 calculated using h = 1

200
and ∆t = 10−4.

7.2. 2D Orszag-Tang vortex problem
The Orszag-Tang vortex problem [33] is another widely used MHD bench-

mark. The computational domain is again Ω = (0, 1)2. Periodic boundary
conditions are prescribed on ∂Ω. The initial data is given by [8]

[ρ, ux, uy, uz, p] =

[
25

36π
,− sin(2πy), sin(2πx), 0,

5

12π

]
,

[Bx, By, Bz] =

[
− 1√

4π
sin(2πy),

1√
4π

sin(4πx), 0

]
.

In this example, we use the mesh size h = 1
200 and time step ∆t = 10−4.

Figure 4 shows the density and thermal pressure distributions at T = 0.5. As
in the first example, the most diffusive solution is produced by LO and the best
one by FCT-B. In Figure 5, we compare the low-order and FCT results to the
Athena [39] reference solution computed using a third-order method and h = 1

400
as before. Both FCT algorithms approximate the reference profile much better
than the low-order scheme. In this test, FCT-B outperforms FCT-A by a wide
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Figure 2: MHD rotor problem. The LO (red), FCT-A (blue), and FCT-B (green) results for
ρ and p along the line x = y at T = 0.295 vs. the Athena reference solution (black).

margin. The sequential a priori limiting strategy preserves the peaks and steep
gradients much better than the synchronized version, in which small density
fluctuations may have a significant smearing effect on the peaks and gradients
of other variables. The evolution of divergence errors for FCT-A and FCT-B is
shown in Fig. 6. The higher overall accuracy of the sequential version is reflected
in the smaller magnitude and more effective penalization of divergence errors.
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Figure 3: MHD rotor problem. Evolution of the L2 divergence error ‖Bh‖div in FCT-A
(magenta: without cleaning, blue: with cleaning) and FCT-B (red: without cleaning, green:
with cleaning) simulations using h = 1

200
and ∆t = 10−4.

(a) LO (b) FCT-A (c) FCT-B

Figure 4: 2D Orszag-Tang problem. Snapshots of the density (top) and thermal pressure
(bottom) at T = 0.5 calculated using h = 1

200
and ∆t = 10−4.

8. Conclusions

Building on recent advances in the field of bound-preserving high-resolution
finite element schemes for hyperbolic systems [13, 18, 20, 22, 44], the proposed
upgrade of the FCT algorithm developed in [8] equips it with more advanced
limiting techniques. The presented new features include a positivity-preserving
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Figure 5: 2D Orszag-Tang problem. The LO (red), FCT-A (blue), and FCT-B (green) results
for ρ along the line y = 0.75 and and p along the line y = 0.25 vs. the Athena reference
solution (black).

correction of the low-order predictor and sequential limiting subject to global
energy constraints. The use of directional maximum principles for the momen-
tum and magnetic field leads to less restrictive conditions than the imposition
of local bounds on the kinetic and magnetic energy. The built-in divergence
cleaning procedure is designed to respect conservation laws and maximum prin-
ciples. The presented numerical examples illustrate the viability of constraining
finite element discretizations of the ideal MHD system in this way.
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with cleaning) simulations using h = 1
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and ∆t = 10−4.
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