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Abstract: A finite element implementation of the standard k − ε turbulence model
including Chien’s Low-Reynolds number modification is presented. The incompressible
Navier-Stokes equations are solved using an extension of the in-house software package
FeatFlow (http://www.featflow.de). Algebraic flux correction based on a multidi-
mensional flux limiter of TVD type (Kuzmin and Turek, 2004) is invoked to suppress
nonphysical oscillations produced by the a priori unstable Galerkin discretization of
convective terms. A block-iterative algorithm based on a hierarchy of nested loops is
employed to advance the solution in time. Special emphasis is laid on the numeri-
cal treatment of wall boundary conditions. In particular, logarithmic wall functions
are used to derive Neumann boundary conditions for the standard k − ε model. The
resulting solutions are superior to those obtained using wall functions implemented
as Dirichlet boundary conditions and comparable to simulation results produced by a
Low-Reynolds number k − ε model. Two representative benchmark problems (chan-
nel flow and backward facing step) are used to compare the performance of different
algorithms in 3D and to investigate the influence of the near-wall treatment.
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1 INTRODUCTION

Turbulence plays an important role in many chemical engi-
neering processes (fluid flow, mass and heat transfer, chem-
ical reactions) which are dominated by convective trans-
port. Since the direct numerical simulation (DNS) of tur-
bulent flows is still prohibitively expensive, eddy viscos-
ity models based on the Reynolds Averaged Navier-Stokes
(RANS) equations are commonly employed in CFD codes.
One of the most popular ones is the standard k − ε model
which has been in use since the 1970s. However, its prac-

tical implementation and, especially, the near-wall treat-
ment has always been some somewhat of a mystery. Al-
gorithmic details and employed ‘tricks’ are rarely reported
in the literature, so that a novice to this area of CFD re-
search often needs to reinvent the wheel. The numerical
implementation of turbulence models involves many algo-
rithmic components all of which may have a decisive influ-
ence on the quality of simulation results. In particular, a
positivity-preserving discretization of the troublesome con-
vective terms is an important prerequisite for the robust-
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ness of the numerical algorithm. This paper presents a de-
tailed numerical study of the k−ε model as implemented in
an unstructured grid finite element code. The main high-
light is a new formulation of logarithmic wall functions,
whereby the boundary conditions for k and ε are prescribed
in a weak sense using a fixed value of the parameter y+.
The resulting solutions are in a good agreement with those
produced by Chien’s Low-Reynolds number k−ε model, as
demonstrated by the numerical examples presented below.

2 IMPLEMENTATION OF THE k − ε MODEL

2.1 Mathematical model

In the framework of eddy viscosity models, the flow of a
turbulent incompressible fluid is governed by the RANS
equations for the velocity u and pressure p

∂u

∂t
+ u · ∇u = −∇p + ∇ ·

(

(ν + νT )[∇u + ∇uT ]
)

,

∇ · u = 0,
(1)

where the kinematic viscosity ν depends only on the phys-
ical properties of the fluid, while νT is the turbulent eddy
viscosity which is supposed to emulate the effect of unre-
solved velocity fluctuations u′.

The standard k − ε model is based on the assumption

that νT = Cµ
k2

ε , where k is the turbulent kinetic energy
and ε is the dissipation rate. Hence, the above PDE sys-
tem is to be complemented by two additional convection-
diffusion-reaction equations for computation of k and ε

∂k

∂t
+ ∇ ·

(

ku− νT

σk
∇k

)

= Pk − ε, (2)

∂ε

∂t
+ ∇ ·

(

εu − νT

σε
∇ε

)

=
ε

k
(C1Pk − C2ε), (3)

where Pk = νT

2 |∇u +∇uT |2 and ε are responsible for pro-
duction and dissipation of turbulent kinetic energy, respec-
tively. The default values of the involved empirical con-
stants are as follows: Cµ = 0.09, C1 = 1.44, C2 = 1.92,
σk = 1.0, σε = 1.3. The choice of initial/boundary condi-
tions for equations (1)–(3) will be discussed later.

2.2 Iterative solution strategy

The discretization in space is performed by an unstruc-
tured grid finite element method. The incompressible
Navier-Stokes equations are discretized using the noncon-
forming Q̃1/Q0 element pair, whereas standard Q1 ele-
ments are employed for k and ε. After an implicit time
discretization by the Crank-Nicolson or backward Euler
method, the nodal values of (v, p) and (k, ε) are updated
in a segregated fashion within an outer iteration loop.

For practical implementation purposes, it is worthwhile
to introduce an auxiliary parameter γ = ǫ

k , so as to de-
couple/linearize the equations of the k−ε model using the

following equivalent representation (Lew et-al., 2001)

∂k

∂t
+ ∇ ·

(

ku− νT

σk
∇k

)

+ γk = Pk, (4)

∂ε

∂t
+ ∇ ·

(

εu − νT

σε
∇ε

)

+ C2γε = γC1Pk. (5)

This trick leads to a positivity-preserving linearization of
the troublesome sink terms, whereby the parameters νT

and γ are evaluated using the solution from the previous
outer iteration (Kuzmin and Turek, 2004).

The iterative solution process is based on the following
hierarchy of nested loops

For n=1,2,... main time-stepping loop tn −→ tn+1

For k=1,2,... outermost coupling loop

• Solve the incompressible Navier-Stokes equations

For l=1,2,... coupling of v and p

For m=1,2,... flux/defect correction

• Solve the transport equations of the k − ε model

For l=1,2,... coupling of k and ε

For m=1,2,... flux/defect correction

At each time step (one n−loop iteration), the govern-
ing equations are solved repeatedly within the outer k-
loop which contains the two subordinate l-loops responsible
for the coupling of variables within the corresponding sub-
problem. The embedded m-loops correspond to iterative
flux/defect correction for the involved convection-diffusion
operators. Flux limiters of TVD type are activated in the
vicinity of steep gradients, where nonlinear artificial diffu-
sion is required to suppress nonphysical undershoots and
overshoots. In the case of an implicit time discretization,
subproblem (4)–(5) leads to a sequence of algebraic sys-
tems of the form (Kuzmin and Möller, 2005; Kuzmin and
Turek, 2004; Turek and Kuzmin, 2005)

A(u(k), γ(l), ν
(k)
T )∆u(m+1) = r(m),

u(m+1) = u(m) + ω∆u(m+1),
(6)

where r(m) is the defect vector and the superscripts re-
fer to the loop in which the corresponding variable is up-
dated. The predicted values k(l+1) and ε(l+1) are used to
recompute the linearization parameter γ(l+1) for the next
outer iteration (if any). The associated eddy viscosity νT

is bounded from below by a certain fraction of the laminar
viscosity 0 < νmin ≤ ν and from above by νmax = lmax

√
k,

where lmax is the maximum admissible mixing length (the
size of the largest eddies, e.g., the width of the domain).
Specifically, we define the limited mixing length l∗ as

l∗ =

{

Cµ
k3/2

ε if Cµk3/2 < εlmax

lmax otherwise
(7)
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and calculate the turbulent eddy viscosity from the formula

νT = max{νmin, l∗
√

k}. (8)

The corresponding linearization parameter γ is given by

γ = Cµ
k

νT
. (9)

The above representation makes it possible to preclude di-
vision by zero and obtain bounded nonnegative coefficients
without manipulating the actual values of k and ε.

2.2.1 Initial conditions

As a rule, it is rather difficult to devise a reasonable initial
guess for a steady-state simulation or proper initial condi-
tions for a dynamic one. If the velocity field is initialized
by zero, it takes the flow some time to become fully tur-
bulent. Therefore, we activate the k−ε model at a certain
time t∗ > 0 after the startup. During the ‘laminar’ initial
phase (t ≤ t∗), a constant effective viscosity ν0 = O(ν) is
prescribed. The values to be assigned to k and ε at t = t∗
depend on the choice of ν0 and of the default mixing length
l0 ∈ [lmin, lmax] where the threshold parameter lmin corre-
sponds to the size of the smallest admissible eddies

k0 =

(

ν0

l0

)2

, ε0 = Cµ
k

3/2
0

l0
at t ≤ t∗. (10)

Alternatively, the initial values of k and ε can be estimated
by means of a zero-equation (mixing length) model or com-
puted using an extension of the inflow or wall boundary
conditions (see below) into the interior of the domain.

2.2.2 Boundary conditions

At the inflow boundary Γin , all velocity components as
well as the values of k and ε are to be prescribed:

u = g, k = cbc|u|2, ε = Cµ
k3/2

l0
on Γin, (11)

where cbc ∈ [0.003, 0.01] is an empirical constant and |u| =√
u · u is the Euclidean norm of the velocity. At the outlet

Γout, the normal gradients of all variables are set equal
to zero. This corresponds to the homogeneous Neumann
(‘do-nothing’) boundary condition which implies that the
surface integrals resulting from integration by parts in the
variational formulation vanish

n · [∇u + ∇uT ] = 0,

n · ∇k = 0, n · ∇ε = 0 on Γout.
(12)

At an impervious solid wall Γw, the normal component
of the velocity is set equal to zero

n · u = 0 on Γw, (13)

whereas tangential slip is permitted in turbulent flow sim-
ulations. The practical implementation of the above ‘free-
slip’ condition is nontrivial if the boundary of the computa-
tional domain is not aligned with the axes of the Cartesian

coordinate system. In this case, condition (13) is imposed
on a linear combination of several velocity components
whereas their boundary values are unknown. Therefore,
standard implementation techniques based on a modifica-
tion of the corresponding matrix rows cannot be used.

In the FEM framework, the free-slip condition is typ-
ically implemented using element-by-element transforma-
tions to a local coordinate system spanned by the normal
and tangential vectors (Engelman et-al, 1982). However,
this strategy requires substantial modifications of the fi-
nite element code. An easier way to set the normal veloc-
ity component equal to zero was introduced in (Kuzmin
and Turek, 2004; Turek and Kuzmin, 2005). The crux
is to nullify the off-diagonal entries of the preconditioner

A(u(m)) = {a(m)
ij } in the defect correction loop for the mo-

mentum equation. As a result, the boundary values of the
velocity vector u can be calculated explicitly before solving
the linear system for the remaining degrees of freedom:

a
(m)
ij := 0, ∀j 6= i,

u∗
i := u

(m)
i + r

(m)
i /a

(m)
ii for xi ∈ Γw.

(14)

The next step is to project the predicted values u∗
i onto

the tangent vector/plane and constrain the corresponding

entry of the defect vector r
(m)
i to be zero

u
(m)
i := u∗

i − (ni · u∗
i )ni,

r
(m)
i := 0 for xi ∈ Γw.

(15)

After this manipulation, the corrected values u
(m)
i act as

Dirichlet boundary conditions for the end-of-step solution

u
(m+1)
i . Alternatively, the above projection can be applied

to the residual rather than to the velocity vector:

r
(m)
i := r

(m)
i − (ni · r(m)

i )ni for xi ∈ Γw. (16)

In either case, there is no overhead cost since the nonlinear
algebraic system resulting from an implicit discretization
of the Navier-Stokes equations must be solved iteratively
anyway. For Cartesian geometries, the modifications to be
performed affect just the normal velocity component, as in
the case of standard Dirichlet boundary conditions.

2.2.3 Wall functions

To complete the problem statement, it remains to prescribe
the wall shear stress as well as the boundary conditions for
k and ε on Γw. Note that the equations of the k− ε model
are invalid in the vicinity of the wall, where the Reynolds
number is rather low and viscous effects are dominant.
Therefore, analytical solutions of the boundary layer equa-
tions are commonly employed to bridge the gap between
the no-slip boundaries and the region of turbulent flow.

The tangential component of the force exerted by the
viscous stress tensor σ = ν[∇u + ∇uT ] on Γw is given by

tw = n · σ − (n · σ · n)n. (17)
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Note that the velocity vector u is tangent to Γw due to the
free-slip condition u · n = 0 imposed on the wall.

The use of logarithmic wall laws leads to the following
set of boundary conditions to be prescribed on an internal
boundary Γy located at a distance y from the wall Γw

tw = −u2
τ

u

|u| , k =
u2

τ
√

Cµ

, ε =
u3

τ

κy
, (18)

where κ = 0.41 is the von Kármán constant. The friction
velocity uτ is assumed to satisfy the Reichardt equation

|u|
uτ

=
1

κ
log y+ + β (19)

valid in the logarithmic layer, where the local Reynolds
number y+ = uτ y

ν is in the range 11.06 ≤ y+ ≤ 300. The
empirical constant β equals 5.2 for smooth walls.

Theoretically, a boundary layer of width y should be
removed from the computational domain Ω and the equa-
tions of the k − ε model should be solved in the reduced
domain. Since y+ is proportional to y, the latter should be
chosen carefully. It is common practice to apply the wall
functions (18) at the first node / integration point located
in the interior of the domain. However, the so-defined wall
distance y decreases in the course of mesh refinement and
may eventually fall into the viscous sublayer, where the
underlying model assumptions are no longer valid.

Another possibility is to adapt the mesh so that the lo-
cation of boundary nodes always corresponds to a fixed
value of y+ which should be as small as possible for ac-
curacy reasons but large enough to be in the logarithmic
layer. Since the deviation from the wall is supposed to re-
main small, it is worthwhile to neglect it so that no mesh
adaptation needs to be performed (Grotjans and Menter,
1998; Lew et-al., 2001). In what follows, the discretized
equations will be solved in the original domain Ω, whereby
the nodes located on the wall Γw will be treated in the
same way as if they were shifted in the normal direction
by the distance y corresponding to the prescribed y+.

As explained in (Grotjans and Menter, 1998), the small-
est wall distance for the definition of y+ corresponds to
the point where the logarithmic layer meets the viscous

sublayer. At this point, both the linear relation y+ = |u|
uτ

and equation (19) are assumed to hold. Hence, the optimal
value of the parameter y+ can be found by solving

y+ =
1

κ
log y+ + β (20)

in an iterative way. The resulting solution is given by
y+
∗ ≈ 11.06 for κ = 0.41 and β = 5.2 (default settings).
Given a fixed y+

∗ defined as the solution of (20), the
friction velocity uτ can be readily computed from

uτ =
|u|

1
κ log y+

∗ + β
=

|u|
y+
∗

. (21)

Remarkably, the nonlinearity and the logarithmic depen-
dence of uτ on y+ are included in the definition of y+

∗ , so

that uτ = |u|

y+
∗

is directly computable. On the other hand,

the boundary condition for k implies that uτ = C0.25
µ

√
k.

Following (Grotjans and Menter, 1998) we set

tw = − uτ

y+
∗

u, uτ = max

{

C0.25
µ

√
k,

|u|
y+
∗

}

(22)

which is consistent with (18) and prevents the momentum
flux from going to zero at separation/stagnation points.

The resulting natural boundary condition for the wall
shear stress is represented by the surface integral

∫

Γw

(tw ·w) ds = −
∫

Γw

uτ

y+
∗

(u · w) ds, (23)

where w is the test function for the finite element space.
In view of (18), the boundary value of the turbulent eddy

viscosity νT is proportional to ν. Indeed,

νT = Cµ
k2

ε
= κuτy = κy+

∗ ν. (24)

Of course, the above relation is satisfied automatically if
the boundary conditions for k and ε are implemented in the
strong sense (Kuzmin and Turek, 2004; Turek and Kuzmin,
2005). However, the use of Dirichlet boundary conditions
means that the boundary values of k and ε depend solely

on the friction velocity uτ = |u|

y+
∗

as a function of u. This

results in a one-way coupling of the boundary conditions
for subproblems (1) and (2)–(3) which is rather unrealistic.

In order to let k and ε ‘float’ and influence the momen-
tum equations via (22)-(23), the wall boundary conditions
should be implemented in a weak sense. To this end, let
us invoke (18) to retrieve the normal derivatives of k and
ε as follows, cf. (Grotjans and Menter, 1998)

n · ∇k = −∂k

∂y
= 0,

n · ∇ε = −∂ε

∂y
=

u3
τ

κy2
=

ε

y
.

(25)

The unknown wall distance y can be expressed in terms
of the turbulent eddy viscosity νT = κuτy, which yields a
natural boundary condition of Newton type

n · ∇ε =
κuτ

νT
ε, uτ = C0.25

µ

√
k. (26)

Hence, the surface integrals associated with the weakly
imposed boundary conditions for k and ε are given by

∫

Γw

νT

σk
(n · ∇k)w ds = 0,

∫

Γw

νT

σε
(n · ∇ε)w ds =

∫

Γw

κuτ

σε
εw ds.

(27)

Alternatively, the right-hand side of the latter equation

can be evaluated using the boundary value ε =
u3

τ

κy =
u4

τ

κy+
∗

ν

as defined by (18), see (Grotjans and Menter, 1998).
Since the resulting boundary values of k and ε are no

longer constrained by (18), it is essential to calculate the
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coefficients νT and Pk using the strong form of the wall law.
That is, the correct value of the turbulent eddy viscosity
is given by (24), while the production term is assumed to
be in equilibrium with the dissipation rate, i.e.,

Pk =
u3

τ

κy
=

u4
τ

νT
=

u4
τ

κy+
∗ ν

, (28)

where the friction velocity uτ is defined as in equation (22).

2.2.4 Chien’s Low-Re k − ε model

The wall functions, as presented above, provide a reason-
ably good model of the flow behavior in the near-wall re-
gion avoiding the need for costly integration to the wall.
However, the validity of (18) is limited to flat-plate bound-
ary layers and developed flow conditions (although wall
functions are frequently used in other settings with con-
siderable success). Furthermore, the viscous sublayer may
occupy a significant portion of the computational domain
if the local Reynolds number is relatively small. In this
case, the wall distance y is non-negligible and it is not ad-
missible to apply wall functions on Γw rather than on Γy.

A more accurate, albeit expensive, approach to the near-
wall treatment is provided by numerous Low-Reynolds
number k−ε models which employ suitable damping func-
tions to provide a smooth transition from laminar to tur-
bulent flow. In the framework of the classical Chien model
(Chien, 1982), the turbulent eddy viscosity satisfies

νT = Cµfµ
k2

ε̃
, fµ = 1 − exp(−0.0115y+), (29)

where the dissipation rate ε is replaced by the quantity

ε̃ = ε − 2ν
k

y2
. (30)

The above model is supported by the DNS results which
indicate that the ratio fµ = νT ε̃

Cµk2 is not a constant but a

function approaching zero at the wall.
The following generalization of equations (4)–(5) is used

to compute the k and ε̃ fields (Chien, 1982)

∂k

∂t
+ ∇ ·

(

ku− νT

σk
∇k

)

+ αk = Pk, (31)

∂ε̃

∂t
+ ∇ ·

(

ε̃u− νT

σε
∇ε̃

)

+ βε̃ = γC1f1Pk, (32)

where the involved coefficients are given by

α = γ +
2ν

y2
, β = C2f2γ +

2ν

y2
exp(−0.5y+),

γ =
ε̃

k
, f1 = 1, f2 = 1 − 0.22 exp

(

k2

6νε̃

)2

.

(33)

Chien’s model enjoys favorable numerical properties and
comes with remarkably simple boundary conditions

u = 0, k = 0, ε̃ = 0 on Γw. (34)

Note that the extra sink terms in (31) and (32) have
positive coefficients and pose no hazard to positivity of the
numerical solution. As before, the linearization parameter
γ is recomputed in every outer iteration of the l−loop.
The parameter y+ depending on the friction velocity uτ is
updated at the beginning of the k−loop as follows

y+ =
uτy

ν
, uτ = max

{

C0.25
µ

√
k,

√

|tw|
}

, (35)

where tw denotes the wall shear stress as defined in (17).
Moreover, the update of y+ requires knowing the dis-

tance to the wall y. In the current implementation, it
is computed in a brute-force way as the distance to the
nearest midpoint of a boundary edge/face projected onto
the uniquely defined normal associated with this edge/face.
Alternatively, the computation of y can be performed us-
ing one of the numerous redistancing/reinitialization tech-
niques developed in the framework of level set methods.

3 NUMERICAL EXAMPLES

3.1 Channel flow problem

A preliminary validation of Chien’s Low-Reynolds number
k−ε model implemented as explained above was performed
on the basis of the well-known channel flow problem. The
reference data were provided by the DNS results (Kim et-
al, 1987) for Reτ = 395 based on the friction velocity uτ ,
half of the channel width d and kinematic viscosilty ν.
In order to obtain the developed flow conditions required
for validation, the boundary conditions prescribed at the
inlet and outlet of the reduced domain were interchanged
several times during the computation, so as to emulate
periodic boundary conditions in the streamline direction.

The almost mesh-independent solutions displayed in
Fig. 1 were obtained using the 3D code on a hexahedral
mesh of 50, 000 elements. Due to the need for high reso-
lution, local mesh refinement was performed in the near-
wall region (see the left diagram). The distance from the
wall boundary to the nearest interior point corresponds to
y+ ≈ 2. The right diagram illustrates that the resulting
essentially 1D profiles of the nondimensional quantities

u+ =
ux

uτ
, k+ =

k

u2
τ

, ε+ =
εν

u4
τ

are in a good agreement with the DNS results (Kim et-al,
1987) for this benchmark, whereby the profiles of u+ and
ε+ are particularly close to the reference data.

3.2 Backward facing step

The second numerical example deals with a turbulent
incompressible flow past a backward facing step. The
Reynolds number for the 3D simulation to be performed is
given by Re = 47, 625 (Ilinca et-al., 1978) as defined by the
step height H , mean inflow velocity umean and kinematic
viscosity ν. The goal is to evaluate the performance of the
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Figure 1: Channel flow: computational mesh and LRKE solutions vs. Kim’s DNS results for Reτ = 395.

Figure 2: Backward facing step: a two-dimensional view of the computational mesh in the xy-plane.

Figure 3: Backward facing step: steady-state distribution of k (left) and νT (right) for Re = 47, 625. From top to
bottom: reference solution (Ilinca et-al., 1978), wall functions implemented as Dirichlet boundary conditions, wall
functions implemented as Neumann boundary conditions, and Chien’s Low-Reynolds number modification.

standard k − ε model with three different kinds of near-
wall treatment: wall functions implemented as Dirichlet
(DIRBC) and Neumann (NEUBC) boundary conditions
vs. Chien’s Low-Reynolds number version (LRKE).

All simulations were performed on the same computa-
tional mesh consisting of approximately 260, 000 elements,
see Fig. 2. Local mesh refinement was employed in the
vicinity of the walls and in the shear layer behind the
step. A comparison of the steady-state solutions for the
turbulent kinetic energy k and eddy viscosity νT with the
reference solution from (Ilinca et-al., 1978) is presented
in Fig. 3. Significant differences between the solutions

computed using wall functions implemented in the strong
and weak sense are observed even in the ‘picture norm’.
The use of Dirichlet boundary conditions (DIRBC) for k
and ε was found to produce rather disappointing results,
whereas the performance of Neumann boundary conditions
(NEUBC) is very similar to that of the Low-Reynolds num-
ber k − ε model (LRKE) under investigation.

An important evaluation criterion for this popular test
problem is the recirculation length defined as LR = xr/H .
For the implementation based on wall functions imple-
mented as Dirichlet boundary conditions, this integral
quantity can be readily inferred from the distribution of
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Figure 4: Backward facing step: distribution of the skin
friction coefficient cf along the lower wall, Re = 47, 625.

the skin friction coefficient cf =
u2

τ

u2
mean

ux

|ux|
on the bot-

tom wall (see Fig. 4). The recirculation length predicted
by Chien’s Low-Re k − ε model and by wall functions
with Neumann boundary conditions (27) is underestimated
(LR ≈ 5.4), which is also the case for the computational
results published in the literature (5.0 < LR < 6.5, see
(Ilinca et-al., 1978; Grotjans and Menter, 1998; Thangam
and Speziale, 1992)). On the other hand, the implementa-
tion of wall functions in the strong sense yields LR ≈ 7.1,
which matches the experimentally measured recirculation
length LR ≈ 7.1, see (Kim, 1978). Unfortunately, this
perfect agreement turns out to be a pure coincidence.

In Fig. 5, the calculated velocity profiles for 6 different
distances from the step are compared to one another and
to the experimental data from Kim’s thesis (Kim, 1978).
The corresponding profiles of k and ε are displayed in Fig. 6
and Fig. 7, respectively. This comparative study indicates
that the k − ε model equipped with wall functions imple-
mented as Neumann boundary conditions yields essentially
the same results as its Low-Reynolds number counterpart,
whereas the use of Dirichlet boundary conditions leads to a
significant discrepancy, especially at small distances from
the step. It is also worth mentioning that the presented
profiles of ε do not suffer from spurious undershoots which
are frequently observed in other computations. This can
be attributed to the positivity-preserving discretization of
convective terms which is explained in detail elsewhere
(Kuzmin and Möller, 2005; Kuzmin, 2006).

4 CONCLUSIONS

Finite element discretization and iterative solution tech-
niques were presented for the incompressible Navier-Stokes
equations coupled with the k−ε turbulence model. Various
algorithmic details were discussed and the numerical treat-
ment of wall boundary conditions was addressed. The pre-
sented numerical study illustrates the utility of ‘scalable’
wall functions (Grotjans and Menter, 1998) implemented
as natural boundary conditions. The use of a wall distance
based on a fixed value of the turbulent Reynolds number

y+ leads to a remarkably robust and efficient algorithm
for the near-wall treatment. The accuracy of the result-
ing solutions is comparable to that provided by Chien’s
Low-Reynolds k − ε number model on the same mesh.
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Figure 5: Backward-facing step: velocity profiles ux for 6 different distances x/H from the step. Solutions computed
using the k − ε model with three different kinds of near-wall treatment vs. experimental data (Kim, 1978).

Figure 6: Backward-facing step: turbulent kinetic energy k for 6 different distances x/H from the step.

Figure 7: Backward-facing step: dissipation rate ε for 6 different distances x/H from the step.
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