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1 Institute of Applied Mathematics (LS III), University of Dortmund
Vogelpothsweg 87, D-44227, Dortmund, Germany
kuzmin@math.uni-dortmund.de

2
matthias.moeller@math.uni-dortmund.de

Summary. An algebraic approach to the design of multidimensional high-resolution
schemes is introduced and elucidated in the finite element context. A centered space
discretization of unstable convective terms is rendered local extremum diminishing
by a conservative elimination of negative off-diagonal coefficients from the discrete
transport operator. This modification leads to an upwind-biased low-order scheme
which is nonoscillatory but overly diffusive. In order to reduce the incurred error, a
limited amount of compensating antidiffusion is added in regions where the solution
is sufficiently smooth. Two closely related flux correction strategies are presented.
The first one is based on a multidimensional generalization of total variation dimin-
ishing (TVD) schemes, whereas the second one represents an extension of the FEM-
FCT paradigm to implicit time-stepping. Nonlinear algebraic systems are solved
by an iterative defect correction scheme preconditioned by the low-order evolution
operator which enjoys the M-matrix property. The diffusive and antidiffusive terms
are represented as a sum of antisymmetric internodal fluxes which are constructed
edge-by-edge and inserted into the global defect vector. The new methodology is
applied to scalar transport equations discretized in space by the Galerkin method.
Its performance is illustrated by numerical examples for 2D benchmark problems.

1 Introduction

Over the past three decades that elapsed since the birth of the FCT algorithm,
numerous clones and alternative high-resolution schemes based on flux/slope
limiters have been proposed in the literature. Nevertheless, the developement
of reliable discretization techniques for convection-dominated flows remains
one of the main challenges in Computational Fluid Dynamics. As a matter of
fact, a serious disadvantage of many existing numerical schemes is the lack of
generality. Most of them are only suitable for structured or simplex meshes,
specific space discretization (finite differences/volumes, discontinuous or linear
finite element approximations) and/or explicit time-stepping.
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In particular, the use of high-resolution finite element schemes is still rather
uncommon in spite of their enormous potential demonstrated by Löhner and
his collaborators [34],[36],[37]. The failure of the FEM to be as successful in
CFD as in structural mechanics is largely due to the fact that many limiting
techniques are essentially one-dimensional and do not carry over to unstruc-
tured meshes. In a series of recent publications, we derived a new family of
implicit FEM-FCT schemes using a mass-conserving modification of matrices
that result from the standard Galerkin discretization [22],[23],[25],[26]. In fact,
this approach to the design of nonoscillatory positivity-preserving schemes can
be characterized as Algebraic Flux Correction which is applicable to discrete
transport operators of any origin. All the necessary information is provided
by the magnitude, sign and position of nonzero matrix coefficients.

Furthermore, the AFC methodology forms the basis for a fully multidi-
mensional generalization of Harten’s total variation diminishing schemes [28].
A node-oriented flux limiter of TVD type is constructed so as to control the ra-
tio of upstream and downstream edge contributions which are associated with
the positive and negative off-diagonal coefficients of the high-order transport
operator, respectively [28]. This limiting strategy resembles Zalesak’s FCT
algorithm [54] but its derivation is based on different premises. In addition,
the proposed FEM-TVD schemes are upwind-biased, i.e., the raw antidiffusive
fluxes are multiplied by the correction factor for the upwind node rather than
by the minimum of those for both nodes.

In contrast to flux limiters of TVD type, flux-corrected transport methods
operate at the fully discrete level. As a result, the correction factors estimated
by the limiter depend on the time step, so that it is impossible to reap the
benefits of the fully implicit time-stepping without sacrificing some accuracy.
In order to prevent an implicit FEM-FCT discretization from becoming in-
creasingly diffusive at large time steps, flux correction can be carried out in an
iterative fashion so as to ‘recycle’ the rejected antidiffusion step-by-step [29].
In this chapter, we derive and compare algebraic TVD and FCT schemes for
scalar convection-diffusion problems. Their performance is evaluated numer-
ically. An extension of both AFC techniques to the Euler and Navier-Stokes
equations of fluid dynamics is presented in the next two chapters.

2 Finite Element Discretization

Let us introduce the principles of algebraic flux correction in the finite element
framework and keep in mind that they are also applicable to finite volume
and finite difference discretizations. Consider the time-dependent continuity
equation which represents a mass conservation law for a scalar quantity u

∂u

∂t
+ ∇ · (vu) = 0 in Ω, (1)

where v = v(x, t) is a nonuniform velocity field, which is assumed to be known
analytically or computed numerically from a momentum equation solved in
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a parallel way. The initial data are given by u(x, 0) = u0(x), and boundary
conditions are to be prescribed only at the inlet Γin = {x ∈ Γ : v · n < 0},
where n denotes the unit outward normal to the boundary Γ .

The weak form of equation (1) is derived by integrating the weighted
residual over the domain Ω and setting the result equal to zero

∫

Ω

w

[

∂u

∂t
+ ∇ · (vu)

]

dx = 0, ∀w. (2)

If the boundary conditions are specified in terms of fluxes rather than actual
values of u at the inlet, it is worthwhile to integrate the convective term by
parts and substitute the incoming fluxes into the resulting surface integral.

A common practice in finite element methods for conservation laws is to
interpolate the convective fluxes in the same way as the numerical solution

uh =
∑

j

ujϕj , (vu)h =
∑

j

(vjuj)ϕj , (3)

where ϕj denote the basis functions spanning the finite-dimensional subspace.
This kind of approximation was promoted by Fletcher [13] who called it the
group finite element formulation. It was found to provide a very efficient treat-
ment of nonlinear convective terms and even lead to a small gain of accuracy
for the 2D Burgers equation discretized on a uniform grid [13]. In fact, it is
even possible to use mixed interpolations. For instance, a bilinear approxima-
tion of u could be combined with its nonconforming counterpart [46] for the
convective fluxes which call for the use of edge-oriented degrees of freedom.

The substitution of (3) into (2) yields the following semi-discrete problem

∑

j

[
∫

Ω

ϕiϕj dx

]

duj

dt
+

∑

j

[
∫

Ω

ϕivj · ∇ϕj dx

]

uj = 0. (4)

This gives a system of ordinary differential equations for the nodal values of
the approximate solution which can be written compactly in matrix form

MC
du

dt
= Ku, (5)

where MC = {mij} denotes the consistent mass matrix and K = {kij} stands
for the discrete transport operator. The matrix entries are given by

mij =

∫

Ω

ϕiϕj dx, kij = −vj · cij , cij =

∫

Ω

ϕi∇ϕj dx. (6)

For fixed meshes, the coefficients mij and cij remain unchanged throughout
the simulation and, consequently, need to be evaluated just once, during the
initialization step. This enables us to update the matrix K in a very effi-
cient way by computing its entries kij from formula (6) without resorting to
costly numerical integration. The auxiliary coefficients cij correspond to the
discretized space derivatives and have zero row sums, i. e.,

∑

j cij = 0 as long
as the sum of the basis functions ϕj is equal to one at every point.
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3 Conservative Flux Decomposition

It is common knowledge that the Galerkin FEM is globally conservative [15].
Indeed, summing equations (4) over i and taking into account that the basis
functions sum to unity, one recovers the integral form of the conservation law.
Therefore, the total mass of u in Ω may only change due to the boundary
fluxes. At the same time, the finite element discretization of convective terms
does not admit a natural decomposition into a sum of numerical fluxes from
one node into another. Since most high-resolution schemes operate with such
fluxes, their extension to finite elements proved to be a difficult task. Peraire
et al. [45] demonstrated that a conservative flux decomposition is feasible for
P1 finite elements (piecewise-linear approximation on a simplex mesh). A sim-
ilar technique was proposed by Barth [3],[4] who investigated the relationship
between finite element and finite volume discretizations. The transition to
an edge-based data structure reportedly offers a number of significant advan-
tages as compared to the conventional element-based formulation. Moreover, it
paves the way for a straightforward extension of many popular high-resolution
schemes (including TVD) to unstructured meshes [34],[38],[42].

In [25] we developed a flux decomposition technique which is applicable to
general finite element approximations on arbitrary meshes including quadri-
lateral and hexahedral ones. Integration by parts in the weak formulation (2)
and the fact that the coefficients cij have zero row sums make it possible to
decompose the contribution of convective terms to interior nodes into a sum
of antisymmetric internodal fluxes (see appendix to this chapter)

(Ku)i = −
∑

j 6=i

gij , where gij = (vi · cij)ui − (vj · cji)uj . (7)

A promising approach to the derivation of nonoscillatory finite element meth-
ods consists in replacing the centered Galerkin flux gij by another consistent
numerical flux [38]. On the other hand, it is often desirable to use an already
existing finite element code based on conventional data structures. Therefore,
we adopt a different strategy in the present chapter.

Due to the fact that the Galerkin method is conservative, it suffices to guar-
antee that all subsequent matrix manipulations to be performed at the discrete
level do not violate this property. To this end, we introduce the concept of
discrete diffusion operators [23]. They are defined as symmetric matrices

D = {dij} such that dij = dji (8)

which have zero row and column sums
∑

i

dij =
∑

j

dij = 0. (9)

We remark that the matrix D is typically sparse and its nonzero off-diagonal
entries dij may be positive (diffusion) or negative (antidiffusion).
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In the finite element framework, some well-known representatives of this
important class of matrices are as follows:

• The discrete Laplacian operator which results from the discretization of
second derivatives after integration by parts in the weak formulation

dij =

∫

Ω

∇ϕi · ∇ϕj dx.

• The streamline diffusion operator which provides a stabilization of convec-
tive terms by artificial diffusion in the streamline direction

dij =

∫

Ω

v · ∇ϕi v · ∇ϕj dx.

• The mass diffusion operator which is given by the difference between the
consistent mass matrix and its lumped counterpart (see below)

dij =

∫

Ω

ϕi(ϕj − δij) dx.

Here δij is the Kronecker delta which equals 1 if i = j and 0 otherwise.

A discrete diffusion operator D applied to the vector of nodal values u yields

(Du)i =
∑

j

dijuj =
∑

j 6=i

dij(uj − ui) (10)

due to the zero row sum property. Hence, the contribution of diffusive terms
to node i can be decomposed into a sum of numerical fluxes:

(Du)i =
∑

j 6=i

fij , where fij = dij(uj − ui). (11)

The flux fij from node j into node i is proportional to the difference between
the nodal values, so it leads to a steepening or flattening of solution profiles
depending on the sign of the coefficient dij . Furthermore, the symmetry of the
matrix D implies that fji = −fij so that there is no net loss or gain of mass.
The amount received by node i is subtracted from node j and vice versa.

The antisymmetric diffusive fluxes can be associated with edges of the
graph which represents the sparsity pattern of the global stiffness matrix. For
linear finite elements, their number equals the number of actual mesh edges,
whereas multilinear and high-order FEM approximations allow for interac-
tions of all nodes sharing the same element. As we are about to see, artificial
diffusion operators satisfying the above conditions constitute a very useful
tool for the design of multidimensional high-resolution schemes.
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4 Design Criteria

First of all, we introduce the algebraic constraints which should be imposed on
the discrete operators to prevent the formation of spurious undershoots and
overshoots in the vicinity of steep gradients. Assume that the semi-discretized
transport equation can be cast in the generic form

dui

dt
=

∑

j

σijuj , where σii = −
∑

j 6=i

σij . (12)

In particular, this is feasible for our nodal ODE system (5) if MC is replaced
by its diagonal counterpart ML resulting from the row-sum mass lumping

σij =
kij

mi
, where mi =

∑

j

mij , ML = diag{mi}

and the velocity field v is discretely divergence-free in the sense that

(∇ · v)i =
1

mi

∑

j

vj · cij = −
∑

j

σij = 0. (13)

This approximation corresponds to a recovery of continuous nodal gradients
by means of a lumped-mass L2-projection. For ‘compressible’ flows, the sum
of the coefficients σij is nonvanishing. However, this makes no difference for
the algebraic flux correction algorithms to be derived below.

Algebraic Constraint I (semi-discrete level)

If the coefficients of the numerical scheme do have zero row sums, then the
right-hand side of (12) can be represented in terms of the off-diagonal ones

dui

dt
=

∑

j 6=i

σij(uj − ui). (14)

It was shown by Jameson [19], [20], [21] that negative coefficients in the above
expression are the ‘villains’ responsible for the birth and growth of nonphysical
oscillations. Indeed, if σij ≥ 0, ∀j 6= i then the spatial discretization proves
stable in the L∞-norm due to the fact that

• maxima do not increase: ui = max
j

uj ⇒ uj−ui ≤ 0 ⇒ dui

dt ≤ 0,

• minima do not decrease: ui = min
j

uj ⇒ uj−ui ≥ 0 ⇒ dui

dt ≥ 0.

As a rule, the coefficient matrices are sparse, so that σij = 0 unless i and j
are adjacent nodes. Arguing as above, one can show that a local maximum can-
not increase, and a local minimum cannot decrease. Therefore, semi-discrete
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schemes of this type are local extremum diminishing (LED). For three-point
finite difference methods, the LED constraint reduces to Harten’s TVD con-
ditions [16]. If the homogeneous Dirichlet boundary conditions are prescribed
at both endpoints, the total variation of the (piecewise-linear) approximate
solution can be expressed as follows [19]

TV (uh) :=
∑

i

|ui+1 − ui| = 2
(

∑

max u −
∑

min u
)

(15)

and is obviously nonincreasing as long as the local maxima and minima do not
grow. Therefore, one-dimensional LED schemes are necessarily total variation
diminishing. At the same time, the positivity of matrix coefficients is easy to
verify for arbitrary discretizations on unstructured meshes so that Jameson’s
LED criterion provides a very handy generalization of the TVD concepts.

Algebraic Constraint II (fully discrete level)

After the time discretization, an additional condition may need to be imposed
in order to make sure that the solution values remain nonnegative if this
should be the case for physical reasons. In general, a fully discrete scheme is
positivity-preserving if it can be represented in the form

Aun+1 = Bun, (16)

where B = {bij} has no negative entries and A = {aij} is a so-called M-matrix

defined as a nonsingular discrete operator such that aij ≤ 0 for j 6= i and all
the coefficients of its inverse are nonnegative. These properties imply that the
positivity of the old solution un carries over to un+1 = A−1Bun. Here and
below the superscript n denotes the time level.

As a useful byproduct, our algebraic positivity criterion yields a readily
computable upper bound for admissible values of the time step ∆t = tn+1−tn.
In particular, the local extremum diminishing ODE system (14) discretized
in time by the standard θ− scheme reads

un+1
i − un

i

∆t
= θ

∑

j 6=i

σn+1
ij (un+1

j − un+1
i ) + (1 − θ)

∑

j 6=i

σn
ij(u

n
j − un

i ). (17)

It is unconditionally positivity-preserving for θ = 1 (backward Euler method)
and subject to the following CFL-like condition otherwise [23],[25]

1 + ∆t(1 − θ)min
i

σn
ii ≥ 0 for 0 ≤ θ < 1. (18)

Note that this estimate is based solely on the magnitude of the diagonal
coefficients σn

ii, which makes it a handy tool for adaptive time step control.
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5 Algebraic Flux Correction of TVD Type

The basic idea underlying algebraic flux correction is rather simple and can
be traced back to the concepts of flux-corrected transport. Roughly speaking,
the governing equation is discretized in space by an arbitrary linear high-order
method (e.g. central differences or Galerkin FEM) and the resulting matrices
are modified a posteriori so as to enforce the constraints I and II imposed
above. The flow chart of required algebraic manipulations is sketched in Fig. 1.
The time step ∆t should be chosen so as to satisfy condition (18).

1. Linear high-order scheme (e.g. Galerkin FEM)

MC

du

dt
= Ku such that ∃ j 6= i : kij < 0

2. Linear low-order scheme L = K + D

ML

du

dt
= Lu such that lij ≥ 0, ∀j 6= i

3. Nonlinear high-resolution scheme K∗ = L + F

ML

du

dt
= K

∗
u such that ∃ j 6= i : k

∗
ij < 0

Equivalent representation L∗u = K∗u is LED

ML

du

dt
= L

∗
u such that l

∗
ij ≥ 0, ∀j 6= i

Fig. 1. Roadmap of AFC-TVD manipulations.

First, we perform mass lumping and transform the high-order operator K
into its nonoscillatory low-order counterpart L by adding a discrete diffusion
operator D designed so as to get rid of all negative off-diagonal coefficients.
In the next step, excessive artificial diffusion is removed. This is accomplished
by applying a limited amount of compensating antidiffusion F which depends
on the local solution behavior and improves the accuracy in smooth regions.
Both diffusive and antidiffusive terms admit a conservative flux decomposition
so that the proposed modifications do not affect the total mass.

It is worth mentioning that the final operator K∗ does have some negative
off-diagonal coefficients. Nevertheless, the resulting discretization proves local
extremum diminishing if (for a given solution vector u) there exists a matrix
L∗ such that all off-diagonal entries l∗ij are nonnegative and L∗u = K∗u. In
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the remainder of this section we will dwell on the design of discrete diffu-
sion/antidiffusion operators and introduce flux limiters of TVD type which
guarantee the existence of L∗ without constructing it explicitly. In much the
same way, we will derive a family of implicit FCT schemes using criterion (16)
to render the underlying high-order method positivity-preserving.

5.1 Discrete Upwinding

For finite difference and finite volume discretizations, the first-order accurate
upwind method yields an operator L which corresponds to the least diffusive
linear LED scheme. Up to now, it has been largely unclear how to construct
such an optimal low-order discretization in the finite element framework.
Streamline-diffusion methods like SUPG are stable but not monotonicity-
preserving, whereas other upwind-biased finite element schemes resort to a
finite volume approximation of convective terms [1],[2],[52]. At the same time,
the LED constraint can be enforced by elimination of negative off-diagonal
coefficients from the discrete transport operator. Interestingly enough, this
algebraic approach to the design of ‘monotone’ low-order methods reduces to
standard upwinding for the one-dimensional convection equation [22],[23].

As a starting point, we consider a linear high-order discretization, e. g. our
semi-discrete problem (5) for the Galerkin method. After mass lumping, each
nodal value ui satisfies an ordinary differential equation of the form

mi
dui

dt
=

∑

j 6=i

kij(uj − ui) + δiui, where δi =
∑

j

kij . (19)

The first term in the right-hand side is associated with the ‘incompressible’
part of the discrete transport operator K since δiui is an approximation of
−u∇ · v (see above) which vanishes for divergence-free velocity fields and is
responsible for a physical growth of local extrema otherwise. For the con-
comitant low-order scheme to be local extremum diminishing, all off-diagonal
coefficients of the linear operator L = K + D must be nonnegative. Hence,
the optimal diffusion coefficients are given by

dii = −
∑

j 6=i

dij , dij = max{0,−kij ,−kji} = dji. (20)

By construction, D = {dij} is a discrete diffusion operator. It follows that
the difference between the resulting scheme and the original one can be rep-
resented as a sum of antisymmetric diffusive fluxes fd

ij = dij(uj −ui) between
adjacent nodes whose basis functions have overlapping supports. Recall that
this is sufficient to guarantee mass conservation at the algebraic level. The
above manipulations lead to the desired semi-discrete scheme of low order

ML
du

dt
= Lu such that lij ≥ 0, ∀j 6= i. (21)
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In practice, the elimination of negative off-diagonal entries is performed
edge-by-edge without assembling the global matrix D. After the initialization
L := K, we examine each pair of nonzero off-diagonal coefficients lij and lji.
If the smaller one is negative, it is set equal to zero and three other entries
are modified so as to restore row/column sums:

lii := lii − dij , lij := lij + dij ,

lji := lji + dij , ljj := ljj − dij .
(22)

Without loss of generality, we orient the edges of the sparsity graph so that
lji ≥ lij = max{0, kij} for the edge

−→
ij . This orientation convention implies

that node i is located ‘upwind’ and corresponds to the row number of the elim-
inated negative entry (if any). Furthermore, the nodes can be renumbered so
as to transform L into an upper or lower triangular matrix and to design very
efficient solvers/smoothers/preconditioners for the resulting linear system.

The ‘postprocessing’ technique described in this section will be referred
to as discrete upwinding. Note that the LED constraint is imposed only on
the incompressible part of the transport operator. The ‘reactive’ term δiui

is not affected by artificial diffusion since
∑

j lij =
∑

j(kij + dij) =
∑

j kij

due to the zero row sum property of D. If the governing equation contains
sources and sinks, they may need to be linearized as proposed by Patankar
[44] and explained in [25],[26]. Furthermore, physical diffusion can be built
into the matrix either before or after discrete upwinding. In the former case,
it is automatically detected and the amount of artificial diffusion is reduced
accordingly. In our experience, the TVD flux limiters to be presented below
should be applied to the convective operator alone. Therefore, it is advisable
to incorporate the contribution of physical diffusion into L rather than K.

Example. To elucidate the ins and outs of discrete upwinding in a rather simple
setting, consider the one-dimensional counterpart of equation (1)

∂u

∂t
+ v

∂u

∂x
= 0, (23)

where the velocity v is assumed to be constant and positive. The computa-
tional domain Ω = (a, b) is defined by its two endpoints, and an essential
boundary condition of the Dirichlet type is prescribed at the inlet x = a.

This hyperbolic equation is discretized in space by the lumped-mass
Galerkin method using a piecewise-linear approximation on a uniform mesh
of size ∆x. The corresponding 2 × 2 element matrices are given by

M̂L =
∆x

2

[

1 0
0 1

]

, K̂ =
v

2

[

1 −1
1 −1

]

. (24)

After the global matrix assembly, the central difference discretization of the
convective term is recovered at interior nodes:

dui

dt
= −v

ui+1 − ui−1

2∆x
. (25)
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The negative coefficient in the upper-right corner of K̂ violates the LED
criterion and should be eliminated. To this end, the artificial diffusion operator
D̂ is designed to be a symmetric matrix with zero row and column sums such
that the entry l̂12 of the low-order operator L̂ = K̂ + D̂ is equal to zero

D̂ =
v

2

[

−1 1
1 −1

]

⇒ L̂ = v

[

0 0
1 −1

]

. (26)

The resulting local extremum diminishing scheme is the least diffusive among
linear ones. Remarkably, it is equivalent to the standard upwind method

dui

dt
= −v

ui − ui−1

∆x
(27)

and proves positivity-preserving under condition (18) which reduces to

v
∆t

∆x
≤

1

1 − θ
, 0 ≤ θ < 1. (28)

Recall that this restriction does not apply to the backward Euler time-stepping
which corresponds to ‘upwinding in time’ and is only first-order accurate.

5.2 Classical TVD Methodology

Let us stay in one dimension for a while in order to review the basic concepts
and principles behind Harten’s TVD schemes [16],[17]. It is well known that
the numerical diffusion inherent to the upwind method is proportional to
∆x so that even this ‘optimal’ LED scheme is only first-order accurate. The
quality of the results can be dramatically improved by applying a nonlinear
antidiffusive correction F̂ (u) to the monotone operator L̂. In essence, the
final transport operator K̂∗(u) = L̂ + F̂ (u) is constructed by removing a
certain fraction of the artificial diffusion which was added to the high-order
discretization to suppress spurious oscillations. Specifically, we consider

F̂ (u) = −Φ(ri)D̂ ⇒ K̂∗(u) = K̂ + [1 − Φ(ri)]D̂, (29)

where the flux limiter Φ determines the magnitude of admissible antidiffusion
in an adaptive fashion. As a rule of thumb, the blending factor Φ(ri) should be
equal to zero in the vicinity of steep gradients and approach (or even exceed)
unity in regions where the solution is sufficiently smooth.

The smoothness sensor ri is typically defined to be the ratio of consecutive
gradients which is to be evaluated at the upwind node

ri =
ui − ui−1

ui+1 − ui
. (30)

Obviously, this quantity is negative at a local extremum (see Fig. 2), relatively
small for smooth data and large if the solution tends to change abruptly.
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i−1
u

i
u

i+1
u

i+1
x

i−1
x

i
x

Fig. 2. Three-point stencil in one dimension.

The global matrix assembly yields a conservative finite difference scheme

dui

dt
+

fi+1/2 − fi−1/2

∆x
= 0, (31)

where the numerical fluxes fi±1/2 correspond to a nonlinear combination of
first- and second-order approximations to the continuous flux function vu

fi+1/2 = vui +
v

2
Φ(ri)(ui+1 − ui). (32)

The resulting semi-discretized equations can be rewritten in the form

dui

dt
= ci−1/2(ui−1 − ui) + ci+1/2(ui+1 − ui), (33)

where the pair of (possibly nonlinear) coefficients ci±1/2 can be defined in
many different ways. In particular, the following representation is feasible

ci−1/2 =
v

2∆x

[

2 +
Φ(ri)

ri
− Φ(ri−1)

]

, ci+1/2 = 0. (34)

To satisfy the LED criterion and meet the requirements of Harten’s theorem
[16], the expression in the brackets must be nonnegative. A variety of flux
limiters have been proposed in the literature to enforce this condition. It was
shown by Jameson [19] that most of them can be interpreted and implemented
as limited average operators L(a, b) such that Φ(r) = L(1, r). These two-
parameter functions are characterized by a number of common properties:

P1. L(a, b) = L(b, a).

P2. L(ca, cb) = cL(a, b).

P3. L(a, a) = a.

P4. L(a, b) = 0 if ab ≤ 0.

In particular, the last one ensures that Φ(r) = 0 if r ≤ 0. Thus, the accuracy
of a TVD discretization inevitably degrades to the first order at local extrema.
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Another important implication is the symmetry of the flux limiter

Φ(r) = L(1, r) = rL(1/r, 1) = rΦ(1/r) (35)

which follows from the properties (P1) and (P2). By virtue of these relations,
the antidiffusive flux from node i+1 into node i is proportional to the limited
average of the slopes and has the same effect as a diffusive flux from node
i − 1 provided that the coefficient Φ(1/ri) is greater than zero:

Φ(ri)(ui+1 − ui) = L(ui+1 − ui, ui − ui−1) = Φ(1/ri)(ui − ui−1). (36)

In other words, the task of the limiter is to guarantee that the antidiffusive flux
can be expressed as a ‘diffusive’ one for which the corresponding off-diagonal
coefficient is nonnegative. This is sufficient to satisfy the LED constraint.

Note that the averaging operators L are applied not to the slope ratio ri

but to its nominator and denominator so that division by zero is ruled out.
Some of the standard TVD limiters written in this form are as follows [19]

minmod: L(a, b) = S(a, b) min{|a|, |b|}

Van Leer: L(a, b) = S(a, b)
2|a||b|
|a|+|b|

MC: L(a, b) = S(a, b) min

{

|a+b|
2 , 2|a|, 2|b|

}

superbee: L(a, b) = S(a, b) max{min{2|a|, |b|},min{|a|, 2|b|}}

where S(a, b) =
sign(a) + sign(b)

2
=







1 if a > 0 ∧ b > 0,
−1 if a < 0 ∧ b < 0,

0 otherwise.

The associated one-parameter limiter functions Φ yield correction factors lying
in the range [0, 2], whereby the integer values 0, 1, 2 correspond to the upwind,
central, and downwind approximation of the convective term, respectively.

5.3 Generalized TVD Formulation

Now let us proceed to algebraic flux correction in the multidimensional case.
Recall that we discretized the continuity equation in space by the Galerkin
method, performed mass lumping and transformed the high-order operator K
into a low-order operator L by elimination of negative off-diagonal coefficients.
This modification inevitably leads to a global loss of accuracy. According to
the Godunov theorem [14], a nonoscillatory high-resolution scheme must be
nonlinear even for a linear partial differential equation. On the other hand, the
majority of real-life CFD applications are governed by nonlinear conservation
laws to begin with, so that the computational overhead due to an iterative
adjustment of implicit artificial diffusion is not very significant.
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Following the algorithm presented for the finite difference TVD schemes,
we employ an antidiffusive correction F (u) to reduce the error incurred by
discrete upwinding in smooth regions. The modified transport operator K∗(u)
for a generalized TVD method exhibits the following structure (cf. Fig. 1)

K∗(u) = L + F (u) = K + D + F (u), (37)

where both D and F (u) possess the properties of discrete diffusion operators.
In a practical implementation, the contribution of the nonlinear antidiffu-

sive terms to the right-hand side of the final semi-discrete scheme

ML
du

dt
= K∗u (38)

is assembled edge-by-edge from internodal fluxes. Specifically, we have

(Fu)i =
∑

j 6=i

fa
ij such that fa

ji = −fa
ij , (39)

where the antidiffusive flux fa
ij from node j into its upwind (in the sense

of our orientation convention lji ≥ lij) neighbor i depends on the diffusion
coefficient dij for discrete upwinding and on the entry lji = max{kji, kji−kij}
of the low-order transport operator:

fa
ij := min{Φ(ri)dij , lji}(ui − uj). (40)

Furthermore, Φ is a standard one-parameter limiter applied to a suitable
smoothness indicator ri (to be specified below). By definition, the downwind
node j receives the flux fa

ji := −fa
ij of the same magnitude but with the

opposite sign so that mass conservation is guaranteed.
Let us derive a sufficient condition for the FEM-TVD scheme (38) to be

local extremum diminishing. If Φ(ri) = 0 or dij = 0, the antidiffusive flux fa
ij

vanishes and does not pose any hazard. Therefore, we restrict ourselves to
the nontrivial case fa

ij 6= 0 which implies that both Φ(ri) and dij are strictly
positive. Our objective is to prove the existence of a LED operator L∗ which is
equivalent to K∗ for the given solution u (see the last box in Fig. 1). Clearly,
the sensor ri cannot be chosen arbitrarily. The symmetry property (35) of the
limiter Φ makes it possible to represent the antidiffusive flux in the form

fa
ij = Φ(ri)aij(ui − uj) = Φ(1/ri)aij∆uij , (41)

where the (positive) antidiffusion coefficient aij and the upwind difference

∆uij are defined as follows

aij := min{dij , lji/Φ(ri)}, ∆uij := ri(ui − uj). (42)

For the numerical solution to be nonoscillatory, the antidiffusive fluxes must
behave as diffusive ones, cf. equation (36). The assumption dij > 0 implies
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that kij < 0 and lij = 0 for the edge
−→
ij which links an upwind node i and a

downwind node j. Therefore, the edge contributions to the two components
of the modified convective term K∗u in (38) can be written as

k∗
ij(uj − ui) = fa

ij , k∗
ji(ui − uj) = lji(ui − uj) − fa

ij . (43)

The increment to node j is obviously of diffusive nature and satisfies the LED
criterion, since the coefficient k∗

ji = lji − Φ(ri)aij is nonnegative by construc-
tion (see the definition of aij). Furthermore, it follows from relation (41) that
the negative off-diagonal entry k∗

ij = −Φ(ri)aij of the nonlinear operator K∗

is acceptable provided ∆uij admits the following representation

∆uij =
∑

k 6=i

σik(uk − ui), where σik ≥ 0, ∀k 6= i. (44)

In other words, the limited antidiffusive flux fa
ij from node j into node i should

be interpreted as a sum of diffusive fluxes contributed by other neighbors. It
remains to devise a multidimensional smoothness indicator ri and check if the
corresponding upwind difference ∆uij satisfies the above condition.

5.4 Slope-Limiter FEM-TVD Algorithm

For classical finite difference TVD schemes, ri represents the slope ratio (30)
at the upwind node, so that ∆uij = uk − ui, where k = i − 1 is the second
neighbor of node i. However, this natural definition of ri is no longer possible in
multidimensions, whereby each node interacts with more than two neighbors.
A geometric approach commonly employed in the literature is to reconstruct a
local one-dimensional stencil by insertion of equidistant dummy nodes on the
continuation of each mesh edge [1],[19],[38],[39]. The difference ∆uij is defined
as before using the interpolated or extrapolated solution value at the dummy
node k adjacent to the upwind node i. The construction of a three-point stencil
for an unstructured triangular mesh is illustrated in Fig. 3.

v

k

j

i

kT iT

Fig. 3. Three-point stencil in two dimensions.
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An evaluation of various techniques for the recovery of uk was performed
by Lyra [38]. His comparative study covers the following algorithms:

• interpolation/extrapolation using the upwind triangle Ti containing node i,

• interpolation using the actual triangle Tk containing the dummy node k,

• extrapolation using a least squares reconstruction for the nodal gradient.

Numerical experiments revealed that the solutions depend strongly on the
employed strategy. The first option was proved to provide the LED property
but failed to produce nonoscillatory results for some aerodynamic applica-
tions. The second procedure based on the actual triangle was favored due
to the enhanced robustness as compared to the use of the adjacent triangle.
However, the resulting discretization is no longer local extremum diminishing
and neither is the gradient reconstruction method which corresponds to

∆uij = (xi − xj) · ∇hui, (45)

where ∇hui stands for a continuous approximation to the solution gradient
at the upwind node i recovered by means of a consistent L2-projection:

∇hui =
1

mi

∑

k 6=i

cik(uk − ui). (46)

The involved coefficients cik are defined in (6) for the standard Galerkin
method. This approach is relatively simple to implement and more efficient
than the linear interpolation techniques. However, Lyra [38] reported its per-
formance to be quite poor and emphasized the need for the development of a
more robust algorithm for the reconstruction of nodal gradients.

Let us explain why the above choice of the upwind difference may prove
unsatisfactory. If any of the scalar products cik · (xi − xj) is negative, then
the formula for ∆uij is not of the form (44), so the numerical scheme may
fail to satisfy the LED criterion. To rectify this, one can employ a monotone
projection operator constructed by resorting to discrete upwinding. Note that
cki = −cik for internal nodes, so that the elimination of negative off-diagonal
coefficients leads to the following LED-type reconstruction procedure [27]

∆uij =
2

mi

∑

k 6=i

max{0, cik · (xi − xj)}(uk − ui). (47)

In one dimension, this kind of extrapolation corresponds to using the upwind
gradient and yields ∆uij = uk − ui, where k is the upwind neighbor of i.

By virtue of (42), the upwind difference ∆uij can be converted into the
smoothness sensor ri which provides an estimate of the gradient jump along
the edge

−→
ij . Hence, this geometric approach to the design of nonlinear LED
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schemes will be referred to as the slope-limiter FEM-TVD algorithm. It may
be equipped with any standard limiter Φ. At the same time, the numerical
results are rather sensitive to the alignment of the three-point stencil and to
the algorithm employed to recover the solution values at the dummy nodes.
Moreover, such methods are computationally expensive and may experience
severe convergence problems for steady-state applications. This shortcoming
was also noticed by Lyra [38] who explained it by the lack of background
dissipation and indicated that the convergence rates can be improved to some
extent by ‘freezing’ the antidiffusive terms as the solution approaches the
steady state. The main reason for the insufficient robustness seems to be the
unidirectional nature of stencil reconstruction and the independent limiting
of antidiffusive fluxes associated with the same upwind node.

5.5 Flux-Limiter FEM-TVD Algorithm

Let us abandon the stencil reconstruction technique and design the sensor ri

in a different way. The one-dimensional convection equation (23) discretized in
space by the lumped-mass Galerkin FEM or by the central difference method
can be written in the form (33) where the two coefficients are given by

ci−1/2 =
v

2∆x
> 0, ci+1/2 = −

v

2∆x
< 0. (48)

Remarkably, the ratio of the upwind and downwind contributions to node i

ri =
ci−1/2(ui−1 − ui)

ci+1/2(ui+1 − ui)
(49)

reduces to the slope ratio ri defined in (30) as long as the velocity v is constant.
Moreover, this interpretation leads to a conceptually different limiting strategy
which guarantees the TVD property for variable velocity fields and carries
over to multidimensions. As we are about to see, the new algorithm is akin
to that proposed by Zalesak [54] in the framework of flux-corrected transport
methods, so we adopt his notation to reflect this relationship.

In the multidimensional case, the incompressible part of the original con-
vective term Ku can be decomposed into a sum of edge contributions with
negative coefficients and a sum of those with positive coefficients

Pi =
∑

j 6=i

min{0, kij}(uj − ui), Qi =
∑

j 6=i

max{0, kij}(uj − ui) (50)

which are due to mass transfer from the downstream and upstream directions,
respectively. The sum Pi is composed from the raw antidiffusive fluxes which
offset the error incurred by elimination of negative matrix entries in the course
of discrete upwinding. They are responsible for the formation of spurious
wiggles and must be securely limited. At the same time, the constituents of
the sum Qi are harmless since they resemble diffusive fluxes and do satisfy
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the LED criterion. Thus, it is natural to require that the net antidiffusive flux
into node i be a limited average of the original increments Pi and Qi.

Due to the property (P4) of TVD limiters, it is worthwhile to distinguish
between the positive and negative edge contributions to both sums

Pi = P+
i + P−

i , P±
i =

∑

j 6=i

min{0, kij}
min
max

{0, uj − ui}, (51)

Qi = Q+
i + Q−

i , Q±
i =

∑

j 6=i

max{0, kij}
max
min

{0, uj − ui} (52)

and limit the positive and negative antidiffusive fluxes separately. To this end,
we pick a standard limiter Φ and compute the nodal correction factors

R±
i = Φ(Q±

i /P±
i ) (53)

which determine the percentage of P±
i that can be retained without violating

the LED constraint for row i of the modified transport operator K∗. Clearly,
R±

i does not need to be evaluated if the raw antidiffusion P±
i vanishes.

For each edge
−→
ij of the sparsity graph, the antidiffusive flux fa

ij from its
downwind node j into the upwind node i is constructed as follows:

fa
ij :=

{

min{R+
i dij , lji}(ui − uj) if ui ≥ uj ,

min{R−
i dij , lji}(ui − uj) if ui < uj ,

fa
ji := −fa

ij . (54)

Importantly, the same correction factor R±
i is applied to all positive/negative

antidiffusive fluxes which represent the interactions of node i with its neigh-
bors located downstream in the sense of our orientation convention.

The node-oriented limiting strategy makes it possible to control the com-
bined effect of antidiffusive fluxes acting in concert rather than merely the
variation of the solution along each edge. Moreover, the new limiter extracts
all information from the original matrix K and does not need the coordinates
of nodes or other geometric details. The equivalence of (40) and (54) reveals
that the underlying smoothness indicator ri is implicitly defined by

ri =

{

Q+
i /P+

i if ui ≥ uj ,

Q−
i /P−

i if ui < uj .
(55)

It is easy to verify that ∆uij = ri(ui −uj) satisfies condition (44) since all
coefficients in the sum of upwind contributions Q±

i are nonnegative and

∆uij = σijQ
±
i , where σij =

max
min

{0, ui − uj}/P±
i ≥ 0. (56)

Thus, our nonlinear semi-discrete scheme (38) proves local extremum dimin-
ishing if the antidiffusive fluxes are computed from (54). In the sequel, we
will call the new algorithm the flux-limiter FEM-TVD method to distinguish
it from the one described in the preceding section. In one dimension, both
generalizations of TVD schemes reduce to their finite difference prototype.
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5.6 Iterative Defect Correction

The algorithm presented so far can be classified as a method of lines which
starts with an approximation of spatial derivatives and yields a system of
coupled ordinary differential equations for the time-dependent nodal values ui.
In principle, the discretization of system (38) in time can be performed by any
numerical method for solution of initial value problems. First- or second-order
accuracy is sufficient for our purposes, so we can use the standard θ-scheme.
Furthermore, we concentrate on implicit time-stepping methods (0 < θ ≤ 1)
because the implementation of the fully explicit one is straightforward. As a
result, we end up with a nonlinear algebraic system of the form

ML
un+1 − un

∆t
= θK∗(un+1)un+1 + (1 − θ)K∗(un)un (57)

which must be solved iteratively. According to the positivity constraint (18),
the time step ∆t is subject to a CFL-like condition unless θ = 1.

Successive approximations to the end-of-step solution un+1 can be com-
puted e. g. by the fixed-point defect correction scheme [52]

u(m+1) = u(m) + A−1r(m), m = 0, 1, 2, . . . (58)

where r(m) denotes the residual for the m-th cycle and A is a ‘preconditioner’
which should be easy to invert. The iteration process continues until the norm
of the defect or that of the relative changes becomes small enough.

In a practical implementation, the ‘inversion’ of A is also performed by a
suitable iterative method for solving the linear subproblem

A∆u(m+1) = r(m), m = 0, 1, 2, . . . (59)

After a certain number of inner iterations, the solution increment ∆u(m+1) is
applied to the last iterate, whereby un provides a reasonable initial guess

u(m+1) = u(m) + ∆u(m+1), u(0) = un. (60)

Incidentally, the auxiliary problem (59) does not have to be solved very accu-
rately at each outer iteration. By construction, the evolution operator

A = ML − θ∆tL, L = K + D (61)

for the underlying linear LED scheme (21) enjoys the M-matrix property and
constitutes an excellent preconditioner. Furthermore, the diagonal dominance
of A can be enhanced by means of an implicit underrelaxation [12]. In fact,
iterative defect correction preconditioned by the monotone upwind operator
is frequently used to enhance the robustness of CFD solvers. This practice is
to be recommended even in the linear case, since an iterative method may fail
to converge if applied directly to the ill-conditioned matrix originating from
a high-order discretization of the troublesome convective terms.
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The defect vector and the constant right-hand side are given by

r(m) = bn − [A − θ∆tF (u(m))]u(m), (62)

bn = MLun + (1 − θ)∆t[L + F (un)]un. (63)

Both expressions consist of a low-order contribution augmented by limited
antidiffusion of the form (39). The antidiffusive fluxes fa

ij are evaluated edge-
by-edge at the corresponding time level and inserted into the global vectors.
If they are omitted, we recover the nonoscillatory linear scheme (21) which
is overly diffusive. The task of the flux limiter is to determine how much
artificial diffusion can be safely removed without violating the LED criterion.
We remark that our FEM-TVD algorithm is directly applicable to steady-
state problems as well as to time-dependent equations written as stationary
boundary value problems in the space-time domain (see below).

5.7 Summary of the FEM-TVD Algorithm

The multidimensional flux limiter of TVD type is easy to implement in a finite
element code using the conventional or the edge-based data structure. In fact,
the required modifications are limited to the matrix assembly routine which
is to be called repeatedly in the outer defect correction loop. Since the origin
of the discrete transport operator K is immaterial, finite difference and finite
volume discretizations of the form (5) are also admissible. The sequence of
‘postprocessing’ steps to be performed can be summarized as follows:

In a loop over edges:

1. Retrieve the entries kij and kji of the high-order transport operator.

2. Determine the artificial diffusion coefficient dij from equation (20).

3. Update the four entries of the preconditioner A as required by (22).

4. Adopt the edge orientation
−→
ij such that node i is located upwind.

5. Store the order of nodes as well as dij and lji for future reference.

In a loop over nodes:

6. Calculate the ratio of upstream/downstream contributions Q±
i and P±

i .

7. Apply a TVD limiter Φ to obtain the nodal correction factors R±
i .

In a loop over edges:

8. Compute the diffusive flux fd
ij = dij(uj − ui) due to discrete upwinding.

9. Check the sign of ui −uj and evaluate the antidiffusive flux fa
ij from (54).

10. Insert the corrected internodal flux fij = fd
ij + fa

ij into the defect vector.
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The performance of the above algorithm will be illustrated by the numerical
examples at the end of this chapter. The slope-limiter version can be coded
in a similar way using the upwind difference (47) to determine the slope ratio
ri = ∆uij/(ui − uj) and the corresponding correction factors Φ(ri). Note
that no loop over nodes is needed in this case. Indeed, the recovery of ∆uij

via stencil reconstruction is performed independently for each edge. As an
alarming consequence, the contributions of other edges are not taken into
account, so that the total antidiffusive flux cannot be properly controlled.
However, on regular grids the numerical results are typically quite good [27].

6 Algebraic Flux Correction of FCT Type

In contrast to the algebraic TVD methods presented above, FCT algorithms
of this kind are designed at the fully discrete level. At the same time, the basic
principles of algebraic flux correction remain unchanged. The matrix manipu-
lations to be performed (see Fig. 4) are very similar to those outlined in Fig. 1.
In particular, the nonoscillatory low-order scheme is constructed by resorting
to discrete upwinding and the accuracy is improved by adding nonlinear anti-
diffusion f(un+1, un) controlled by the flux limiter. Criterion (16) is invoked
to ensure that the positivity of un is inherited by the auxiliary solution ũ to
an explicit subproblem and carries over to un+1 [22],[23],[29].

1. Linear high-order scheme (e.g. Galerkin FEM)

MC

un+1 − un

∆t
= θKu

n+1 + (1 − θ)Ku
n
, ∃ j 6= i : kij < 0

2. Linear low-order scheme L = K + D

MC

un+1 − un

∆t
= θLu

n+1 + (1 − θ)Lu
n
, lij ≥ 0, ∀j 6= i

3. Nonlinear high-resolution scheme fi =
∑

j 6=i
fa

ij

ML

un+1 − un

∆t
= θLu

n+1 + (1 − θ)Lu
n + f(un+1

, u
n)

Equivalent representation Aun+1 = B(ũ)ũ, where

A = ML − θ∆tL is an M-matrix and bij ≥ 0, ∀i, j

Fig. 4. Roadmap of AFC-FCT manipulations.
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6.1 High- and Low-Order Schemes

The crux of the generalized FCT methodology is to switch between the un-
derlying high- and low-order discretizations in an adaptive fashion so as to
satisfy the algebraic positivity constraint. Consider the difference between the
nodal ODE systems (5) and (21) which can be formally written as

P (u) = (ML − MC)
du

dt
− Du, (64)

where the matrices MC − ML and D = L − K represent discrete diffusion
operators as defined at the beginning of this chapter. Therefore, the raw anti-
diffusion P (u) can be decomposed into a sum of internodal fluxes

Pi =
∑

j 6=i

fij , fij = −

[

mij
d

dt
+ dij

]

(uj − ui), fji = −fij . (65)

Note that the semi-discrete flux fij contains a time derivative multiplied by
an entry of the consistent mass matrix MC . For stationary problems, the
increment Pi reduces to the sum of downwind edge contributions (50) which
are associated with the negative off-diagonal coefficients of the operator K.

After the discretization in time by the θ-scheme, the algebraic systems for
the high- and low-order methods are related by the formula [23]

ML
un+1 − un

∆t
= θLun+1 + (1 − θ)Lun + P (un+1, un). (66)

The last term in the right-hand side is a fully discrete counterpart of P (u). It
represents the amount of compensating antidiffusion that needs to be added
to the upwind-like low-order scheme to recover the original high-order one
(cf. Fig. 4). It is worth mentioning that the discrete operators K, D and
L = K + D may depend on the solution if the velocity field does. To simplify
notation, we do not indicate this dependence explicitly.

Iterative defect correction makes it possible to resolve the nonlinearities
inherent to the governing equation and/or to the discretization procedure into
a sequence of well-behaved linear systems of the form (59). The corresponding
defect vector for the m−th outer iteration is given by

r(m) = b(m+1) − Au(m). (67)

The preconditioner A is defined in (61) whereas the load vector

b(m+1) = bn + P (u(m), un) (68)

is composed from the right-hand side for the low-order scheme

bn = [ML + (1 − θ)∆tL]un (69)
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and the sum of fully discretized raw antidiffusive fluxes such that

P
(m)
i =

∑

j 6=i

f
(m)
ij , f

(m)
ji = −f

(m)
ij . (70)

It follows from (65) that the flux f
(m)
ij from node j into node i reads

f
(m)
ij = −mij [∆u

(m)
ij − ∆un

ij ] − θ∆td
(m)
ij ∆u

(m)
ij − (1 − θ)∆tdn

ij∆un
ij , (71)

where the explicit and implicit antidiffusion is proportional to

∆un
ij = un

j − un
i and ∆u

(m)
ij = u

(m)
j − u

(m)
i , (72)

respectively. The implicit part must be updated in each defect correction cycle
while the explicit one is to be computed just once per time step.

Substitution of expressions (61) and (67) into (58) reveals that successive
approximations to the high-order solution can be computed as follows

Au(m+1) = b(m+1), m = 0, 1, 2, . . . (73)

By construction, the raw antidiffusive fluxes offset not only the error induced
by discrete upwinding but also the numerical diffusion due to mass lumping
that could not be removed in the framework of the FEM-TVD methodology.
Therefore, FEM-FCT schemes are typically more accurate for strongly time-
dependent problems which call for the use of the consistent mass matrix MC .
At the same time, the use of the lumped mass matrix ML is appropriate for
less dynamic ones or those being marched to a steady state. In this case, the
first term in the right-hand side of (71) should be omitted.

An extra stabilization of convective terms appears to be necessary for fully
explicit schemes [23]. Stabilized finite element methods are typically based on
some kind of streamline diffusion which can be added explicitly, incorporated
into the test function or emulated by high-order time derivatives in the Taylor
series expansion [7],[8],[10]. Recall that streamline diffusion operators are of
the form (8)-(9) so that decomposition (11) is feasible. We refer to Löhner et al.

[36],[37],[34] for a presentation of the explicit FEM-FCT algorithm and restrict
ourselves to implicit Galerkin schemes. They enjoy unconditional stability
for θ ≥ 0.5 and constitute viable high-order methods as long as spurious
undershoots and overshoots are precluded by a built-in flux limiter.

6.2 Basic FEM-FCT Algorithm

Due to the fact that the preconditioner A was designed to be an M-matrix,
the left-hand side of (73) already satisfies the algebraic constraint (16) and so
does the right-hand side if the antidiffusive correction P (un+1, un) is omitted.
Clearly, it is desirable to retain as much antidiffusion as possible without
generating new extrema and accentuating already existing ones. To this end,
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the raw antidiffusive fluxes should be multiplied by appropriate correction
factors before they are inserted into the right-hand side. This adjustment
should guarantee that the discrete scheme remains positivity-preserving.

A generalized FEM-FCT formulation based on algebraic flux correction
was introduced in [22],[23],[25]. The limited antidiffusive fluxes belong into
the right-hand side of system (73) which is to be redefined as follows

b
(m+1)
i = bn

i +
∑

j 6=i

α
(m)
ij f

(m)
ij , 0 ≤ α

(m)
ij ≤ 1. (74)

It is easy to verify that the usual FCT algorithm is recovered for θ = 0. Let us

leave the solution-dependent correction factors α
(m)
ij unspecified for the time

being but draw attention to the fact that they are bounded by 1 whereas
flux limiters of TVD type are allowed to accept more than 100% of the raw
antidiffusive flux. Another notable distinction between the two techniques is
that FCT limiters are invariant to the edge orientation. Hence, it is no longer
necessary to check which of the two nodes is located upwind (cf. section 6).

As already mentioned above, the antidiffusive fluxes should be limited so
as to enforce the AFC constraint (16) making use of an intermediate solution
which is supposed to be positivity-preserving. Consider the subproblem

MLũn = bn (75)

such that un corresponds to the explicit low-order solution at the instant
tn+1−θ and reduces to ũn = un in the case θ = 1 (backward Euler method).
Other time-stepping schemes preserve the positivity of un provided that

∆t ≤
1

1 − θ
min

i
{−mi/lii| lii < 0} , 0 ≤ θ < 1. (76)

This readily computable upper bound follows from our CFL-like condition (18)
and can serve as the threshold parameter for an adaptive time step control.
We remark that the intermediate solution ũn is independent of the iteration
counter m and does not change in the course of defect correction.

For the right-hand side b(m+1) to possess the desired representation, the
flux limiter should guarantee the existence of a matrix B = {bij} such that

b(m+1) = B(ũn)ũn and bij ≥ 0, ∀i, j. (77)

Under this condition, the resulting scheme proves positivity-preserving since
the linear system (73) for each solution update can be cast in the form (16)
with ũn in lieu of un. It goes without saying that the matrix B(ũn) does not
need to be constructed explicitly. We will see shortly that a new interpretation
of Zalesak’s limiter provides the necessary mechanism for the computation of
‘optimal’ correction factors for our algebraic FCT schemes.
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6.3 Iterative FEM-FCT Algorithm

The main advantage of implicit FEM-FCT schemes is their ability to cope
with large time steps. However, the artificial diffusion introduced by discrete
upwinding is proportional to the time step, while the amount of acceptable
antidiffusion depends solely on the local extrema of the auxiliary solution.
Hence, a smaller percentage of the raw antidiffusive flux survives the limiting
step as the local Courant number increases. To circumvent this deficiency of
our basic FEM-FCT algorithm, we introduce an iterative limiting strategy
which prevents the numerical solution from becoming increasingly diffusive at
large time steps. A somewhat similar technique was developed by Schär and
Smolarkiewicz [47] in the finite difference context but their methodology is
inherently explicit so that iterative flux correction does not pay off.

The iterative FEM-FCT procedure [29] differs from the algorithm pre-
sented above in that the previously accepted antidiffusion is taken into ac-
count and only the rejected portion of the antidiffusive flux needs to be dealt
with at subsequent defect correction steps. To this end, the limited antidiffu-
sion is incorporated into the variable auxiliary solution ũ(m) which must be
updated along with the right-hand side of (73) at each outer iteration

MLũ(m) = b(m), b(0) = bn. (78)

Recall that ML is a diagonal matrix so that no linear system has to be solved
and the overhead cost associated with the computation of ũ(m) is negligible.

Furthermore, the correction factors α
(m)
ij are based on the local extrema

of ũ(m) rather than ũn and applied to the difference between the raw antidif-

fusive flux f
(m)
ij and the cumulative effect of previous corrections g

(m)
ij which

is initialized by zero at the beginning of a new time step

∆f
(m)
ij = f

(m)
ij − g

(m)
ij , g

(0)
ij = 0. (79)

The limited flux difference is added to the sum of its predecessors

g
(m+1)
ij = g

(m)
ij + α

(m)
ij ∆f

(m)
ij (80)

and inserted into the right-hand side of the linear system to be solved

b
(m+1)
i = b

(m)
i +

∑

j 6=i

α
(m)
ij ∆f

(m)
ij . (81)

At the first outer iteration, Zalesak’s limiter is applied to ∆f
(0)
ij = f

(0)
ij and

ũ(0) = ũn so that the load vector b(1) is identical to that defined in (74).
As the iteration process continues, more and more antidiffusion can be built

into the auxiliary solution ũ(m) while the remainder ∆f
(m)
ij gradually shrinks.

This simplifies the task of the flux limiter and enables it to remove excessive
artificial diffusion step-by-step in a positivity-preserving manner.
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It is easy to verify by successive substitution that the load vector b(m+1)

consists of the low-order contribution bn and the limited antidiffusion accu-
mulated in the course of iterative defect/flux correction:

b
(m+1)
i = bn

i +
∑

j 6=i

g
(m+1)
ij , g

(m+1)
ij =

m
∑

k=0

α
(k)
ij ∆f

(k)
ij . (82)

Moreover, the right-hand side for the high-order Galerkin discretization (68)

is recovered if no limiting of ∆f
(m)
ij is performed in the m−th iteration

α
(m)
ij ≡ 1 ⇒ b

(m+1)
i = bn

i +
∑

j 6=i

(g
(m)
ij + ∆f

(m)
ij ) = bn

i +
∑

j 6=i

f
(m)
ij .

The task of the flux limiter it to select the correction factors α
(m)
ij so as to

satisfy an analog of (77) and make each solution update ũ(m+1) = M−1
L b(m+1)

positivity-preserving. In the fully explicit case (forward Euler time-stepping,
lumped mass matrix) just one iteration is necessary so that un+1 = ũ(1) is the
final solution. For our implicit FEM-FCT schemes, the M-matrix property of
the preconditioner A ensures that u(m+1) ≥ 0 as long as ũ(m+1) ≥ 0.

6.4 Zalesak’s Limiter

Let us describe Zalesak’s algorithm for the computation of correction factors
and check if the right-hand side satisfies the following positivity constraint:

bi = miũi +
∑

j 6=i

αijfij ≥ 0 if ũj ≥ 0, ∀j. (83)

Note that both (74) and (81) are of this form, so there is no need to distinguish
between the basic and iterative limiting strategy in this section.

Varying the correction factors αij between zero and unity, one can blend
the high-order method with the concomitant low-order one. The latter should
be used in the vicinity of steep gradients where spurious oscillations are likely
to arise. The objective is to control the interplay of antidiffusive fluxes so that
they cannot conspire to create or enhance a local extremum [54]. Moreover, all
antidiffusive fluxes directed down the gradient of ũ should be canceled from
the outset to prevent the formation of plateaus amidst a steep front

fij := 0 if fij(ũi − ũj) ≤ 0. (84)

In other words, the antidiffusive flux is not allowed to flatten the auxiliary
solution. This optional prelimiting step can be traced back to the SHASTA
scheme of Boris and Book who designed their limiter so as to reverse (rather
than cancel) such ‘defective’ fluxes [6]. Prelimiting of the form (84) was intro-
duced by Zalesak [54] in relations (14) and (14’) of his paper. At the same time,
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he argued that the effect of the above amendment is marginal and cosmetic in
nature since the vast majority of antidiffusive fluxes entail a steepening of the
gradient. Two decades later, the virtues of prelimiting were rediscovered by
DeVore [9] who explained its ramifications and demonstrated that it may lead
to an appreciable improvement of simulation results. If this step is missing,
the FCT limiter appears to be positivity- but not monotonicity-preserving so
that solutions may be corrupted by numerical ripples of significant amplitude.
This fact was also confirmed by our own numerical experiments [23]. Hence,
it is advisable to prelimit the fluxes prior to the computation of αij .

In the worst case, all antidiffusive fluxes into node i have the same sign.
Therefore, it is worthwhile to split the increment Pi as defined in (70) into a
sum of positive contributions and a sum of negative ones, cf. (51)

Pi = P+
i + P−

i , P±
i =

∑

j 6=i

max
min

{0, fij}. (85)

The maximum/minimum admissible increment depends on the solution values
at the neighboring nodes that share an element/edge with node i

Q±
i =

max
min

∆u±
ij , where ∆u±

ij =
max
min

{0, ũj − ũi}. (86)

This corresponds to the following upper/lower bounds for the nodal value

ũmax
i = ũi + Q+

i , ũmin
i = ũi + Q−

i .

In order to prevent the formation of a spurious overshoot/undershoot, the
positive/negative antidiffusive flux fij should be multiplied by

R±
i =

{

min{1,miQ
±
i /P±

i } if P±
i 6= 0,

1 if P±
i = 0.

(87)

In our experience, it makes sense to set R±
i := 1 at the inlet, where the Dirich-

let boundary conditions override the effect of any antidiffusive correction. The
same adjustment can/should be performed at outflow boundaries [29],[41].

Recall that a positive flux fij into node i is always balanced by a negative
flux fji = −fij into node j and vice versa. Hence, one should check the sign
of the flux and apply the minimum of the nodal correction factors

αij =

{

min{R+
i , R−

j } if fij ≥ 0,

min{R+
j , R−

i } if fij < 0,
αji = αij . (88)

This choice of αij is safe enough to guarantee that ũmin
i ≤ bi/mi ≤ ũmax

i

so that no enhancement of local extrema takes place. Remarkably, the above
algorithm is independent of the underlying discretization and can be imple-
mented as a ‘black-box’ routine which computes the correction factors for a
given auxiliary solution ũ and an array of raw antidiffusive fluxes fij .
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It remains to prove that the right-hand side b satisfies (83) for a nontrivial
parameter constellation such that the antidiffusive correction to node i is
nonvanishing. Let k be the number of a neighboring node such that [22],[23]

bi = miũi + ciQi = (mi − ci)ũi + ciũk, (89)

where the auxiliary quantities ci and Qi are defined as follows

ci =

∑

j 6=i αijfij

Qi
, Qi =

{

Q+
i if

∑

j 6=i αijfij > 0,

Q−
i if

∑

j 6=i αijfij < 0.
(90)

Note that division by zero is ruled out since R±
i = 0 and all positive/negative

antidiffusive fluxes into node i are canceled completely in this case:

fij := 0 if (Q+
i = 0 ∧ fij > 0) ∨ (Q−

i = 0 ∧ fij < 0).

By definition, the coefficient ci is nonnegative and it is easy to verify that the
following estimate holds by virtue of relations (85)–(88)

miQ
−
i ≤ miR

−
i P−

i ≤
∑

j 6=i

αijfij ≤ miR
+
i P+

i ≤ miQ
+
i . (91)

Thus, the limited antidiffusive fluxes satisfy the double inequality mi ≥ ci ≥ 0
and it follows from (89) that bi is nonnegative for ũi ≥ 0 and ũk ≥ 0. Moreover,
the positivity of both coefficients in this representation of the right-hand side
proves the existence of the matrix B(ũ) in the last box of Fig. 4.

6.5 Clipping and Terracing

Like any other numerical method, the FCT algorithm involves a certain degree
of empiricism in the reconstruction of data so that the approximate solutions
may exhibit various artefacts such as clipping and terracing [43]. The former
phenomenon refers to a smearing of sharp peaks in the convected profile due
to the fact that they cannot be properly resolved on the given mesh and their
resurrection is prohibited by the flux limiter. Zalesak [54] managed to alleviate
peak clipping by using the old solution un along with ũ in the estimation
of the solution bounds. However, this practice is not to be recommended if
local extrema decay with time due to physical effects such as compression,
expansion and sources/sinks. In this case, the use of information from the
previous time step may result in an undershoot/overshoot [23],[25],[43].

Terracing manifests itself in a distortion of smooth profiles and represents
‘an integrated, nonlinear effect of residual phase errors’ [43] or, loosely speak-
ing, ‘the ghosts of departed ripples’ [5]. In particular, this problem frequently
occurs at outflow boundaries as illustrated in Fig. 5 (left) for the 1D con-
vection equation (23) with v = 1 and initial data u0 = x in Ω = [0, 1].
The linear function, for which flux correction is actually redundant and the
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standard Galerkin method would produce excellent results, degenerates into
a broken line. The alternating steepening/flattening of the gradient leads to
a formation of spurious plateaus. This indicates that FCT algorithms are not
linearity-preserving and introduce too much antidiffusion in some cases.

Some preliminary speculations regarding the cause and cure of terracing at
inflow and outflow boundaries can be found in [23],[29]. In particular, it turns
out that a boundary value ũi can be misinterpreted as a local extremum [41].
Indeed, it is only compared to the solution values at the neighboring nodes
and no information about the solution behavior beyond the (artificial) open
boundary is available. The erroneous cancellation of antidiffusive fluxes at
the inlet/outlet entails a redistribution of mass in the interior of the domain
and eventually leads to the formation of terraces. To illustrate this effect, a
heuristic lever model was introduced in [41]. Let the piecewise-linear solution
be represented by levers of variable length hinged at their midpoints, which
correspond to the element mean values, and connected continuously with one
another. Pulling down the rightmost lever results in a shearing force which
affects the slopes of all components as shown in Fig. 5 (right).

Terracing at the outlet

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
0.9
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0.99

1

Lever model

Fig. 5. Pathological behavior of FCT.

Interestingly enough, the ripples disappear if we set R±
i := 1 for nodes

belonging to the inflow and outflow boundaries (see above). At the inlet, this
adjustment is admissible since the boundary values of the solution are fixed.
At the outlet, it amounts to limiting the antidiffusive flux using the correc-
tion factor for the upwind node as in the case of TVD methods which are
largely immune to terracing. The synchronization of nodal correction factors
in (88) makes the FCT algorithm invariant to the flow direction and, therefore,
vulnerable to incorrect upper/lower bounds for the node located downstream.
Hence, the use of an upwind-biased limiting strategy is preferable in the vicin-
ity of open boundaries and local extrema, where terracing is likely to occur
as an aftermath of peak clipping. Due to conservation, the clipped mass must
be distributed between the neighboring nodes and may easily go astray.
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Unfortunately, a complete analysis of clipping and terracing is not available
to date and it is not quite clear how to combat these artefacts. An important
prerequisite seems to be the use of background diffusion [35]. It is hoped
that a further investigation of Zalesak’s limiter in the framework of algebraic
flux correction and a detailed comparison of FCT with other high-resolution
schemes will make it possible to find an effective remedy.

6.6 Summary of the FEM-FCT Algorithm

The new FEM-FCT methodology represents a generalization of the explicit
algorithm proposed by Löhner et al. [36]. Obviously, it has a lot in common
with the FEM-TVD approach introduced in the first part of this chapter.
However, the construction and limiting of antidiffusive fluxes is performed
after the discretization in time so that the implementation is slightly different.
The basic steps and the corresponding parts of the code are as follows:

In the matrix assembly routine:

1. Retrieve the entries kij and kji of the high-order transport operator.

2. Determine the artificial diffusion coefficient dij from equation (20).

3. Update the four entries of the preconditioner A as required by (22).

4. Substitute the explicit diffusive flux into bn (at the first iteration).

5. Evaluate/increment the raw antidiffusive flux given by (71) or (79).

In the flux correction module:

6. Initialize/update the auxiliary solution ũ according to (75) or (78).

7. Use Zalesak’s limiter to compute the correction factors from (88).

8. Insert the limited antidiffusive fluxes into (74) or (80)–(81).

In the defect correction loop:

9. Solve the linear system (73) or (59)–(60) with r(m) defined in (67).

10. Check convergence and proceed to the next iteration or time step.

As far as the time discretization is concerned, the second-order accurate
Crank-Nicolson scheme is to be recommended for transient problems. In this
case, the time step must remain relatively small to capture the evolution
details and satisfy condition (76). Hence, the basic FEM-FCT algorithm is al-
most as accurate as the iterative one and certainly more efficient. On the other
hand, the solution of steady-state problems by pseudo-time-stepping calls for
the fully implicit treatment. The backward Euler method, which is only first-
order accurate, is also appropriate if a nonuniform distribution of Courant
numbers (e.g. due to mesh refinement or a strongly varying velocity field)
makes the CFL condition too restrictive. Fully implicit FEM-FCT schemes
are unconditionally positivity-preserving and the iterative formulation should
be preferred to prevent loss of accuracy at large time steps.
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7 Numerical Examples

The examples that follow illustrate the influence of the time discretization
and of the flux limiter on the numerical results. An implicit time-stepping
is employed in all cases. The performance of the flux-corrected Lax-Wendroff
method (explicit, second-order accurate) was studied in [23], where many addi-
tional examples for the basic FEM-FCT algorithm can be found. Furthermore,
only linear (triangular) and bilinear (quadrilateral) finite elements are consid-
ered in this chapter. Three-dimensional simulation results obtained using a
(discontinuous) rotated bilinear approximation are presented in [28],[53].

The convergence of one-dimensional FCT and TVD schemes was investi-
gated in [41] and [50], respectively. In particular, the effective order of accu-
racy p was estimated from the difference between the errors for the solutions
computed on two sufficiently fine meshes. It can be shown that [12],[33]

p ≈ log2(Eh/E2h),

where Eh is the norm of the error on a uniform mesh with spacing h between
the grid points. As reported in [41], the actual convergence rates depend on
the discretization procedure and on smoothness of the exact solution. For
details, the interested reader is referred to the original publications.

7.1 Solid Body Rotation

Rotation of solid bodies is frequently used to evaluate and compare numerical
schemes for convection-dominated problems. A classical example is Zalesak’s
slotted cylinder test [54] which is intended to assess the ability of the method
to cope with steep gradients and reproduce small-scale features. In order to
examine the resolution of both smooth and discontinuous profiles, we consider
an extended version of this 2D benchmark as proposed by LeVeque [33].

Let a slotted cylinder, a sharp cone and a smooth hump be exposed to the
nonuniform velocity field v = (0.5−y, x−0.5) and undergo a counterclockwise
rotation about the center of the unit square Ω = (0, 1) × (0, 1). The initial
configuration for this test is depicted in Fig. 6. Each solid body lies within
a circle of radius r0 = 0.15 centered at a point with Cartesian coordinates
(x0, y0). In the rest of the domain, the solution is initialized by zero.

The shapes of the three bodies can be expressed in terms of the normalized
distance function for the respective reference point (x0, y0)

r(x, y) =
1

r0

√

(x − x0)2 + (y − y0)2.

The center of the slotted cylinder is located at (x0, y0) = (0.5, 0.75) and its
geometry in the circular region r(x, y) ≤ 1 is given by

u(x, y, 0) =

{

1 if |x − x0| ≥ 0.025 ∨ y ≥ 0.85,

0 otherwise.
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Fig. 6. Initial data and exact solution at t = 2π.

The corresponding analytical expression for the conical body reads

u(x, y, 0) = 1 − r(x, y), (x0, y0) = (0.5, 0.25),

whereas the shape and location of the hump at t = 0 are as follows

u(x, y, 0) = 0.25[1 + cos(π min {r(x, y), 1})], (x0, y0) = (0.25, 0.5).

After one full revolution (t = 2π) the exact solution to the pure convection
equation (1) coincides with the initial data. To expose the deficiencies of linear
discretizations, we present the numerical results produced by the standard
Galerkin method and its low-order counterpart (discrete upwinding) in Fig. 7.
These solutions were computed on a mesh of 128×128 bilinear elements using
the second-order accurate Crank-Nicolson time-stepping with ∆t = 10−3.
Sure enough, the original high-order scheme reproduces the cone and hump
very well but gives rise to spurious wiggles that can be traced to the slotted
cylinder. On the other hand, the low-order solution is nonoscillatory but its
quality is extremely poor due to the devastating effect of artificial diffusion.

A nonlinear combination of these imperfect linear methods in the frame-
work of algebraic flux correction yields the numerical solutions shown in Fig. 8.
The nonphysical oscillations disappear and the resolution of the three bodies
is still remarkably crisp. In the case of the FEM-TVD method, the narrow
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Fig. 7. Solid body rotation: shortcomings of linear methods.
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Fig. 8. Solid body rotation on a quadrilateral mesh.
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Fig. 9. Solid body rotation on a triangular mesh.
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bridge of the cylinder is largely preserved but some erosion of the ridges is
observed. The overall accuracy is acceptable since the numerical diffusion due
to mass lumping is alleviated to some extent by the strongly antidiffusive
superbee limiter. At the same time, the excessive antidiffusion entails an ar-
tificial steepening of the gradients as well as a gradual flattening of the two
peaks, which can be interpreted as a weak form of ‘clipping’ and ‘terracing’.
Other TVD limiters are more diffusive (see below) so that the lumping error
is aggravated and a pronounced smearing of the solution profiles ensues.

For this strongly time-dependent test problem, the iterative FEM-FCT
algorithm performs much better, which can be attributed to the use of the
consistent mass matrix. The prelimiting of antidiffusive fluxes was found to
be essential. If this optional step is omitted, the ridges of the cylinder are
corrupted by harmless but optically disturbing kinks. The (inevitable) peak
clipping for the cone does not exceed 10% and the hump is reproduced almost
exactly. Similar results are obtained using a piecewise-linear approximation on
the mesh constructed from the former one by subdivision of each quadrilateral
into two triangles. For visualization purposes, the solutions shown in Fig. 9
were output on a coarser mesh of 64 × 64 × 2 triangular elements.

7.2 Swirling Flow Problem

Another challenging test problem introduced by LeVeque [33] deals with a
swirling deformation of the initial data by the incompressible velocity field
shown in Fig. 12. The two velocity components are given by

vx = sin2(πx) sin(2πy), vy = − sin2(πy) sin(2πx).

The initial condition is a discontinuous function which equals unity within a
circular sector of π/2 radians and zero elsewhere:

u(x, y, 0) =

{

1 if (x − 1)2 + (y − 1)2 < 0.64,

0 otherwise.

The computational results obtained at time t = 2.5 using the same param-
eter settings as in the previous example are shown in Fig. 10–11. In the course
of deformation, the mass distribution assumes a complex spiral shape which is
nicely resolved by both algebraic flux correction schemes under consideration.
The imposed constraints are satisfied and the approximate solutions remain
bounded by zero and one regardless of the mesh type. Again, the better accu-
racy of FEM-FCT as compared to FEM-TVD is due to the dynamic nature
of the problem at hand. By construction, the latter algorithm is independent
of the time discretization and lends itself to the treatment of steady-state
applications. As already mentioned, the optimal degree of implicitness is also
problem-dependent. In this example, the Crank-Nicolson time-stepping was
selected, since ∆t must be chosen impractically small for comparable results
to be produced by the fully implicit backward Euler method [23],[25].
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Fig. 10. Swirling deformation on a quadrilateral mesh.



38 Dmitri Kuzmin and Matthias Möller
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Fig. 11. Swirling deformation on a triangular mesh.
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Fig. 12. Velocity field for the swirling flow.

7.3 Rotation of a Gaussian Hill

The third test problem devised by Lapin [30] makes it possible to assess the
magnitude of artificial diffusion due to the discretization in space and time.
This can be accomplished via statistical analysis of numerical solutions to the
nonstationary convection-diffusion equation

∂u

∂t
+ v · ∇u = ǫ∆u in Ω = (−1, 1) × (−1, 1), (92)

where v = (−y, x) is the velocity and ǫ = 10−3 is the diffusion coefficient.
The initial condition to be imposed is given by u(x, y, 0) = δ(x0, y0), where

δ is the Dirac delta function. In a practical implementation, it is impossible to
initialize the solution by a singular function. Instead, the whole mass should
be concentrated at a single node of the computational mesh. The integral
of the discrete solution over the domain Ω equals the sum of nodal values
multiplied by the diagonal entries of the lumped mass matrix

∫

Ω

uh dx =

∫

Ω

∑

j

ujϕj dx =
∑

i

miui.

The total mass of a delta function equals unity. Hence, one should find node
i closest to the peak location (x0, y0) and set u0

i = 1/mi, u0
j = 0, j 6= i.

Alternatively, one can start with the exact solution at a time t0 > 0.
In the rotating Lagrangian reference frame, the convective term vanishes

and the resulting diffusion problem can be solved analytically. The solution is
a rotating Gaussian hill defined by the normal distribution function

u(x, y, t) =
1

4πǫt
e−

r
2

4ǫt , r2 = (x − x̂)2 + (y − ŷ)2,
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where x̂ and ŷ denote the time-dependent peak coordinates

x̂(t) = x0 cos t − y0 sin t, ŷ(t) = −x0 sin t + y0 cos t.

The peaks of the approximate solution may certainly deviate from this desti-
nation. Their actual position can be calculated as the mathematical expecta-
tion of the center of mass, whereby the probability density uh is obtained by
solving equation (92) by the numerical scheme to be evaluated

x̂h(t) =

∫

Ω

xuh(x, y, t) dx, ŷh(t) =

∫

Ω

yuh(x, y, t) dx.

The quality of approximation depends on the standard deviation

σ2
h(t) =

∫

Ω

r2
huh(x, y, t) dx, r2

h = (x − x̂h)2 + (y − ŷh)2

which quantifies the rate of smearing caused by both physical and numerical
diffusion. Due to various discretization errors, σ2

h may differ from the exact
value σ2 = 4ǫt. The discrepancy is represented by the relative error

∆σrel =
σ2

h − σ2

σ2
=

σ2
h

4ǫt
− 1.

This statistical quantity provides an excellent estimate of numerical diffusion
inherent to the finite element scheme under consideration.
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Fig. 13. Snapshot of the Gaussian hill at t = 2.5 π.
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Let us start with the analytical solution corresponding to x0 = 0, y0 = 0.5,
and t0 = 0.5π. As the Gaussian hill moves around the origin, it is being grad-
ually smeared by diffusion and the height of the peak decreases accordingly.
A snapshot taken after one full revolution (t = 2.5π) is displayed in Fig. 13.
In the ‘picture norm’, the numerical results produced by our FEM-TVD and
FEM-FCT schemes on a Cartesian mesh (using the same number of elements
and time step as before) are virtually indistinguisable from the exact solution.
However, a detailed analysis reveals that the value of the global maximum dif-
fers from case to case and so does the numerical variance σh.

The knowledge of the exact variance σ enables us to assess the total amount
of numerical diffusion for different limiting techniques and to estimate the
share of the temporal error. To this end, the values of ∆σrel are plotted versus
the time step in Fig. 14. If the first-order accurate backward Euler method
is employed, the temporal part of the relative variance error dominates at
large time steps and decreases linearly as ∆t is refined. For the second-order
accurate Crank-Nicolson scheme, the magnitude of the (anti-)diffusive error
is largely invariant to the time step. This is why the corresponding lines are
almost horizontal. In this case, the accuracy of the space discretization is the
critical factor so that the choice of the flux limiter plays a key role.
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Fig. 14. Gaussian hill: relative variance error vs. the time step.
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By far the most diffusive solutions are produced by discrete upwinding,
whereas the use of algebraic flux correction leads to a dramatic improvement.
However, a comparison of the relative variance errors for standard TVD lim-
iters reveals considerable differences in their performance. The most diffusive
limiter is minmod followed by Van Leer. The MC limiter outperforms both
of them and is more suitable for the treatment of smooth profiles than Roe’s
superbee limiter. The latter turns out to be slightly underdiffusive so that
∆σrel is negative if the spatial discretization error prevails. Although all four
limiters qualify for CFD simulations, the ‘right’ one may be as difficult to
select as the free parameter for classical artificial viscosity methods.

As expected, the iterative FCT algorithm is able to accommodate more
antidiffusion than the basic limiter but the gain of accuracy is marginal in
the range of time steps considered in this example. Note that the curves
for the two versions almost meet at ∆t = 10−2 but begin to separate as ∆t
approaches 10−3. This demonstrates that the Courant number must be ‘large’
for significant advantages to accrue from the iterative strategy. Its potential
can be utilized to the full extent only if the time derivative is relatively small
and the temporal accuracy can be sacrificed in favor of efficiency.

7.4 Stationary Convection-Diffusion

Algebraic flux correction schemes can be applied to stationary problems di-
rectly (TVD only) or in conjunction with a pseudo-time-stepping technique.
In the latter case, the steady-state solution is obtained by marching into the
stationary limit of the associated time-dependent problem, whereby the evo-
lution details are immaterial. In essence, the time step represents an artificial
parameter for the iterative solver and should be chosen as large as possible to
reduce the computational cost. The CFL condition prevents explicit schemes
from operating with large time steps, which makes them rather inefficient for
such applications. This can be rectified to some extent by resorting to local
time-stepping but an implicit time discretization is preferable.

In light of the above, the backward Euler method, which is not to be
recommended for transient problems, lends itself to the treatment of steady
and creeping flows. Let us apply the fully implicit FCT and TVD schemes to
the stationary convection-diffusion equation

v · ∇u − ǫ∆u = 0 in Ω = (0, 1) × (0, 1),

where v = (cos 10o, sin 10o) is the constant velocity and ǫ = 10−3 is the
diffusion coefficient. The concomitant boundary conditions read

∂u

∂y
(x, 1) = 0, u(0, y) =

{

1 if y ≥ 0.5,
0 otherwise,

u(x, 0) = 0, u(1, y) = 0.
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The solution to this singularly perturbed elliptic problem is characterized by
the presence of a sharp front next to the line x = 1. The boundary layer
develops because the solution of the reduced problem (ǫ = 0) does not satisfy
the homogeneous Dirichlet boundary condition.

A reasonable initial guess for the desired stationary solution is given by

u(x, y, 0) =

{

1 − x if y ≥ 0.5,
0 otherwise.

It is worthwhile to start with discrete upwinding and use the converged low-
order solution as initial data for the nonlinear high-resolution scheme. Even
this crude approximation provides a good starting point, so that the extra
cost due to the assembly and limiting of antidiffusive fluxes is insignificant.

The numerical solutions depicted in Fig. 15 show that the backward Euler
FEM-TVD method is capable of producing nonoscillatory solutions with a
sharp resolution of steep fronts and boundary layers. The upper diagram was
computed on a grid of 64×64 bilinear elements using the MC limiter. The mesh
employed for the lower one consists of as few as 480 elements and is refined
in regions where the solution gradients are large. Due to the mesh refinement
and a special alignment of the grid lines, the accuracy is comparable to that
achieved on the uniform mesh at a much higher computational cost.

The results produced by the FEM-FCT algorithm are presented in Fig. 16.
The time step ∆t = 1.0 (Courant number ν = 64) was intentionally chosen to
be very large so as to expose the differences between the basic and iterative
versions. The former (see the upper diagram) exhibits excessive smearing in
the vicinity of the boundary layer, which compromises the benefits offered by
the unconditionaly stable backward Euler time-stepping. The lower diagram
demonstrates that iterative flux correction is free of this drawback.

7.5 Convection in Space-Time

Our last example deals with the pure convection equation (23) discretized by
central differences in conjunction with the leapfrog time-stepping

un+1
i − un−1

i

2∆t
+ v

un
i+1 − un

i+1

2∆x
= 0.

At the boundaries of the space-time domain Ω = (0, 1)× (0, 0.5) we switch to
a (first-order accurate) one-sided finite difference approximation.

Instead of advancing the numerical solution in time step-by-step as usual,
let us write all equations in the matrix form Ku = 0 and apply our algebraic
TVD method to this linear high-order system. In essence, equation (23) is
treated as its two-dimensional counterpart (1) with x = (x, t) and v = (1, 1).
The following initial/boundary conditions are imposed at the ‘inlet’

u(0, t) = 0, u(x, 0) =

{

1 if (0.1 ≤ x ≤ 0.2) ∨ (0.3 ≤ x ≤ 0.4),
0 otherwise.
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Fig. 15. Stationary solutions produced by the FEM-TVD scheme.
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Fig. 16. Stationary solutions produced by the FEM-FCT schemes.
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Fig. 17. Convection in the space-time domain Ω = (0, 1) × (0, 0.5).
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Discrete upwinding applied to the matrix K yields the linear low-order
method which corresponds to the upwind difference approximation of spatial
derivatives and the backward Euler time-stepping. The computational results
obtained on a uniform space-time mesh with ∆x = ∆t = 10−2 are displayed
in Fig. 17 (top). The perspective chosen for visualization is such that the
solution of equation (23) at time t = 0.5 appears in the foreground. Ideally,
it should be a copy of the discontinuous initial data shifted by vt = 0.5 along
the x−axis. However, it can be seen that numerical diffusion rapidly destroys
the two rectangular pulses and fills the narrow gap between them.

Using this overly diffusive solution as initial guess for the iterative defect
correction scheme, we add compensating antidiffision controlled by the super-
bee limiter. The resulting FEM-TVD solution is shown in Fig. 17 (bottom).
It preserves the initial profiles very well and is devoid of spurious oscillations
inspite of the fact that the Courant number ν = v∆t/∆x = 1 for this simula-
tion. Thus, it is possible to circumvent the restrictive CFL-like condition (18)
and construct nonlinear space-time discretizations of high order.

8 Conclusions and Outlook

A new class of high-resolution finite element schemes was presented. Node-
oriented flux limiters of FCT and TVD type were applied at the algebraic
level so as to render the underlying Galerkin discretization local extremum
diminishing and positivity-preserving. The proposed methodology is very flex-
ible and can be readily integrated into existing CFD software as a modular
extension to the matrix assembly routine. Remarkably, algebraic flux correc-
tion is applicable to arbitrary discretizations in space and time (explicit and
implicit time-stepping, finite elements/differences/volumes, Cartesian and un-
structured meshes) and portable to higher dimensions. In fact, the same ‘post-
processing’ routine can be used in 1D, 2D, and 3D implementations.

The generality of our algebraic approach makes it a valuable design tool
and suggests many directions for further research. In particular, an exten-
sion to higher-order finite elements is feasible but nontrivial. For superlinear
approximations, even the mass matrix and the discrete Laplacian operator
may have negative off-diagonal coefficients, and it is unclear whether or not
they should be eliminated in the course of discrete upwinding. It might be
worthwhile to introduce some stabilizing background diffusion so as to reduce
phase errors and alleviate terracing. For instance, the fourth-order accurate
CNTG scheme [11], which represents a generalization of the method used in
the ‘reversible’ FCT algorithm [5], would be a good candidate for the lin-
ear high-order scheme. Furthermore, it would be interesting to investigate
how algebraic flux correction performs in the realm of discontinuous Galerkin
methods. Last but not least, there is a need for the development of robust
and efficient iterative solvers for nonsymmetric algebraic systems that result
from an implicit LED discretization of the troublesome convective terms.



48 Dmitri Kuzmin and Matthias Möller

A. Galerkin Flux Decomposition

In this appendix, we present the derivation of numerical fluxes for the finite
element discretization of the generic conservation law

∂u

∂t
+ ∇ · f = 0 in Ω.

The flux function f may depend on the solution u in a nonlinear way.

Using the divergence theorem to perform integration by parts in the weak
form of this equation, we obtain the integral relation

∫

Ω

w
∂u

∂t
dx −

∫

Ω

∇w · f dx +

∫

Γ

w f · nds = 0, ∀w.

The approximate solution to this variational problem is sought in the form

uh(x, t) =
∑

j

uj(t)ϕj(x).

Consider the group finite element formulation [13] which consists in using the
same interpolation for the flux function

fh(x, t) =
∑

j

fj(t)ϕj(x).

Rendering the residual orthogonal to each basis function ϕi of the ansatz

space gives a system of semi-discretized equations for the nodal values

∑

j

[
∫

Ω

ϕiϕj dx

]

duj

dt
−

∑

j

[
∫

Ω

∇ϕiϕj dx −

∫

Γ

ϕiϕj nds

]

· fj = 0.

The integrals containing the product of basis functions represent entries of
the mass matrices for the volume and surface triangulation

mij =

∫

Ω

ϕiϕj dx, sij =

∫

Γ

ϕiϕj nds.

Furthermore, the volume integrals that result from the discretization of spatial
derivatives can be written in the notation of section 2 as follows

[
∫

Ω

∇ϕiϕj dx

]

· fj = cji · fj , cij =

∫

Ω

ϕi∇ϕj dx.

Recall that the coefficient matrix {cij} has zero row sums, which enables us
to express its diagonal entries in terms of the off-diagonal ones

∑

j

cij = 0 ⇒ cii = −
∑

j 6=i

cij .
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It follows that the ODEs at hand can be cast into the conservation form

∑

j

[

mij
duj

dt
+ sij · fj

]

+
∑

j 6=i

gij = 0,

where the interior part of the discretized divergence term is assembled from
the Galerkin fluxes associated with edges of the sparsity graph

gij = cij · fi − cji · fj , gji = −gij .

These antisymmetric fluxes are responsible for the bilateral mass exchange
between two neighboring nodes, whereby no mass is created or destroyed
artificially in the interior of the domain. The total amount of u may only
change due to the external feed sij · fj which is equal to zero unless the basis
functions for both nodes are nonvanishing on the boundary.

The above flux decomposition makes it possible to extend the wealth of
upwinding techniques and slope limiters available for the data structure of
Peraire et al. [45] to arbitrary Galerkin discretizations. The interested reader
is referred to [34],[38],[40] for the mathematical and algorithmic background
of such high-resolution finite element schemes that were originally developed
for piecewise-linear approximations on triangular meshes.
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References

1. P. Arminjon and A. Dervieux, Construction of TVD-like artificial viscosities on
2-dimensional arbitrary FEM grids. INRIA Research Report 1111 (1989).

2. K. Baba and M. Tabata, On a conservative upwind finite element scheme for
convective diffusion equations. RAIRO Numerical Analysis 15 (1981) 3–25.

3. T. J. Barth, Numerical aspects of computing viscous high Reynolds number
flows on unstructured meshes. Technical report 91-0721, AIAA paper, 1991.

4. T. J. Barth, Aspects of unstructured grids and finite volume solvers for the
Euler and Navier-Stokes equations. In von Karman Institute for Fluid Dynamics

Lecture Series Notes 1994-05, Brussels, 1994.
5. D. L. Book, The Conception, Gestation, Birth, and Infancy of FCT. In this

volume.
6. J. P. Boris and D. L. Book, Flux-corrected transport. I. SHASTA, A fluid trans-

port algorithm that works. J. Comput. Phys. 11 (1973) 38–69.
7. A. N. Brooks and T. J. R. Hughes, Streamline upwind/Petrov-Galerkin formula-

tions for convection dominated flows with particular emphasis on the incom-
pressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 32

(1982) 199-259.
8. G. F. Carey and B. N. Jiang, Least-squares finite elements for first-order hyper-

bolic systems. Int. J. Numer. Meth. Fluids 26 (1988) 81–93.
9. C.R. DeVore, An improved limiter for multidimensional flux-corrected trans-

port. NASA Technical Report AD-A360122 (1998).
10. J. Donea, L. Quartapelle and V. Selmin, An analysis of time discretization in

the finite element solution of hyperbolic problems. J. Comput. Phys. 70 (1987)
463–499.

11. J. Donea, V. Selmin and L. Quartapelle, Recent developments of the Taylor-
Galerkin method for the numerical solution of hyperbolic problems. Numerical

methods for fluid dynamics III, Oxford, 171-185 (1988).
12. J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics.

Springer, 1996.
13. C.A. J. Fletcher, The group finite element formulation. Comput. Methods Appl.

Mech. Engrg. 37 (1983) 225-243.
14. S. K. Godunov, Finite difference method for numerical computation of discon-

tinuous solutions of the equations of fluid dynamics. Mat. Sbornik 47 (1959)
271-306.

15. P. Hansbo, Aspects of conservation in finite element flow computations. Comput.

Methods Appl. Mech. Engrg. 117 (1994) 423-437.
16. A. Harten, High resolution schemes for hyperbolic conservation laws. J. Comput.

Phys. 49 (1983) 357–393.
17. A. Harten, On a class of high resolution total-variation-stable finite-difference-

schemes. SIAM J. Numer. Anal. 21 (1984) 1-23.
18. C. Hirsch, Numerical Computation of Internal and External Flows. Vol. II:

Computational Methods for Inviscid and Viscous Flows. John Wiley & Sons,
Chichester, 1990.

19. A. Jameson, Analysis and design of numerical schemes for gas dynamics 1.
Artificial diffusion, upwind biasing, limiters and their effect on accuracy and
multigrid convergence. Int. Journal of CFD 4 (1995) 171-218.

20. A. Jameson, Computational algorithms for aerodynamic analysis and design.
Appl. Numer. Math. 13 (1993) 383-422.



Algebraic Flux Correction I 51

21. A. Jameson, Positive schemes and shock modelling for compressible flows. Int.

J. Numer. Meth. Fluids 20 (1995) 743–776.
22. D. Kuzmin, Positive finite element schemes based on the flux-corrected trans-

port procedure. In: K. J. Bathe (ed.), Computational Fluid and Solid Mechanics,
Elsevier, 887-888 (2001).

23. D. Kuzmin and S. Turek, Flux correction tools for finite elements. J. Comput.

Phys. 175 (2002) 525-558.
24. D. Kuzmin and S. Turek, Explicit and implicit high-resolution finite element

schemes based on the Flux-Corrected-Transport algorithm. In: F. Brezzi et al.
(eds), Proceedings of the 4th European Conference on Numerical Mathematics
and Advanced Applications, Springer-Verlag Italy, 2002, 133-143.
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