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Summary. Algebraic flux correction schemes of TVD and FCT type are extended
to systems of hyperbolic conservation laws. The group finite element formulation is
employed for the treatment of the compressible Euler equations. An efficient algo-
rithm is proposed for the edge-by-edge matrix assembly. A generalization of Roe’s
approximate Riemann solver is derived by rendering all off-diagonal matrix blocks
positive semi-definite. Another usable low-order method is constructed by adding
scalar artificial viscosity proportional to the spectral radius of the cumulative Roe
matrix. The limiting of antidiffusive fluxes is performed using a transformation to
the characteristic variables or a suitable synchronization of correction factors for
the conservative ones. The outer defect correction loop is equipped with a block-
diagonal preconditioner so as to decouple the discretized Euler equations and solve
them in a segregated fashion. As an alternative, a strongly coupled solution strategy
(global BiCGSTAB method with a block-Gauß-Seidel preconditioner) is introduced
for applications which call for the use of large time steps. Various algorithmic aspects
including the implementation of characteristic boundary conditions are addressed.
Simulation results are presented for inviscid flows in a wide range of Mach numbers.

1 Introduction

Unstructured grid finite element methods appear to be particularly attractive
for the treatment of aerodynamic applications governed by the compressible
Euler equations [24],[27],[34]. However, most of the algorithms currently in use
are explicit and, consequently, subject to the CFL condition which becomes
very restrictive in the presence of adaptive mesh refinement. For steady-state
flows the computational cost can be drastically reduced by using local time-

stepping to achieve a (more) uniform distribution of Courant numbers in the
domain. For transient flows this approach is not feasible since using different
time steps at different mesh points may result in a loss of ‘mass’ and allow
shocks to move at wrong speed. Hence, there is a need for the development of
truly implicit high-resolution finite element schemes which are unconditionally
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stable and much more efficient than explicit ones for the above-mentioned class
of CFD applications. At the same time, their implementation is more difficult
and the actual performance strongly depends on the choice of data structures,
configuration of linear solvers, efficiency of the matrix assembly, and other
algorithmic details. In this chapter, we extend the implicit FEM-FCT and
FEM-TVD schemes to systems of hyperbolic conservation laws, discuss the
subtleties of algebraic flux correction for the Euler equations and present some
iterative solution strategies for the resulting algebraic systems.

2 Compressible Euler Equations

The Euler equations of gas dynamics represent a system of conservation laws
for the mass, momentum, and energy of an inviscid compressible fluid

∂ρ

∂t
+∇ · (ρv) = 0, (1)

∂(ρv)

∂t
+∇ · (ρv ⊗ v) +∇p = 0, (2)

∂(ρE)

∂t
+∇ · (ρHv) = 0, (3)

where ρ, v, p, E and H = E + p/ρ are the density, velocity, pressure, total
energy per unit mass, and stagnation enthalpy, respectively. This first-order
PDE system is a simplification of the more realistic compressible Navier-Stokes

equations which include the effects of viscosity and heat conduction.
The internal energy is assumed to be a known function of pressure and

density. For an ideal polytropic gas, we have the following equation of state

p = (γ − 1)ρ

(
E − |v|

2

2

)
. (4)

In this relation, the constant γ is the ratio of specific heats (γ = 1.4 for air).
Introducing the vector of conservative variables U and the triple of fluxes

F = (F 1, F 2, F 3) for each coordinate direction in the Euclidean space R
3

U =




ρ
ρv
ρE



 , F =




ρv

ρv ⊗ v + pI
ρHv



 , (5)

where I stands for the identity tensor, we can represent the (three-dimensional)
Euler equations in the standard divergence form as follows

∂U

∂t
+∇ · F = 0, where ∇ · F =

3∑

d=1

∂F d

∂xd
. (6)
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The chain rule yields an equivalent quasi-linear formulation in which the spa-
tial derivatives are applied to the conservative variables rather than fluxes

∂U

∂t
+ A · ∇U = 0, where A · ∇U =

3∑

d=1

Ad ∂U

∂xd
. (7)

Here A = (A1, A2, A3) denotes the triple of Jacobian matrices such that [27]

F d = AdU, Ad =
∂F d

∂U
, d = 1, 2, 3. (8)

The first relation in this formula means that each flux component is a homo-
geneous function of the conservative variables [44].

Due to the hyperbolicity of the Euler equations, any linear combination
of the three Jacobians is diagonalizable with real eigenvalues. In other words,
the inner product of A with an arbitrary vector e = (e1, e2, e3) of the 3D
space admits the following factorization [16],[21],[44]

e ·A =

3∑

d=1

edA
d = RΛ(e)R−1, (9)

where Λ(e) is the diagonal matrix of eigenvalues and R is the matrix of right
eigenvectors whereas R−1 is composed from the left ones. Analytical expres-
sions for these matrices can be found, for instance, in [37]. At the same time,
it is impossible to diagonalize the unidirectional Jacobians Ad simultaneously
as they do not commute and, therefore, have different sets of eigenvalues [16].
This information on the spectral properties of A is important for the design
of numerical methods and will be utilized in what follows.

3 High-Order Scheme

The first algorithm to be presented is the basic Galerkin scheme to be endowed
with our algebraic flux limiters of FCT and TVD type. As already mentioned
in the Introduction, implicit finite element methods are still rarely used in
compressible flow simulations. Therefore, matrix assembly for the Euler equa-
tions has received little attention in the literature. In this section, we show
how it can be implemented in an efficient way building on Roe’s linearization
technique [36] for systems of hyperbolic conservation laws.

Let us start with the divergence form (6) of the Euler equations and dis-
cretize them in space leaving the time derivative continuous for the time being.
As in the scalar case, we adopt the group finite element formulation. That is,
both the conservative variables and the flux function are approximated in
terms of their nodal values multiplied by the FEM basis functions:

Uh(x, t) =
∑

j

uj(t)ϕj(x), Fh(x, t) =
∑

j

Fj(t)ϕj(x). (10)
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The use of these approximations in the weak form of (6) leads to a system
of semi-discretized equations for the time-dependent nodal values

∑

j

[∫

Ω

ϕiϕj dx

]
duj

dt
+

∑

j

[∫

Ω

ϕi∇ϕj dx

]
· Fj = 0. (11)

In order to solve it numerically, we need to eliminate the dependent variables
Fj in favor of the unknowns uj so as to obtain an ODE system of the form

MC
du

dt
= Ku, (12)

where MC is the block-diagonal mass matrix and K is a discrete counterpart
of the operator −A · ∇ for the quasi-linear formulation (7). Of course, it
depends on the solution vector u since the governing equations are nonlinear.

Recall that the basis functions ϕj sum to unity, so that the sum of their
derivatives vanishes at every point. Therefore, the auxiliary coefficients cij as
defined in equation (6) of the previous chapter have zero row sums:

cij =

∫

Ω

ϕi∇ϕj dx, cii = −
∑

j 6=i

cij . (13)

It follows from (11) that the right-hand side of the five coupled equations for
node i can be expressed as a sum of edge contributions

(Ku)i = −
∑

j

cij · Fj = −
∑

j 6=i

cij · (Fj − Fi). (14)

This sort of representation is typical of finite volume/difference schemes, which
enables us to borrow many useful ideas originally developed in this context.

In his pioneering work on approximate Riemann solvers [36], Roe showed
that the differences between the components of F and u are related by

Fj − Fi = Âij(uj − ui), (15)

where the triple of matrices Âij = (â
1
ij , â

2
ij , â

3
ij) corresponds to the Jacobian

tensor A evaluated for a special set of density-averaged variables

ρ̂ij =
√

ρiρj , v̂ij =

√
ρivi +

√
ρjvj√

ρi +
√

ρj
, Ĥij =

√
ρiHi +

√
ρjHj√

ρi +
√

ρj
(16)

which are called the Roe mean values. The speed of sound ĉij for the inter-

mediate state (ρ̂ij , v̂ij , Ĥij) is determined as follows:

ĉij =

√

(γ − 1)

(
Ĥij −

|v̂ij |2
2

)
. (17)
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By virtue of this linearization, the right-hand side of (12) can be assembled
from individual edge contributions which depend on the difference between
the values of the conservative variables/fluxes at nodes i and j

(Ku) i ←− cij · (Fi − Fj) = cij · Âij(ui − uj), (18)

(Ku) j ←− cji · (Fj − Fi) = cji · Âij(uj − ui). (19)

Let us represent the linear combinations of the averaged Jacobians in terms
of the cumulative Roe matrices aij and bij defined by

aij = aij · Âij , aij =
cij − cji

2
, (20)

bij = bij · Âij , bij =
cij + cji

2
. (21)

Integration by parts in (13) reveals that the coefficients cij and cji satisfy

cji = −cij +

∫

Γ

ϕiϕj nds, (22)

where n denotes the unit outward normal to the boundary Γ . We remark that
finite element basis functions have compact support. As a rule, the surface
integral is equal to zero unless both nodes belong to the boundary.

By substitution of (22) into formulae (20) and (21), we obtain

aij = cij −
1

2
sij , bij =

1

2
sij , (23)

where sij is an entry of the ‘mass matrix’ for the surface triangulation

sij =

∫

Γ

ϕiϕj nds.

In the interior of the domain, sij vanishes and (23) reduces to

aij = cij , bij = 0.

Consequently, just the antisymmetric part aij of the cumulative Roe matrix is
to be evaluated for each interior edge. The symmetric part bij is only needed
at the boundary and can sometimes be neglected (see below).

It is easy to verify that the inner products in (18)–(19) are given by

cij · Âij = aij + bij , cji · Âij = −aij + bij . (24)

Hence, the contribution of the edge ij to the right-hand side of (12) reads

(Ku) i ←− (aij + bij)(ui − uj), (25)

(Ku)j ←− (aij − bij)(ui − uj). (26)
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This representation leads to a very efficient edge-based algorithm for matrix
assembly since there is no need for numerical integration as long as the coef-
ficients cij are initialized and stored. The sparsity graph of the global matrix
K depends solely on the underlying mesh and on the type of approximation.
For systems of equations, the list of edges is the same as in the scalar case.
However, there are interactions not only between basis functions for different
mesh nodes but also between those for different variables. Due to this intimate
coupling of degrees of freedom, each ‘coefficient’ of the discrete operator turns
into a matrix of size equal to the squared number of variables.

i j

i

j

th rowi

th rowj

th columni
th columnj

l

k

ji
kl

jj
kl

ij
kl

ii
kl

KK

K K

Fig. 1. Matrix assembly for the Euler equations.

If the global finite element matrix (or some parts of it) rather than its
product with the solution vector u needs to be assembled, this can be accom-
plished by evaluating the four 5× 5 blocks

kii = aij + bij , kij = −aij − bij ,

kji = aij − bij , kjj = −aij + bij

(27)

edge-by-edge and scattering their entries to the positions with indices i and j
in the corresponding blocks of the operator K. This process is illustrated in
Fig. 1. As a rule, it is not necessary to assemble and store the whole global
matrix. Instead, it is possible to piece together individual edge contributions
of the form (25)–(26) so as to avoid matrix-vector multiplications like Ku.
Depending on the choice of smoothers/preconditioners for the iterative solver,
just a few (if any) global blocks need to be generated explicitly. The block-
diagonal or the upper/lower triangular part will suffice for our purposes.
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4 Low-Order Scheme

To a large extent, the ability of a high-resolution scheme to withstand the for-
mation of wiggles depends on the quality of the underlying low-order method.
Let us construct it at the algebraic level following the strategy presented in
the previous chapter. To this end, we perform the row-sum mass lumping and
replace the original Galerkin discretization (12) by

ML
du

dt
= Lu, (28)

where ML denotes the lumped mass matrix and L is the low-order Jacobian
operator. Recall that its scalar counterpart was derived by ‘discrete upwind-
ing’ which amounts to a conservative elimination of negative off-diagonal en-
tries from the high-order transport operator. For systems of conservation laws,
the edge contributions to the global matrix are no longer scalar quantities but
matrices themselves. This leads to the following algebraic constraint:

LED principle for systems (semi-discrete level)

Let the system of ordinary differential equations for the values of the conser-
vative variables at node i be represented in the form

mi
dui

dt
=

∑

j 6=i

lij(uj − ui). (29)

If all off-diagonal matrix blocks lij are positive semi-definite (that is, their
eigenvalues are nonnegative), then such a discretization is local extremum
diminishing for a certain set of local characteristic variables. Obviously, this
condition is consistent with the LED criterion for scalar conservation laws
but in the case of a hyperbolic system it is much less restrictive than the
requirement that all off-diagonal coefficients of L be nonnegative.

To construct a nonoscillatory low-order scheme for the compressible Euler
equations, we add tensorial artificial viscosity dij and remove the symmetric
part bij of the cumulative Roe matrix in (27). This gives

lii = aij − dij , lij = −aij + dij ,

lji = aij + dij , ljj = −aij − dij .
(30)

These modified edge contributions are built into the blocks of L as explained
above. It is worth mentioning that the high-order operator K does not need
to be assembled at all. The corresponding raw antidiffusive flux reads

fij = −
(
mij

d

dt
+ dij + bij

)
(uj − ui), fji = −fij . (31)

The block mij = miji, where i denotes the 5×5 identity matrix, is responsible
for the error induced by mass lumping. After the time discretization, one
obtains an expression similar to (71) of the preceding chapter. It remains to
design the matrix dij so as to enforce the generalized LED constraint.
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5 Design of Artificial Viscosities

As pointed out earlier, the system of Euler equations is hyperbolic so that any
linear combination of the three Jacobian matrices is diagonalizable with real
eigenvalues. In particular, there exists a diagonal matrix Λij and a regular
matrix rij of right eigenvectors such that the cumulative Roe matrix aij for
the edge ij admits the following factorization

aij = |aij |rijΛijr
−1
ij . (32)

The scaling factor is given by the Euclidean norm of the coefficient vector

|aij | =
√

aij · aij , aij = (a1
ij , a

2
ij , a

3
ij)

and the diagonal elements of the eigenvalue matrix Λij = diag {λ1, . . . , λ5}
correspond to the characteristic speeds of wave propagation

λ1 = v̂ij − ĉij , λ2 = λ3 = λ4 = v̂ij , λ5 = v̂ij + ĉij . (33)

Here ĉij is the speed of sound for Roe’s linearization as defined in (17), while
v̂ij is a ‘projection’ of the density-averaged velocity onto the edge ij

v̂ij = eij · v̂ij , where eij =
aij

|aij |
. (34)

In the continuous case, the characteristics associated with the multiple eigen-
value λ2 = λ3 = λ4 represent the trajectories of fluid particles. In addition,
there are two superimposed acoustic waves traveling at speeds ±c relative to
the gas. We remark that the ‘upwind’ direction is different for different waves
since it depends on the sign of the eigenvalues. This is why we abstain from
fixing the order of nodes for the edges of the sparsity graph and postpone the
discussion of edge orientation for TVD limiters until section 7.2.

The characteristic decomposition (32) enables us to eliminate the negative
eigenvalues in the coefficient blocks lij and lji of the discrete Jacobian by
resorting to an analog of discrete upwinding. The artificial dissipation dij for
the resulting ‘flux difference splitting’ scheme is defined as follows [18]

dij = |aij | = |aij |rij |Λij |r−1
ij , (35)

where the matrix |Λij | contains the absolute values of the eigenvalues

|Λij | = diag {|λ1|, . . . , |λ5|} . (36)

In one dimension, we recover Roe’s approximate Riemann solver [36] which
is one of the most popular discretization techniques for the Euler equations.
For a comprehensive review and a comparative study of such upwind-biased
low-order schemes the interested reader is referred to [27],[29].
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Instead of dealing with the cumulative Roe matrix, it is possible to employ
dimensional splitting and diagonalize the Jacobians one at a time [16],[21]

dij =
3∑

d=1

|ad
ij |, where a

d
ij = ad

ijÂ
d
ij . (37)

This decomposition into one-dimensional wave patterns brings about strong
numerical diffusion in the crosswind direction. Moreover, the cost of evaluating
dij triples in comparison to (35). On the other hand, the implementation is
very simple and flux limiting in terms of characteristic variables is feasible.
Many compressible flow solvers are based on this sort of splitting.

A much cheaper alternative to (35) and (37) is to add scalar dissipation
proportional to the spectral radius of the Roe matrix [24],[27],[48]

dij = dij i, where dij = |aij |max
i
|λi|. (38)

Note that it affects just the diagonal blocks of the discrete Jacobian operator
and is the same for all variables. This simplifies bookkeeping and reduces the
cost of matrix assembly. As long as excessive artificial viscosity is removed in
the course of flux correction, the computational effort required for evaluation
of dij from (35) or (37) does not pay off. Surprisingly enough, a slightly
overdiffusive low-order method may even be preferable due to the resulting
improvement of phase accuracy [18],[48]. Last but not least, scalar dissipation
can be used as a preconditioner for the approximate Riemann solver.

Remark. The insertion of artificial diffusion can be combined with a conser-
vative flux decomposition for the term Ku, which yields [17],[18]

(Ku)i = −
∑

j 6=i

gij , gij = cij · Fi − cji · Fj . (39)

Such a representation is particularly useful for finite element codes utilizing
an edge-based data structure. Moreover, it facilitates an extension of many
one-dimensional discretization schemes to unstructured meshes [27],[31].

The low-order counterpart of gij can be constructed by adding a diffusive
flux depending on the spectral properties of the Roe matrix

g
∗
ij = gij − (dij + bij)(uj − ui). (40)

This modification is equivalent to using (30) in lieu of (27) during the assembly
of the global Jacobian operator. Hence, the right-hand side of the semi-discrete
low-order scheme (29) can be expressed as

(Lu)i = −
∑

j 6=i

g
∗
ij , g

∗
ji = −g

∗
ij (41)

and assembled edge-by-edge from the antisymmetric numerical fluxes g
∗
ij if

this is desirable from the viewpoint of implementation.
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6 One-Dimensional Case

Before embarking on the design of flux limiters, it is instructive to apply the
above low-order method to the one-dimensional Euler equations

∂U

∂t
+

∂F

∂x
= 0. (42)

In this case, the vectors of unknown variables and fluxes reduce to

U =




ρ
ρv
ρE



 , F =




ρv

ρv2 + p
ρHv



 . (43)

The differentiation of F yields the equivalent quasi-linear form

∂U

∂t
+ A

∂U

∂x
= 0, (44)

where A = ∂F
∂U is the Jacobian matrix. It is easy to verify that

A =




0 1 0

1
2 (γ − 3)v2 (3− γ)v γ − 1

1
2 (γ − 1)v3 − vH H − (γ − 1)v2 γv



 . (45)

Furthermore, the characteristic decomposition of A is as follows

A = RΛR−1, Λ = diag{v − c, v, v + c}, (46)

where v is the fluid velocity and c =
√

γp/ρ is the local speed of sound for a

polytropic gas. The ratio M = |v|
c is called the Mach number.

The columns of the matrix R represent the right eigenvectors

R =




1 1 1

v − c v v + c
H − vc 1

2v2 H + vc



 = [r1, r2, r3] (47)

and the rows of its inverse R−1 correspond to the left ones

R−1 =





1
2

(
b1 + v

c

)
1
2

(
−b2v − 1

c

)
1
2b2

1− b1 b2v −b2

1
2

(
b1 − v

c

)
1
2

(
−b2v + 1

c

)
1
2b2



 =




l1
l2
l3



 , (48)

where the auxiliary coefficients b1 and b2 are given by

b1 = b2
v2

2
, b2 =

γ − 1

c2
.
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By definition, the eigenvalues and eigenvectors of A satisfy the equations

Ark = λkrk, lkA = λklk, k = 1, 2, 3 (49)

which can be written in matrix form as AR = RΛ and R−1A = ΛR−1.

After the space discretization by the low-order scheme, we end up with
the following ODE system for the nodal values of the conservative variables

mi
dui

dt
=

∑

j 6=i

lij(uj − ui), where lij = kij + dij . (50)

At interior nodes, the high-order element/edge contribution is of the form

kij = −cijÂij = −aij , j = i± 1, (51)

where Âij is the Jacobian matrix (45) evaluated using the Roe mean values

(ρ̂ij , v̂ij , Ĥij). On a uniform mesh of linear finite elements, we have

mi = ∆x, cij =

{
1/2 for j = i + 1,
−1/2 for j = i− 1.

(52)

The viscous dissipation dij defined in (35) and (37) simplifies to

dij =
1

2
|Âij |, where |Âij | = rij |Λij |r−1

ij . (53)

Plugging it into formula (40), we obtain the corresponding numerical flux,
which is identical to that for Roe’s approximate Riemann solver [36]

g
∗
ij =

fi + fj

2
− 1

2
|Âij |(uj − ui), j = i + 1. (54)

The underlying principles and the properties of the resulting first-order scheme
are described in many textbooks on gas dynamics [16],[21],[42]. We remark
that Roe’s method fails to recognize expansion waves and, therefore, may
give rise to entropy-violating solutions (rarefaction shocks) in the vicinity of
sonic points. A suitable entropy fix, for instance, the modification proposed
by Harten and Hyman [13], makes it possible to circumvent this problem.

In the case of scalar dissipation (38), the amount of artificial viscosity is
proportional to the largest in magnitude eigenvalue of Âij

dij =
λmax

2
i, where λmax = |v̂ij |+ ĉij . (55)

Note that the diffusion coefficient dij = λmax

2 equals that for discrete upwind-
ing applied to the fastest wave propagating at the characteristic speed λmax.
This definition of dij constitutes a cost-effective alternative to (53) and yields
a perfect low-order method for the FCT algorithm [48].
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7 Flux Limiting for Systems

Despite the remarkable progress made in the development of high-resolution
schemes for scalar conservation laws, their extension to hyperbolic systems
remains a challenging open problem. One of the main difficulties that hinder a
rigorous generalization of the scalar machinery to the systems arena is the lack
of reliable physical and mathematical criteria for the design of flux limiters.
Some useful concepts, algorithms, and ideas are presented in this section. For
an in-depth coverage of this topic, the reader is referred to [48].

It is tempting to treat the constituents of system (1)–(3) independently
using a flux correction algorithm developed for scalar transport equations.
Unfortunately, this näıve approach often yields rather disappointing results.
In particular, a ‘blind’ adjustment of the conservative fluxes may turn out
to be harmful and give rise to undershoots/overshoots in certain dependent
variables, such as pressure, velocity, internal energy, entropy etc. The intricate
coupling of the Euler equations makes it very difficult to monitor and control
the evolution of all physically relevant quantities simultaneously. Hence, the
numerical solutions are strongly influenced not only by the type of the flux
limiter but also by the set of variables to which it is applied.

In light of the above, flux limiting for hyperbolic systems is more involved
than that for scalar conservation laws. The design criteria should reflect the
physical properties of the problem at hand and be enforced in a fail-safe way.
To this end, the following strategies have been proposed [24],[48]

• flux limiting in terms of nonconservative (e.g. primitive, characteristic)
variables, for which the constraints to be imposed are relevant/important;

• a proper synchronization of the correction factors for individual variables;

• an a-posteriori control and cancellation/tuning of the antidiffusive fluxes
into nodes at which nonphysical solution values are detected.

These remedies are problem-dependent and require empirical input as well
as a solid understanding of the underlying physics. However, the simulation
results are typically rewarding. Following these guidelines, one can perform
algebraic flux correction for the Euler equations as explained below.

7.1 Variable Transformations

The first issue to be addressed is the choice of variables. It is essential to
use the divergence form (6) of the Euler equations and maintain conservation
at the discrete level. This guarantees convergence to a weak solution and
prevents shocks from moving at wrong speeds. However, the numerical method
should allow for a physical growth/decay of local extrema, so imposing tight
solution bounds on the conservative variables is not to be recommended [48].
Instead, viable constraints can be devised and enforced making use of a local
transformation of the solution variations and of the raw antidiffusive fluxes to
a set of variables that are more amenable to flux correction [24].
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In particular, it is not unusual that flux limiting in terms of the primi-
tive variables (ρ,v, p) produces superior results as compared to the use of the
conservative or mixed variables [27],[31]. An even better (albeit costly) alter-
native is to constrain a set of suitably defined characteristic variables for the
linearized hyperbolic system. A decisive advantage of this approach is that
scalar discretization tools are applicable to the transformed equations and
there is no need for an ad hoc synchronization of the flux limiter. Moreover,
the physical nature of wave propagation is taken into account. Thus, a proper
control of the characteristic variables is typically sufficient to guarantee that
all other variables are also free of nonphysical oscillations.

For linear hyperbolic systems such that the coefficient matrix A is constant,
multiplication of (44) from the left by R−1 and use of (46) yields

∂W

∂t
+ Λ

∂W

∂x
= 0, where W := R−1U. (56)

Since Λ is a diagonal matrix, this so-called canonical form of system (44)
consists of three decoupled convection equations

∂wk

∂t
+ λk

∂wk

∂x
= 0, k = 1, 2, 3. (57)

It follows that the evolution of the characteristic variables W = [w1, w2, w3]
T

is described by three simple waves propagating independently of one another
with velocities v and v ± c. The exact solution is constant along the charac-
teristics of (57) which are the straight lines satisfying the ODEs

dx

dt
= λk, where λk = const. (58)

The solution to the original problem can be recovered as U = RW or

U =
3∑

k=1

wkrk, wk(x, t) = wk(x− λkt, 0). (59)

Hence, the characteristic variables wk are the coefficients of rk in the eigen-
vector expansion of U which depends only on the initial data [19].

For nonlinear hyperbolic systems, the eigenvalues and eigenvectors of the
Jacobian matrix A vary in space and time. Therefore, characteristic variables
can only be defined locally, for a given solution U . After the spatial discretiza-
tion, the transformation matrices R and R−1 are evaluated for a ‘frozen’ set
of data such as the arithmetic average or the Roe mean values for two nodes.
In particular, the tensorial artificial viscosity (53) corresponds to

dij(uj − ui) =
1

2
rij |Λij |∆wij , (60)

where the transformed solution increment ∆wij is given by

∆wij := r
−1
ij (uj − ui). (61)
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This representation reveals that Roe’s approximate Riemann solver can be
interpreted as discrete upwinding applied to the decoupled scalar equations
for the local characteristic variables. Indeed, the amount of artificial diffu-
sion for field k is proportional to |λk|/2, which is just enough to render the
scalar semi-discrete scheme local extremum diminishing (see the 1D example
in section 5.1 of the previous chapter). In order to calculate the corresponding
correction to the original discretization, the vector of characteristic diffusive
fluxes fij = 1

2 |Λij |∆wij is converted back to the conservative variables in (60).
In practice, both forward and backward variable transformations can/should
be performed in a computationally efficient way without generating the eigen-
vector matrices for each edge explicitly [27],[47]. Arguing as above, one can
construct characteristic flux limiters of TVD and FCT type.

7.2 Characteristic TVD Limiter

Characteristic TVD schemes for the Euler equations date back to the 1980s
[46],[47]. In the one-dimensional case, their derivation is fairly straightforward,
and various ad hoc extensions have been used in finite element codes with
considerable success [2],[9],[28],[38],[39]. The ongoing quest for a genuinely
multidimensional generalization is complicated by the fact that the underly-
ing characteristic decomposition is no longer unique. In multidimensions, the
waves can travel in an infinite number of directions, so it is unclear how to
transform the linearized hyperbolic system into a set of decoupled convec-
tion equations, for which robust numerical techniques are already available.
Hence, one needs not only a fully multidimensional transport algorithm but
also a multidimensional wave decomposition for the system at hand [40]. A few
promising wave models have been proposed for the design of upwind-biased
schemes based on the fluctuation splitting approach [3] (also referred to as
residual distribution [6]) but their complexity is still too high.

The freedom of choosing the direction e in the factorization (9) arbitrarily
turns out to be a blessing and a curse at the same time. On the one hand, it
provides the necessary flexibility for the development of numerical schemes.
On the other hand, the definition of characteristic variables is ambiguous in
multidimensions and has a strong influence on the simulation results. Recall
that we constructed the artificial viscosity (35) via a diagonalization of the
cumulative Roe matrix aij which was evaluated in the direction of the nor-
malized coefficient vector eij defined in (34). As shown by Lyra et al. [28], this
approach is also suitable for the design of characteristic FEM-TVD schemes
based on unidirectional slope limiting. On the other hand, the use of a single
direction e = eij for the definition of local characteristic variables seems to
be inappropriate for node-oriented flux limiters which operate as follows:

1. Gather upstream/downstream edge contributions to individual nodes.
2. Compute the nodal correction factors on the basis of this information.
3. Check the sign of the antidiffusive fluxes and limit them edge-by-edge.
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Obviously, the data to be collected in at the first step should correspond to
the same set of characteristic variables, whereas the transformation matrices
rij and r

−1
ij for the cumulative Roe matrix depend not only on the averaged

solution values but also on the coefficient vector eij for the edge at hand. This
has led us to employ the dimensional splitting (37) and limit the characteristic
variables defined by the eigenvectors of Âd

ij which are independent of the mesh.
Of course, this provisional wave model is not optimal, so the experienced
reader is encouraged to experiment with other options.

Let us construct a characteristic TVD limiter following the strategy pro-
posed by Yee et al. [47] and apply it to the vector of fluxes in each coordinate
direction so as to impose the LED constraint on the characteristic variables.
Both explicit and implicit time discretizations are feasible. As before, all alge-
braic modifications to be performed affect just the matrix assembly routine.
The limiting process consists of the following algorithmic steps:

1. In a loop over edges, generate the right/left eigenvectors of the unidirec-
tional Roe matrix Âd

ij (d = 1, 2, 3) which correspond to the eigenvalues

λd
1 = v̂d

ij − ĉij , λd
2 = λd

3 = λd
4 = v̂d

ij , λd
5 = v̂d

ij + ĉij . (62)

Analytical expressions for the eigenvector matrices can be found in [16].

2. Decompose the difference between the nodal values uj and ui into its
characteristic components via a transformation analogous to (61)

∆wij = [rd
ij ]

−1(uj − ui), (63)

where the rows of [rd
ij ]

−1 represent the left eigenvectors of Âd
ij .

3. Update the sums P±
i and Q±

i of downstream/upstream edge contributions
to node i for the characteristic field number k as follows:

For all edges/fluxes a
d
ij

Compute ka
ij = −ad

ijλ
d
k and

δ±a =
max
min

{0, ka
ij∆w

k
ij}

If ka
ij < 0, then augment

P±
i := P±

i +δ±a , Q±
j := Q±

j +δ±a

If ka
ij > 0, then augment

P±
j := P±

j +δ±a , Q±
i := Q±

i +δ±a

For boundary edges b
d
ij

Compute kb
ij = −bd

ijλ
d
k and

δ±b =
max
min

{0, kb
ij∆w

k
ij}

If kb
ij < 0, then augment

P±
i := P±

i +δ±b , P∓
j := P∓

j −δ±b

If kb
ij > 0, then augment

Q±
i := Q±

i +δ±b , Q∓
j := Q∓

j −δ±b

4. In a loop over nodes, calculate the nodal correction factors for all local
characteristic variables in each space direction

R±
i = Φ(Q±

i /P±
i ). (64)
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5. Determine the number of the ‘upwind node’ individually for each scalar
wave propagating at the speed λd

k relative to the edge ij

I =

{
i if ka

ij ≤ 0,

j if ka
ij > 0,

(65)

where the coefficient ka
ij is the one defined in step 3 (see the left box).

6. Limit the transformed data jumps ∆wij in accordance with the adopted
edge orientation for the characteristic variable at hand

∆ŵ
k
ij =

{
R+

I ∆w
k
ij if δk

a ≥ 0,

R−
I ∆w

k
ij if δk

a < 0,
δk
a = ka

ij∆w
k
ij . (66)

Note that the value of δk
a is invariant to the order of nodes due to the

asymmetry of the parameters ka
ji = −ka

ij and w
k
ji = −w

k
ij .

7. Add the limited antidiffusive correction to the raw diffusive flux |Λd
ij |∆wij

and transform the result back to the conservative variables

f
d
ij = |ad

ij |rd
ij |Λd

ij |(∆wij −∆ŵij). (67)

8. Insert the net (anti-)diffusive flux f
d
ij into the right-hand side and/or the

defect vector for the modified linear system by setting

(K∗
u)i := (K∗

u)i + f
d
ij , (K∗

u)j := (K∗
u)j − f

d
ij (68)

for K∗
u initialized by Ku for the original Galerkin scheme (11).

The practical implementation of the algorithm may certainly differ from that
outlined above and be based on a more involved wave model or used in con-
junction with a fractional-step approach such as the ADI method [47].

A few remarks are in order. In the case of scalar convection, the final
antidiffusion coefficient for the edge

−→
ij was given by aij = min{R±

i dij , lji}.
This extra check is no longer necessary since

ka
ji = −ka

ij ⇒ laji := ka
ji + da

ij = 2da
ij ,

where da
ij := |ad

ijλ
d
k| = |ka

ij | is the artificial diffusion coefficient for wave k.
The LED property for row j follows from the fact that

k∗
ji := laji −R±

i da
ij = ka

ji + (1−R±
i )da

ij = (2−R±
i )da

ij ≥ 0

as long as R±
i ≤ 2, which is the case for all standard TVD limiters. Further-

more, we found that the symmetric contributions δk
b = kb

ij∆w
k
ij of boundary

edges can be omitted at steps 5-7 (this amounts to a selective ‘prelimiting’ of
the antidiffusive fluxes) but must be taken into account at step 3.
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7.3 Synchronized FCT Limiter

In the FCT community, flux limiting has traditionally been performed on the
conservative or primitive variables using a scalar correction factor αij for the
vector fij of raw antidiffusive fluxes. As already indicated above, this kind
of synchronization is mandatory unless the variables under consideration are
fully decoupled. Otherwise, spurious ripples may emerge as a conseqence of rel-
ative phase errors. Löhner et al. [23],[24] mentioned the following approaches
to the design of a synchronized FCT limiter for the Euler equations:

• evaluation of the correction factors for a single ‘indicator variable’;
• using the minimum of those obtained for a certain group of variables;
• conservative flux limiting based on local variable transformations.

A general algorithm for constraining an arbitrary set of target quantities is
outlined in the recent monograph by Löhner [24]. The following realization of
his methodology can be used to carry out algebraic flux correction in terms
of any nonconservative variables including the characteristic ones:

1. Initialize the auxiliary arrays by P±
i ≡ 0, Q±

i ≡ 0, R±
i ≡ 1.

2. In a loop over edges, convert the raw antidiffusive fluxes as well as the
differences between the nodal values of ũ to the new variables

f̂ij = tijfij , ∆wij = tij(ũj − ũi), (69)

where the transformation matrix tij depends on the choice of variables
and is evaluated using an appropriate average of ũi and ũj [48].

3. Perform the (optional) prelimiting of the transformed fluxes

f̂
k
ij := 0 if f̂

k
ij∆w

k
ij ≥ 0. (70)

4. Augment the sums of positive/negative fluxes for each target variable

P±
i := P±

i +
max
min

{0, f̂
k
ij}, P±

j := P±
j +

max
min

{0,−f̂
k
ij}. (71)

5. Update the maximum/minimum admissible increments as follows

Q±
i :=

max
min

{
Q±

i ,∆w
k
ij

}
, Q±

j :=
max
min

{
Q±

j ,−∆w
k
ij

}
. (72)

6. In a loop over nodes, calculate the nodal correction factors

R±
i := min{1,miQ

±
i /P±

i } if |P±
i | > 0. (73)

7. In a loop over edges, inspect the sign of the antidiffusive fluxes and com-
pute the final correction factors for the selected control variables

αk
ij =

{
min{R+

i , R−
j } if f̂

k
ij ≥ 0,

min{R+
j , R−

i } if f̂
k
ij < 0.

(74)
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8. Apply the synchronized weight α̂ij = mink αk
ij , directly to fij or limit f̂ij

and transform it back to the conservative variables

f
∗
ij = t

−1
ij f̂

∗
ij , where f̂

∗
ij = α̂ij f̂ij . (75)

9. Check the result and set f
∗
ij := 0 if nonphysical behavior is detected [48].

10. Insert the limited antidiffusive flux f
∗
ij into the right-hand side b and/or

into the defect vector for the fully discrete scheme

bi := bi + f
∗
ij , bj := bj − f

∗
ij . (76)

At present, there is still a large degree of empiricism in the construction of syn-
chronized FCT limiters, and their performance is strongly problem-dependent.
Reportedly, the use of synchronization on the density and energy is to be rec-
ommended for highly dynamic flows, while the density and pressure should
be controlled for steady-state applications [23],[24]. At the same time, the
minimum of correction factors for all conservative variables is too restrictive.
In particular, insignificant fluctuations of the crosswind velocity may cause a
complete cancellation of the antidiffusive flux. Therefore, an equal treatment
of all velocity components yields poor results, especially if the flow takes place
in a predominant direction. Interestingly enough, the iterative limiting strat-
egy introduced in the previous chapter is much less sensitive to the choice of
indicator variables and to the synchronization procedure, since the rejected
antidiffusion can be reused at subsequent flux/defect correction steps.

Zalesak was the first to explore the potential of characteristic variables in
the realm of FCT methods [48]. His characteristic version of the Boris-Book
limiter is remarkably robust (due to a ‘fail-safe’ control mechanism) and yields
impressive results for the one-dimensional Euler equations. For an in-depth
presentation of the underlying design principles, the reader is referred to [49].
Unfortunately, no fully multidimensional extension is available to date. Since
Zalesak’s limiter is node-oriented, the use of operator splitting is currently
unavoidable for the reasons explained above. In fact, the situation is even
more difficult than in the case of TVD algorithms since the raw antidiffusive
fluxes are evaluated in terms of u

n and/or u
n+1, whereas the transformation

matrices for the limiting step depend on the intermediate solution ũ.
The time-dependent nature of FCT suggests a fractional-step approach to

the limiting of characteristic variables in the framework of a ‘Cartesian’ wave
model. A very simple way to decouple the components of F in system (6) is
to invoke the first-order accurate Marchuk-Yanenko splitting

∂Ud

∂t
+

∂F d

∂xd
= 0 in (tn, tn+1) d = 1, 2, 3. (77)

The final solution to each subproblem serves as initial data for the next one

Un
d = Un+1

d−1 , Un+1
0 = Un, Un+1 = Un+1

3 .
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Due to the splitting of spatial derivatives and of the associated Jacobians, the
transformation matrices tij = [rd

ij ]
−1 provide a suitable definition of local

characteristic variables for Zalesak’s limiter. We remark that no synchroniza-
tion of the nodal correction factors is necessary in this case. Furthermore, the
employed operator splitting does not rule out the use of unstructured meshes,
since the limiting procedure remains fully multidimensional. However, the so-
lution of three subproblems per time step and costly variable transformations
impose a heavy burden in terms of CPU time. Therefore, the advantages of
flux limiting on characteristic variables are rather dubious so far.

8 Iterative Solution Strategies

The nonlinear algebraic systems resulting from an implicit FEM-FCT or
FEM-TVD discretization of the Euler equations exhibit the same structure
as their scalar counterparts. This enables us to design iterative solvers build-
ing on the defect correction technique described previously. Let the successive
approximations to the desired solution u

n+1 be updated as follows

u
(m+1) = u

(m) + [A(u(m))]−1
r

(m), m = 0, 1, 2, . . . (78)

where A(u(m)) is a suitable preconditioner. A good candidate is the matrix
for system (28) discretized in time by the standard θ−scheme

A(u(m)) = ML + θ∆tL(u(m))u(m), 0 < θ ≤ 1. (79)

It is worthwhile to construct A(u(m)) using scalar dissipation (38) no matter
what form of dij is adopted for the artificial viscosity built into r

(m).
The constant right-hand side for the low-order method is given by

b
n = ML + (1− θ)∆tL(un)un. (80)

It is augmented by limited antidiffusion and incorporated into the defect

r
(m) = b

n + f(u(m),un)−A(u(m))u(m) (81)

which vanishes for the exact solution of the discrete problem. It is essential
to guarantee that r

(m) does approach zero in an actual simulation. This is
especially important in the case of implicit TVD-like methods which satisfy
the imposed criteria only upon convergence and may produce nonphysical
solution values if the number of outer iterations is insufficient.

Since the inversion of the global matrix A(u(m)) is prohibitively expensive,
the following two-step implementation of (78) is to be employed:

A(u(m))∆u
(m+1) = r

(m), m = 0, 1, 2, . . . (82)

u
(m+1) = u

(m) + ∆u
(m+1), u

(0) = u
n. (83)



20 Dmitri Kuzmin and Matthias Möller

The linear system to be solved at the first step can be written as





A
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11 A
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12 A
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A
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(m)
23 A

(m)
24 A

(m)
25

A
(m)
31 A

(m)
32 A

(m)
33 A

(m)
34 A

(m)
35

A
(m)
41 A

(m)
42 A

(m)
43 A

(m)
44 A

(m)
45

A
(m)
51 A

(m)
52 A

(m)
53 A

(m)
54 A

(m)
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∆u
(m+1)
1

∆u
(m+1)
2

∆u
(m+1)
3

∆u
(m+1)
4

∆u
(m+1)
5




=





r
(m)
1

r
(m)
2

r
(m)
3

r
(m)
4

r
(m)
5




. (84)

Here the row index refers to the vector of unknowns for one conservative
variable (density, momentum component or energy) which interacts with the
others via the off-diagonal blocks of the preconditioner A(u(m)).

Simultaneous solution of these equations gobbles up a lot of resources in
terms of CPU time and memory requirements. Instead, the constituents of the
discretized Euler equations can be decoupled and treated separately or, better
yet, in parallel. This can be accomplished by switching to a block-diagonal
preconditioner. Let us consider the block-Jacobi method [4] obtained from (84)

by setting A
(m)
kl := δklA

(m)
kl , where δkl is the Kronecker delta. In this case, the

global update (83) reduces to a sequence of scalar subproblems

A
(m)
kk ∆u

(m+1)
k = r

(m)
k , k = 1, . . . , 5. (85)

u
(m+1)
k = u

(m)
k + ∆u

(m+1)
k , u

(0)
k = u

n
k , (86)

whereby a (small) number of inner iterations is performed to compute the

solution increment ∆u
(m+1)
k for each variable. An implicit or explicit under-

relaxation [11] may be applied at the first and second step, respectively.
This segregated algorithm is very easy to implement and its performance

is satisfactory as long as the time step remains relatively small. However,
the nonlinear convergence rates deteriorate and the simulation may even fail
completely as the time step increases. In particular, a time-marching technique
combined with (85)-(86) may experience severe convergence problems when
applied to steady transonic flows. This can be attributed to the fact that
the characteristic condition number (the ratio of the largest to the smallest
wave speed) is very high for Mach numbers approaching zero or unity. As
a result, the Euler equations become very stiff and call for the use of local
preconditioning [5] and/or a strongly coupled solution strategy.

A much more robust iterative solver can be devised on the basis of a
Krylov-subspace or multigrid method for the global system (84). To avoid
the storage of all matrix blocks and ‘invert’ one block at a time, it is worthwhile
to use a smoother/preconditioner of block-Jacobi or block-Gauß-Seidel type.
For an abstract system Ax = b having the same structure as (84), the latter
updates the components of the vector x row-by-row as follows

Akkx
(m+1)
k = bk −

∑

l<k

Aklx
(m+1)
l −

∑

l>k

Aklx
(m)
l . (87)
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This splitting differs from the block-Jacobi method in that the latest solution
values are used for the evaluation of the right-hand side. In either case, only the
diagonal blocks of the global matrix need to be ‘inverted’ approximately in the
inner iteration process. However, the block-Gauß-Seidel method is preferable
as it yields better convergence rates at no additional cost [4].

A preliminary evaluation of BiCGSTAB and multigrid solvers equipped
with this (weakly) coupled relaxation technique indicates that they are far
superior to the algorithm (85)-(86) when it comes to simulation of (quasi-)
stationary flows [32],[33]. On the other hand, the segregated approach or even
a fully explicit time-stepping is appropriate for transient applications since the
time step must remain rather small for accuracy reasons. Due to the tradeoff
between robustness and efficiency, the choice of the ‘best’ solution strategy
is highly problem-dependent. Therefore, a general-purpose CFD code should
consist of several modules optimized for different flow regimes [43].

9 Implementation of Boundary Conditions

The numerical treatment of boundary conditions for the Euler equations is an
issue of utmost importance and its influence on the simulation results should
not be underestimated. A comprehensive coverage of this topic is available
in a number of textbooks [9],[12],[16],[44]. This section is intended to give an
insight into some theoretical and numerical aspects pertinent to the imple-
mentation of characteristic boundary conditions in a finite element code.

For a hyperbolic system that consists of Nv partial differential equations,
Np ≤ Nv physical boundary conditions (PBC) plus Nn = Nv −Np numerical
boundary conditions (NBC) are to be prescribed. The former must secure the
existence and uniqueness of the exact solution, while the latter are supposed
to ensure that various perturbations generated in the interior of the computa-
tional domain leave it without being reflected at the boundaries [16]. Hence,
a proper combination of PBC and NBC must be imposed by means of some
extra matrix/vector manipulations to be described below.

9.1 Physical Boundary Conditions

The number of physical boundary conditions Np depends on the pattern of
wave propagation. For simplicity, consider a local coordinate system such that
the unit outward normal is aligned with the x−axis. The characteristic vari-
ables associated with the direction n = (±1, 0, 0) are given by [44]

W =

[
vn −

2c

γ − 1
, s, v2, v3, vn +

2c

γ − 1

]T

, (88)

where vn = n · v stands for the normal velocity, c is the speed of sound and
s = cv log(p/ργ) is the entropy defined up to an additive constant.
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The canonical transformation (56) of the linearized Euler equations yields
a sequence of decoupled convection equations for the five components of the
vector W which are called the Riemann invariants. These scalar quantities
are transported along the characteristic curves at the respective speeds

λ1 = vn − c, λ2 = λ3 = λ4 = vn, λ5 = vn + c (89)

which represent the eigenvalues of An = n ·A. For a pure convection equation,
boundary conditions are required only at the inlet. Hence, Np equals the num-
ber of negative eigenvalues which correspond to the incoming characteristics.
It can readily be seen that the direction of wave propagation depends not only
on the sign of the velocity vn but also on the local Mach number M = |vn|/c.
Therefore, several different situations need to be considered:

Supersonic open boundary |vn| > c

At the inlet vn < 0 and all eigenvalues are negative; the values of all charac-
teristic variables must be specified. At the outlet vn > 0 and all eigenvalues
are positive; no physical boundary conditions may be imposed.

Subsonic open boundary |vn| < c

At the inlet vn < 0 so that λ5 is positive while the other eigenvalues are
negative; all Riemann invariants except w5 must be specified. At the outlet
vn > 0 so that the first eigenvalue is negative, whereas the other ones are
positive. Hence, just the boundary value of w1 is to be prescribed.

Solid wall boundary vn = 0

At the solid wall, the normal velocity component must be constrained to zero.
Under this no-penetration or free slip condition, there is no convective flux
through the boundary. All eigenvalues except λ1 = −c are nonnegative so
that only w1 must be specified. This Riemann invariant corresponds to an
acoustic wave entering the domain at the speed of sound.

In practice, physical boundary conditions are typically imposed on the
primitive variables or given in terms of input data like the total enthalpy,
entropy, temperature or inclination angle. The problem remains well-posed as
long as the number of boundary conditions is correct.

9.2 Numerical Boundary Conditions

The need for numerical boundary conditions stems from the fact that the
actual problem to be solved is formulated in terms of the conservative vari-
ables rather than Riemann invariants. Therefore, it is impossible to impose
the Dirichlet boundary conditions in the usual way. It is common practice
to recover the boundary values by changing to the characteristic variables,
evaluating the incoming Riemann invariants from the physical boundary con-
ditions and extrapolating the outgoing ones from the interior of the domain
[16],[44],[45]. The inverse transformation yields the desired values of the con-
servative variables which can be used to compute the numerical fluxes for a
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finite volume method or treated as Dirichlet boundary conditions for a finite
difference scheme. However, the extrapolation of Riemann invariants lacks a
rigorous justification and is expensive to perform on unstructured meshes.
Since we are not aware of any publication regarding the implementation of
characteristic boundary conditions for an implicit finite element method, we
deem it appropriate to go into some technical details.

In order to predict the solution values at boundary nodes, we modify the
preconditioner A(u(m)) = {akl

ij} by picking out the corresponding rows and
setting their off-diagonal entries equal to zero. That is, if node i belongs to
the boundary, then akl

ij := 0, ∀j 6= i, ∀l 6= k. This enables us to update the
components of the vector ui explicitly prior to solving the linear system (84).

To this end, we divide the components of the nodal defect vector r
(m)
i by the

diagonal entries of the preconditioner and increment the old iterate

u
∗
i = u

(m)
i + a

−1
ii r

(m)
i , aii = diag {akk

ii }. (90)

Next, the provisional solution u
∗
i is transformed to the local characteristic

variables wi (see appendix). Recall that the number of physical boundary
conditions is equal to the number of incoming characteristics. Hence, those
components of the vector w

∗
i which correspond to negative eigenvalues of the

Jacobian An = n · A can be replaced by their exact values evaluated from
the given input data. The outgoing Riemann invariants, which are associated
with numerical boundary conditions, remain unchanged. Finally, we convert
the corrected vector w

∗∗
i back to the conservative variables, assign the result

to u
∗∗
i and nullify all entries of the defect vector r

(m)
i so that

∆u
(m+1)
i = a

−1
ii r

(m)
i = 0 ⇒ u

(m+1)
i = u

∗∗
i . (91)

The flow chart of variable transformations and manipulations to be per-
formed for the boundary nodes before the solution of system (84) is displayed
in Fig. 2. In essence, the corrected values u

∗∗
i represent standard Dirichlet

boundary conditions for the end-of-step solution u
(m+1)
i . Note that there is

no need for an ad hoc extrapolation of data from the interior. Further imple-
mentation details are presented in the appendix to this chapter.

Wi
**

characteristicconservative

i
*
iUiU

(m)

iU**
iU
(m+1)

W *

Fig. 2. Variable transformations for boundary nodes.



24 Dmitri Kuzmin and Matthias Möller

10 Numerical Examples

Below we apply our algebraic flux correction schemes to a few academic test
problems that encompass both stationary and time-dependent inviscid flows
at different Mach numbers. The computational results presented in this sec-
tion provide a preliminary validation of the new algorithms and illustrate
their characteristic features for an admittedly limited range of applications.
At the current stage of development, there are still many aspects that call
for further investigation. In particular, it is rather difficult to predict how
the flux limiters and iterative solvers would perform on highly unstructured
and possibly anisotropic meshes for industrial flows in complex geometries.
Some fine-tuning may turn out to be necessary but the numerical examples
that follow indicate that (semi-) implicit FEM-FCT and FEM-TVD methods
constitute a promising approach to compressible flow simulations.

10.1 Shock Tube Problem

Our first example is the classical shock tube problem which exhibits an inter-
esting flow structure and is widely used in CFD for testing purposes [19],[41].
Its physical prototype is a closed tube filled with inviscid gas which is ini-
tially at rest and separated by a membrane into the regions of high and low
pressure. The initial conditions for the Riemann problem are given by




ρL

vL

pL



 =




1.0
0.0
1.0



 for x ∈ [0, 0.5],




ρR

vR

pR



 =




0.125
0.0
0.1



 for x ∈ (0.5, 1].

The rupture of the membrane at t = 0 triggers a normal shock wave which
moves to the right with velocity satisfying the Rankine-Hugoniot conditions.
All of the primitive variables are discontinuous across the shock which is
followed by a contact discontinuity. The latter represents a moving interface
between the regions of different densities but constant velocity and pressure.
At the same time, a rarefaction wave propagates in the opposite direction
providing a smooth transition to the original values of the state variables
in the left part of the domain. Hence, the flow pattern in the shock tube is
characterized by three waves travelling at different speeds [19].

The snapshots shown in Fig. 3 correspond to the time instant t = 0.231.
The one-dimensional Euler equations were discretized using 100 linear finite
elements and the Crank-Nicolson time-stepping with ∆t = 10−3. The analyt-
ical solution is designated by the dashed lines in each plot. It was obtained
using the technique described by Anderson [1]. The numerical solutions of
low order (upper diagrams) are seen to be nonoscillatory and qualitatively
correct but their accuracy leaves a lot to be desired. As a matter of fact,
Roe’s approximate Riemann solver (53) performs slightly better than scalar
dissipation (55) but also results in a strong smearing of the moving fronts.
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The removal of excessive artificial diffusion in the course of flux correction
yields a dramatic improvement of the overall accuracy (see Fig. 3, bottom).
The employed FEM-TVD scheme was equipped with the superbee limiter,
while the companion FEM-FCT method was implemented following the algo-
rithm proposed by Zalesak [48]. In either case, the low-order preconditioner
was based on scalar dissipation and flux limiting was carried out in terms of
the characteristic variables. The use of the conservative ones is also feasible
provided that the correction factors are properly synchronized. Simulation
results for the two-dimensional shock tube problem solved by FCT with syn-
chronization on the density and energy are reported in [18]. If the minimum
of correction factors for all conservative variables is adopted, then the basic
limiter yields overly diffusive results, whereas the iterative version performs
remarkably well [32]. Indeed, a ‘cautious’ limiting strategy does not degrade
the accuracy as long as the rejected antidiffusion can be recycled.

Scalar dissipation
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Fig. 3. Shock tube problem: numerical solutions at t = 0.231.
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10.2 Radially Symmetric Riemann Problem

Another transient test problem proposed by LeVeque [20] represents a counter-
part of the shock tube problem in polar coordinates. Before an impulsive start,
the square domain Ω = (−0.5, 0.5)× (−0.5, 0.5) is separated by an imaginary

membrane into two subregions: ΩL = {(x, y) ∈ Ω | r =
√

x2 + y2 < 0.13} and
ΩR = Ω\ΩL. The gas is initially at rest, whereby its pressure and density are
higher within the circle ΩL than outside of it:




ρL

vL

pL



 =




2.0
0.0
15.0



 in ΩL,




ρR

vR

pR



 =




1.0
0.0
1.0



 in ΩR.

The abrupt removal of the membrane at t = 0 gives rise to a radially expanding
shock wave which is induced by the pressure difference. The challenge of this
benchmark is to capture the moving shock and to make sure that the numerical
solution of the Riemann problem remains radially symmetric.

FEM-FCT, α = min{αρ, αE}
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Fig. 4. Radially symmetric density distribution at t = 0.13.
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The simulation results depicted in Fig. 4 were obtained on a uniform mesh
of 128× 128 bilinear elements by the characteristic FEM-TVD method (left)
and by the iterative FEM-FCT algorithm with flux synchronization on the
density and energy (right). As before, the discretization in time was performed
by the Crank-Nicolson scheme and the constant time step ∆t = 10−3 was
employed. The contour lines for the density distribution at t = 0.13 (upper
diagrams) have the form of concentric circles, so that both high-resolution
schemes succeed in perserving the radial symmetry of initial data. The lower
diagrams show the density profiles along the x−axis. These solutions are in
a very good agreement with those computed by the public-domain software
package CLAWPACK [22] using the same mesh and time step.

10.3 Compression Corner

To illustrate the potential of the fully implicit backward Euler time-stepping,
we consider a steady two-dimensional supersonic flow over a wedge which may
imitate e.g. the tip of a projectile. This configuration is sometimes referred to
as compression corner and constitutes an excellent test problem because it can
be solved analytically in the framework of the oblique shock theory [1]. The
originally uniform supersonic flow preserves its freestream characteristics until
it reaches the wedge which deflects it upward through an angle θ. Provided
that θ is not too large, the change in the flow direction takes place across a
shock wave which has the form of a straight line emanating from the tip of
the wedge and running oblique to the original flow direction.

Given the inflow Mach number M1 = 2.5 and the deflection angle θ = 15◦,
one can determine the downstream Mach number M2 = 1.87 and the shock
inclination angle β = 36.94◦ as explained e.g. in [1]. A detailed description of
this test case is available in the CFD Verification and Validation Database of
the NPARC Alliance [35]. The simulation results presented in Fig. 5 were com-
puted on a boundary-fitted mesh of 128× 128 bilinear elements and interpo-
lated onto a Cartesian background mesh for visualization purposes. All these
solutions were marched to the steady state by the backward Euler method.
Although it is unconditionally stable, the magnitude of admissible time steps
depends on the robustness of the iterative solver. In particular, the segregated
algorithm (85)-(86) cannot be operated at ∆t > 10−2 unless a strong under-
relaxation is performed. By contrast, time steps as large as ∆t = 1.0 can be
used in conjunction with the coupled solution strategy [32].

The upper diagrams show the distribution of Mach numbers predicted by
the low-order method based on scalar dissipation. The upstream and down-
stream Mach numbers M1 and M2 are correct but the transition between them
is anything else but discontinuous. The oblique shock is strongly smeared by
numerical diffusion and resembles a ‘rarefaction wave’. At the same time, this
low-order solution provides a reasonable initial guess for the FEM-TVD and
FEM-FCT algorithms. Let us examine the moderately diffusive MC limiter
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Low-order method, scalar dissipation
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FEM-FCT scheme, α = min{αρ, αE}
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Fig. 5. Compression corner: M1 = 2.5, θ = 15◦.

and the iterative Zalesak limiter with the ρ-E synchronization of the cor-
rection factors. After a sufficient number of outer defect correction steps, a
significant improvement is observed in the resolution of the stationary shock
(see Fig. 5). In fact, the results produced by both high-resolution schemes are
even superior to the reference solution from the NPARC database [35].

10.4 Prandtl-Meyer Expansion

Our next example deals with a steady supersonic flow being deflected down-
ward rather than upward. In this case, the flow behavior is quite different from
the one discussed above for the compression corner. As the gas reaches the
kink, it starts spreading and the flow characteristics change smoothly across
the so-called Prandtl-Meyer expansion wave. The streamlines gradually bend
downward and eventually become parallel to the lower wall as they leave the
rarefaction fan which separates the regions of uniform flow. All flow prop-
erties adjust themselves continuously across the rarefaction wave except for
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the critical point at which the wall geometry changes abruptly. The Mach
number increases, while the pressure, density and temperature decrease. The
analytical solution to this problem and further details can be found in [1].

In accordance with the NPARC setup for this benchmark [35], we adopt
the freestream Mach number M1 = 2.5 and the deflection angle θ = 15◦. The
resulting expansion fan is composed from an infinite number of iso-Mach lines
lying in the angular sector bounded by µ1 = 23.58◦ upstream and µ2 = 18.0◦

downstream. On exit from the rarefaction wave, the analytical value of the
Mach number equals M2 = 3.24. Figure 6 displays the low-order solution (top)
versus those produced by the FEM-TVD (middle) and FEM-FCT (bottom)
schemes. All parameter settings are the same as in the previous example and
so is the relative performance of the methods under consideration.
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FEM-FCT scheme, α = min{αρ, αE}
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Fig. 6. Prandtl-Meyer expansion: M1 = 2.5, θ = 15◦.
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10.5 Flow Past a Cylinder

In what follows, we stick to the characteristic FEM-TVD algorithm based on
the MC limiter and apply it to a number of flow problems in non-Cartesian
geometries so as to demonstrate the flexibility of the finite element approach.
The first example is a steady supersonic flow past a circular cylinder placed in
the center of a rectangular domain [31]. Specifically, the two-dimensional Euler
equations are solved in Ω = {(x, y) ∈ (−2.5, 2.5) × (−5, 5) : x2 + y2 > 0.25}
and the freestream Mach number M = 3 is prescribed at the left border.

To generate the hierarchical quad-tree data structures for the geometric
multigrid solver, the elements of a manually generated coarse mesh are succes-
sively subdivided into four subelements. The body-fitted computational mesh
shown in Fig. 7 (left) consists of 15,104 bilinear elements and corresponds to
the third refinement level for the underlying coarse grid. Note that a local
mesh refinement is performed in the wake of the cylinder. The Mach num-
ber distribution (right diagram) gives an insight into the flow structure which

Computational mesh Mach number isolines

Fig. 7. Steady flow past a cylinder: FEM-TVD scheme, Q1 elements.
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features a strong bow shock as well as stagnation and rarefaction zones. Con-
trary to the numerical study published in [27],[31] no stability or convergence
problems were encountered during this simulation. Moreover, there seems to
be no need for an entropy fix or any other adjustment of the algorithm.

On the other hand, the sensitivity of the computational results to the em-
ployed mesh was confirmed by our numerical experiments. The unstructured
‘coarse’ triangulation displayed in Fig. 8 contains 2,942 elements (1,561 nodes)
which amounts to 47,072 elements (23,896 nodes) after two refinement steps.
In this case, the mesh size is fairly uniform, except near the internal boundary.
The resulting numerical solution is comparable to that presented in Fig. 7 but
some differences can be observed in the critical zone downstream of the cylin-
der, where sufficient grid resolution is particularly important. At the same
time, this example serves as an evidence that algebraic flux correction is ap-
plicable to quadrilateral and triangular finite elements alike.

Triangular coarse mesh Mach number isolines

Fig. 8. Steady flow past a cylinder: FEM-TVD scheme, P1 elements.



32 Dmitri Kuzmin and Matthias Möller

10.6 Supersonic Scramjet Inlet

Another interesting benchmark configuration was introduced in [7]. A steady
supersonic flow enters a narrowing channel at M = 3 and impinges on two
sharp-cornered internal obstacles, which gives rise to multiple shock wave
reflections. The computational domain Ω is delimited by three piecewise-linear
boundary components passing through the following set of points [10]

upper wall upper obstacle

xi 0.0 0.4 4.9 12.6 14.25 16.9 4.9 8.9 9.4 14.25 12.6

yi 3.5 3.5 2.9 2.12 1.92 1.7 1.4 0.5 0.5 1.2 1.4

The ‘scramjet inlet’ is symmetric so that the coordinates of the corner points
for the lower wall/obstacle are given by (xi,−yi). As in the previous example,
a top-down approach to mesh generation is adopted. The underlying coarse
mesh shown in Fig. 9 consists of 1,033 triangles (616 vertices) and the number
of elements quadruples after each global refinement step.

Fig. 9. Scramjet inlet: triangular coarse mesh.

The stationary solutions displayed in Fig. 10 were produced by the fully
implicit FEM-TVD method via time marching. The upper diagram depicts
the Mach number distribution which was computed using 66,112 linear finite
elements (33,859 nodes). Four times as many triangles (133,831 nodes) were
employed to obtain the lower diagram. It can be seen that strong shocks are
reproduced reasonably well but the interplay of weak ones is difficult to cap-
ture even on the finer mesh. Like in many other aerodynamic applications,
there is a need for adaptive mesh refinement which can be readily realized in
a finite element code if appropriate error estimators/indicators are available.
Interestingly enough, the presented Mach number contours for the global re-
finement levels 3 and 4 resemble the simulation results of Dı́az et al. [7] on
the initial mesh and after one adaptation step, respectively.
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Refinement level 3

Refinement level 4

Fig. 10. Scramjet inlet: characteristic FEM-TVD method, MC limiter.

10.7 NACA 0012 Airfoil

Finally, let us deal with external flows past a NACA 0012 airfoil at various
freestream conditions. The upper and lower surfaces of this symmetric profile
are given in the form y = ±f(x), respectively, where x ∈ [0, 1.00893] and

f(s) = 0.6
(
0.2969s1/2 − 0.126s− 0.3516s2 + 0.2843s3 − 0.1015s4

)
.

The compressible Euler equations are to be solved in a bounded domain,
whose artificial far-field boundary is a circle of radius 10 centered at the tip
of the airfoil. The first coarse mesh for this simulation is displayed in Fig. 11.
It numbers 5,828 triangular elements and 2,973 vertices. A close-up of the
central part shows the mesh details in the vicinity of the internal boundary.
As an alternative, we consider a quadrilateral coarse mesh which consists of
3,000 elements and exhibits an unstructured tessellation pattern (see Fig. 12).
In either case, the final mesh is constructed from the coarse one by two quad-
tree refinements, which gives 93,248 triangles or 48,000 quadrilaterals.
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Fig. 11. Triangular coarse mesh for a NACA 0012 airfoil.
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Fig. 12. Quadrilateral coarse mesh for a NACA 0012 airfoil.
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The density and pressure are initialized by unity and steady-state solutions
are sought for the following far-field Mach numbers and angles of attack

Figure 13 M∞ = 0.5, α = 0◦ subsonic flow

Figure 14 M∞ = 0.8, α = 1.25◦ transonic flow

Figure 15 M∞ = 0.95, α = 0◦ transonic flow

A comparison with the simulation results reported in the literature [10],[14]
reveals that the numerical solutions presented in Fig. 13-15 are quite accurate,
even though no adaptive mesh refinement was performed. Weighted a poste-
riori error estimates for an adaptive finite element discretization of the Euler
equations can be derived as described in [14]. Clearly, even low-order methods
yield reasonable results on a suitably refined mesh. The goal of our numerical
study was to evaluate the performance of the new algorithm on a nonuniform
mesh constructed without using any knowledge of the solution. On the other
hand, the advent of self-adaptive FEM-TVD and FEM-FCT schemes would
make it possible to exploit the advantages of unstructured grids to the full
extent and create a very powerful CFD tool in the long run.

11 Conclusions and Outlook

In the present chapter, we extended the algebraic flux correction paradigm
to the compressible Euler equations and proposed a practical algorithm for
implementation of the resulting high-resolution schemes in a finite element
code. The theory of hyperbolic conservation laws was occasionally revisited to
make the exposition as self-contained as possible. At the same time, emphasis
was laid on various numerical aspects including but not limited to

• edge-by-edge matrix assembly for implicit Galerkin discretizations;
• construction of approximate Riemann solvers on unstructured grids;
• flux correction, synchronization and the choice of control variables;
• segregated versus coupled solution methods for algebraic systems;
• implementation of characteristic boundary conditions.

Our algebraic FCT and TVD methods were shown to prove their worth in the
systems arena. However, there are still many open problems and unexplored
areas that call for further research. In particular, characteristic flux limiters
would benefit from a fully multidimensional wave model. For implicit time-
stepping to be profitable, the combination of linear algebra tools should be
adapted to the underlying discretization. A strongly coupled iterative solver
can be developed in the framework of the FMG-FAS multigrid procedure
which lends itself to the treatment of the stationary Euler equations [15],[26].
An analog of the local MPSC smoother [43] offers a promising alternative to
the block-iterative or ‘collective’ (pointwise-coupled) Gauß-Seidel relaxation.
The marriage of algebraic flux correction and high-performance computing
techniques for large-scale applications is discussed in the next chapter.
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Pressure isolines, FEM-TVD scheme, P1 elements

Pressure isolines, FEM-TVD scheme, Q1 elements

Fig. 13. Flow past a NACA 0012 airfoil at M∞ = 0.5, α = 0◦.
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Mach number isolines, FEM-TVD scheme, P1 elements

Mach number isolines, FEM-TVD scheme, Q1 elements

Fig. 14. Flow past a NACA 0012 airfoil at M∞ = 0.8, α = 1.25◦.
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Mach number isolines, FEM-TVD scheme, P1 elements

Mach number isolines, FEM-TVD scheme, Q1 elements

Fig. 15. Flow past a NACA 0012 airfoil at M∞ = 0.95, α = 0◦.
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A. Characteristic Boundary Conditions

In this appendix, we elaborate on the implementation of numerical boundary
conditions for the Euler equations. The necessary background is presented in
section 9. Let us omit the subscript i and denote the predicted values of the
density, momentum, and total energy by ρ∗, (ρv)∗ and (ρE)∗, respectively.
The velocity v∗, pressure p∗, and speed of sound c∗ are given by

v∗ =
(ρv)∗

ρ∗
, p∗ = (γ − 1)

[
(ρE)∗ − ρ∗

|v∗|2
2

]
, c∗ =

√
γp∗
ρ∗

.

These auxiliary quantities are required for the computation of the provisional
Riemann invariants w

∗ from an analog of (88). The correction to be performed
depends on the number and type of physical boundary conditions.

Supersonic open boundary

At a supersonic inlet, the boundary values of all conservative variables can
be prescribed without conversion to the Riemann invariants. At a supersonic
outlet, no boundary conditions at all are required.

Subsonic inflow boundary

The analytical values of w∗∗
1 , . . . , w∗∗

4 are obtained from the physical boundary
conditions. The first two Riemann invariants are plugged into the relations

w∗∗
1 = n · v∗∗ −

2c∗∗
γ − 1

, w∗∗
2 = cv log

(
p∗∗
ργ
∗∗

)

for the new boundary values of the normal velocity, speed of sound, pressure,
and density. The second pair of parameters yields the tangential velocity

vτ = vτ (w∗∗
3 , w∗∗

4 ).

The outgoing Riemann invariant retains its predicted value w∗
5 so that

w∗∗
5 = n · v∗∗ +

2c∗∗
γ − 1

= n · v∗ +
2c∗

γ − 1
= w∗

5 .

This gives a system of five equations for five independent variables. Specifi-
cally, the components of the vector u

∗∗ can be recovered as follows

c∗∗ = (γ − 1)
w∗

5 − w∗∗
1

4
, ρ∗∗ =

[
c2
∗∗

γ
exp(−w∗∗

2 /cv)

] 1

γ−1

,

v∗∗ = vτ +
w∗∗

1 + w∗
5

2
n, (ρv)∗∗ = ρ∗∗v∗∗,

(ρE)∗∗ = ρ∗∗

[
c2
∗∗

γ(γ − 1)
+
|v∗∗|2

2

]
, u

∗∗ = [ρ∗∗, (ρv)∗∗, (ρE)∗∗]
T .
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Subsonic outflow boundary

The incoming Riemann invariant w∗
1 is overwritten by the imposed boundary

condition w∗∗
1 = n · v∗∗ − 2c∗∗

γ−1 . All other characteristic variables retain their
boundary values computed at the predictor step. In particular, we have

w∗∗
2 = cv log(p∗∗/ργ

∗∗) = cv log(p∗/ργ
∗) = w∗

2 ,

w∗∗
5 = n · v∗∗ +

2c∗∗
γ − 1

= n · v∗ +
2c∗

γ − 1
= w∗

5

and the tangential velocity vτ is defined by w∗
3 and w∗

4 . This information is
sufficient to compute the nodal values of the conservative variables

c∗∗ = (γ − 1)
w∗

5 − w∗∗
1

4
, ρ∗∗ =

[
c2
∗∗

γ
exp(−w∗

2/cv)

] 1

γ−1

,

v∗∗ = v∗ +

[
w∗∗

1 + w∗
5

2
− n · v∗

]
n, (ρv)∗∗ = ρ∗∗v∗∗,

(ρE)∗∗ = ρ∗∗

[
c2
∗∗

γ(γ − 1)
+
|v∗∗|2

2

]
, u

∗∗ = [ρ∗∗, (ρv)∗∗, (ρE)∗∗]
T .

As a rule, the pressure p∗∗ rather than the Riemann invariant w∗∗
1 is specified

at a subsonic outlet. In this case, the transformation formulae read

ρ∗∗ = ρ∗

(
p∗∗
p∗

) 1

γ

, c∗∗ =

√
γp∗∗
ρ∗∗

,

v∗∗ = v∗ +
2(c∗ − c∗∗)

γ − 1
n, (ρv)∗∗ = ρ∗∗v∗∗,

(ρE)∗∗ =
p∗∗

γ − 1
+ ρ∗∗

|v∗∗|2
2

, u
∗∗ = [ρ∗∗, (ρv)∗∗, (ρE)∗∗]

T .

Solid wall boundary

At an impervious solid wall, the normal velocity vn must vanish. Taking this
physical boundary condition into account, we obtain the expression

w∗∗
5 =

2c∗∗
γ − 1

= n · v∗ +
2c∗

γ − 1
= w∗

5 .

Furthermore, vn = 0 implies that the entropy and the tangential velocity
components do not cross the boundary. Therefore, their original values should
not be corrected and the resulting conversion rules are as follows

c∗∗ = c∗ +
γ − 1

2
n · v∗, ρ∗∗ =

[
c2
∗∗

γ

ργ
∗

p∗

] 1

γ−1

,

v∗∗ = v∗ − (n · v∗)n, (ρv)∗∗ = ρ∗∗v∗∗,

(ρE)∗∗ = ρ∗∗

[
c2
∗∗

γ(γ − 1)
+
|v∗∗|2

2

]
, u

∗∗ = [ρ∗∗, (ρv)∗∗, (ρE)∗∗]
T .
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The second line in this group of formulae corresponds to a projection of the
predicted momentum onto the tangent plane. This modification is sufficient
to enforce the free slip boundary condition n · v∗∗ = 0. Alternatively, it can
be applied to the defect for the momentum equation before computing u

∗

from (90). In either case, the correction of ρ∗ and (ρE)∗ is optional.

If the initial data fail to satisfy the free slip condition, the abrupt change of
the normal velocity results in an impulsive start which is physically impossible
due to inertia. Hence, various numerical difficulties and poor convergence are
to be expected. This problem was investigated by Lyra [27],[31] who proposed
the following relaxation procedure for the freestream condition

n · vn+1 = (1− ω)n · vn, 0 ≤ ω < 1.

In essence, the fluid is allowed to seep through the wall during the startup
but the normal velocity is gradually driven to zero as the flow evolves. The
relaxation parameter ω determines the rate at which it is adjusted.
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