
Algebraic Flux Correction II
Compressible Flow Problems

Dmitri Kuzmin, Matthias Möller, and Marcel Gurris

Abstract Flux limiting for hyperbolic systems requires a careful generalization of
the design principles and algorithms introduced in the context of scalar conservation
laws. In this chapter, we develop FCT-like algebraic flux correction schemes for the
Euler equations of gas dynamics. In particular, we discuss the construction of artifi-
cial viscosity operators, the choice of variables to be limited, and the transformation
of antidiffusive fluxes. An a posteriori control mechanism is implemented to make
the limiter failsafe. The numerical treatment of initial and boundary conditions is
discussed in some detail. The initialization is performed using an FCT-constrained
L2 projection. The characteristic boundary conditions are imposed in a weak sense,
and an approximate Riemann solver is used to evaluate the fluxes on the boundary.
We also present an unconditionally stable semi-implicit time-stepping scheme and
an iterative solver for the fully discrete problem. The results of a numerical study
indicate that the nonlinearity and non-differentiability of the flux limiter do not in-
hibit steady state convergence even in the case of strongly varying Mach numbers.
Moreover, the convergence rates improve as the pseudo-time step is increased.

1 Introduction

The first successful finite element schemes for compressible flow problems were
developed by the Swansea and INRIA groups in the 1980s. The most prominent
representative of these schemes is the two-step Taylor-Galerkin method [1, 43] and
its combination with FCT [42, 57, 58]. The early 1990s have witnessed the advent
of edge-based data structures [6, 44, 54, 59] that offer a number of significant advan-

Dmitri Kuzmin
Applied Mathematics III, University Erlangen-Nuremberg
Cauerstr. 11, D-91058, Erlangen, Germany
e-mail: kuzmin@am.uni-erlangen.de
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tages compared to the traditional element-based implementation. In the case of P1
finite elements, the edge-based formulation is equivalent to a vertex-centered finite
volume scheme [59, 60]. This equivalence makes it possible to implement approxi-
mate Riemann solvers and slope limiters in the context of finite element discretiza-
tions on simplex meshes [46, 47, 48, 49, 52, 54]. However, the resulting schemes
require mass lumping and are sensitive to the orientation of mesh edges.

All classical high-resolution FEM are explicit and, therefore, subject to time step
restrictions. Implicit schemes have the potential of being unconditionally stable but
rely on the quality of the iterative solver for the nonlinear system. In particular, a
careful linearization/preconditioning of the discrete Jacobian operator is essential.
A semi-implicit solution strategy [10, 14, 67] and weak imposition of characteristic
boundary conditions [18] lead to an algorithm that converges to steady state solu-
tions at arbitrarily large CFL numbers [18, 19]. This is a remarkable result since the
use of nondifferentiable limiters is commonly believed to inhibit convergence.

The development of flux-corrected transport schemes for systems of equations is
more difficult than in the scalar case. A limiter designed to control the local max-
ima and minima of the conservative variables does not guarantee that the pressure
or internal energy will stay nonnegative. Likewise, the velocity is not directly con-
strained and may exhibit spurious fluctuations. Since the rate of transport depends
on the oscillatory velocity and pressure fields, undershoots and overshoots eventu-
ally carry over to the conservative variables. As a typical consequence, the speed of
sound becomes negative, indicating that the simulation is going to crash.

In this chapter, we review some recent advances in the design of implicit alge-
braic flux correction schemes for the Euler equations [18, 19, 32, 33, 34, 50]. After
the presentation of the standard Galerkin scheme, we discuss various forms of arti-
ficial dissipation and the above difficulties associated with flux limiting for systems
of equations. In particular, we present a synchronized FCT limiter that features a
node-based transformation to primitive variables and a failsafe control mechanism
inspired by the recent work of Zalesak [76]. Also, we address the treatment of non-
linearities and the implementation of initial/boundary conditions. A numerical study
is performed for a number of steady and unsteady inviscid flow problems in 2D.

2 The Euler Equations

The Euler equations of gas dynamics represent a system of conservation laws for
the mass, momentum, and energy of an inviscid compressible fluid

∂ρ

∂ t
+∇ · (ρv) = 0, (1)

∂ (ρv)
∂ t

+∇ · (ρv⊗v+ pI ) = 0, (2)

∂ (ρE)
∂ t

+∇ · (ρEv+ pv) = 0, (3)
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where ρ is the density, v is the velocity, p is the pressure, E is the total energy, and
I is the identity tensor. The system is closed with the equation of state

p = (γ−1)
(

ρE− ρ|v|2

2

)
(4)

for an ideal polytropic gas with the heat capacity ratio γ . The default is γ = 1.4 (air).
The nonlinear system (1)–(3) can be written in the generic divergence form

∂U
∂ t

+∇ ·F = 0, (5)

where

U =

 ρ

ρv
ρE

 , F =

 ρv
ρv⊗v+ pI

ρEv+ pv

 (6)

are the vectors of conservative variables and fluxes. It can be shown that [71]

F = AU, (7)

where A = ∂F
∂U is the Jacobian tensor associated with the quasi-linear form of (5)

∂U
∂ t

+A ·∇U = 0. (8)

Due to the hyperbolicity of the Euler equations, any directional Jacobian matrix
e ·A is diagonalizable and admits the factorization [24, 37, 71]

e ·A = RΛR−1, (9)

where Λ(e) is the diagonal matrix of eigenvalues and R(e) is the matrix of right
eigenvectors. In the 3D case, the eigenvalues of the 5×5 matrix e ·A are given by

λ1 = e ·v− c, (10)
λ2 = λ3 = λ4 = e ·v, (11)

λ5 = e ·v+ c, (12)

where c =
√

γ p/ρ is the speed of sound. Thus, the solution to a Riemann problem
is a superposition of three waves traveling at speed e · v and two waves propagat-
ing at speeds ±c relative to the gas. Closed-form expressions for the eigenvectors
associated with each characteristic speed can be found, e.g., in [56].

Let Ω ⊂ Rn, n ∈ {1,2,3} be a bounded domain. The solution to the unsteady
Euler equations is initialized by a given distribution of all variables

U(x, t) =U0(x) in Ω . (13)
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Given a vector of “free stream” solution values U∞, characteristic boundary condi-
tions of Dirichlet or Neumann type can be defined in terms of the solution to the
Riemann problem with the interior state U and exterior state U∞, see Section 11.

In general, we impose Dirichlet boundary conditions on the boundary part ΓD

U = G(U,U∞) on ΓD (14)

and Neumann (normal flux) boundary conditions on the boundary part ΓN

n ·F = Fn(U,U∞) on ΓN , (15)

where n is the unit outward normal. Note that the solution to the Riemann problem
depends not only on the prescribed boundary data but also on the unknown solution.

3 Group FEM Approximation

To begin with, we discretize the Euler equations using linear or multilinear finite
elements. After integration by parts, the variational formulation of (5) becomes∫

Ω

(
w

∂U
∂ t
−∇w ·F

)
dx+

∫
Γ

wFnds = 0, ∀w. (16)

Since the test function w vanishes on ΓD, the surface integral reduces to that over ΓN .
Within the framework of Fletcher’s [16] group finite element formulation, the ap-

proximate solution Uh ≈U and the numerical flux function Fh ≈ F are interpolated
using the same set of piecewise-polynomial basis functions {ϕi}. That is,

Uh(x, t) = ∑
j

U j(t)ϕ j(x), (17)

Fh(x, t) = ∑
j

F j(t)ϕ j(x). (18)

Inserting these approximations into the Galerkin weak form (16), one obtains a
system of semi-discretized equations for the time-dependent nodal values

∑
j

(∫
Ω

ϕiϕ j dx
)

dU j

dt
= ∑

j

(∫
Ω

∇ϕiϕ jdx
)
·F j−

∫
Γ

ϕiFnds. (19)

By the homogeneity property (7) of the Euler fluxes, we have

F j = A jU j.

Thus, the matrix form of the semi-discrete problem can be written as follows:

MC
dU

dt
= KU+ S(U). (20)
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The (n+2)× (n+2) blocks of the consistent mass matrix MC = {Mi j} are defined
by Mi j = mi jI, where I stands for the identity matrix and

mi j =
∫

Ω

ϕiϕ j dx. (21)

Furthermore, the vector of boundary loads associated with node i is given by

Si =−
∫

Γ

ϕiFnds, (22)

and the formula for entries of the discrete Jacobian operator K = {Ki j} reads

Ki j = c ji ·A j, ci j =
∫

Ω

ϕi∇ϕ j dx. (23)

Since ∑ j ϕ j ≡ 1, the matrix of discrete derivatives C := {ci j} has zero row sums

∑
j

ci j = 0. (24)

Furthermore, integration by parts reveals that the coefficients ci j and c ji satisfy

c ji =−ci j +
∫

Γ

ϕiϕ j nds. (25)

The boundary term is symmetric and corresponds to an entry of the mass matrix for
the surface triangulation of Γ . In the case of (multi-)linear finite elements, the basis
function ϕi vanishes on Γ , unless xi is a boundary node. It follows that

c ji =−ci j, cii = 0, Si = 0 (26)

in the interior of Ω . The above properties of the discrete gradient operator C play
an important role in the derivation of edge-based data structures [27, 40, 60].

4 Edge-Based Representation

Properties (24) and (26) make it possible to express the components of KU in terms
of edge contributions. The following representation is valid inside Ω

(KU)i = ∑
j 6=i

ei j · (F j−Fi), ei j =
c ji− ci j

2
. (27)

The numerical fluxes for an edge-based implementation are defined by [34, 60]

(KU)i =−∑
j 6=i

Gi j, Gi j = ci j ·Fi− c jiF j. (28)
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For the derivation of the above flux decomposition for KU, we refer to [27, 34, 60].
As shown by Roe [55], the flux difference can be linearized as follows

F j−Fi = Ai j(U j−Ui). (29)

The edge Jacobian matrix Ai j := A(ρi j,vi j,Hi j) is associated with a special set of
density-averaged variables known as the Roe mean values

ρi j =
√

ρiρ j, (30)

vi j =

√
ρivi +

√
ρ jv j√

ρi +
√

ρ j
, (31)

Hi j =

√
ρiHi +

√
ρ jH j√

ρi +
√

ρ j
, (32)

where H = E + p
ρ

denotes the stagnation enthalpy. The speed of sound is given by

ci j =

√
(γ−1)

(
Hi j−

|vi j|2
2

)
. (33)

By virtue of (27) and (29), the following relationship holds for internal nodes

Kii =−∑
j 6=i

Ki j, Ki j = ei j ·Ai j, j 6= i. (34)

This representation of Ki j turns out to be very useful when it comes to the design
of artificial viscosity operators for algebraic flux correction schemes (see the next
section). However, the assembly of K should be performed using definition (23).

By the hyperbolicity of the Euler equations, the directional Roe matrix ei j ·Ai j
is diagonalizable with real eigenvalues. Invoking (9), we obtain the factorization

ei j ·Ai j = |ei j|Ri jΛi jR−1
i j . (35)

According to (10)–(12) the entries of the eigenvalue matrix Λi j are given by

λ1 = vi j− ci j, (36)
λ2 = λ3 = λ4 = vi j, (37)

λ5 = vi j + ci j. (38)

Here ci j is the speed of sound (33) for Roe’s approximate Riemann solver, while

vi j =
ei j ·vi j

|ei j|

is the density-averaged velocity along the (virtual) edge connecting nodes i and j.
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5 Artificial Viscosity Operators

In the chapter on algebraic flux correction for scalar conservation laws [31], we
constructed a nonoscillatory low-order scheme using row-sum mass lumping

ML := diag{miI}, mi = ∑
j

mi j (39)

and conservative postprocessing of the Galerkin operator K = {Ki j}. For systems
of conservation laws, each block Ki j is an (n+ 2)× (n+ 2) matrix. The blocks of
the artificial diffusion operator D := {Di j} are matrices of the same size. As in the
scalar case, the discrete Jacobian operator is modified edge-by-edge thus:

Kii := Kii−Di j, Ki j := Ki j +Di j,

K ji := K ji +Di j, K j j := K j j−Di j.
(40)

Replacing K with L := K +D, one obtains the low-order approximation to (20)

ML
dU

dt
= LU+ S(U). (41)

If all off-diagonal matrix blocks Li j are positive semi-definite, then such a low-order
scheme proves local extremum diminishing (LED) with respect to local character-
istic variables [34]. This condition is a generalization of the LED criterion for scalar
transport equations. In the case of a hyperbolic system it is less restrictive than the
requirement that all off-diagonal entries of L be nonnegative.

According to (34) and (35), the negative eigenvalues of Ki j and K ji can be elimi-
nated by adding tensorial artificial dissipation of the form [34]

Di j = |ei j ·Ai j| := |ei j|Ri j|Λi j|R−1
i j , (42)

where |Λi j| is a diagonal matrix containing the absolute values of the eigenvalues.
Flux limiting in terms of characteristic variables requires that the diffusive and

antidiffusive fluxes be defined separately for each component of ei j = (e1
i j, . . . ,e

n
i j)

and Ai j = (A1
i j, . . . ,An

i j). Thus, the above definition of Di j should be replaced with

Di j = |e1
i jA1

i j|+ · · ·+ |en
i jAn

i j|. (43)

In the 1D case, the low-order scheme with artificial viscosity of the form (42) or
(43) reduces to Roe’s approximate Riemann solver (see Appendix).

The cost of evaluating the Roe matrix Ai j is rather high. An inexpensive alterna-
tive is the computation of Di j using the Jacobian at the arithmetic mean state

Ai j := A
(

U j +Ui

2

)
. (44)
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Banks et al. [5] present a numerical study of methods that use this linearization. In
particular, the expected order of accuracy is verified numerically. Importantly, the
replacement of the Roe mean values with the arithmetic mean does not make the
scheme nonconservative if this approximation is used in the definition of Di j only.

In particularly sensitive applications, the minimal artificial viscosity based on the
characteristic decomposition of Ai j may fail to suppress spurious oscillations. This
is unacceptable if the flux limiter relies on the assumption that the local extrema of
the low-order solution constitute physically legitimate upper and lower bounds.

A possible remedy is the use of Rusanov-like scalar dissipation proportional to
the fastest characteristic speed [5, 76]. The straightforward definition is

Di j = di j I, di j = |ei j|max
i
|λi|, (45)

where maxi |λi| = |ei j|(|vi j|+ ci j) is the spectral radius of the Roe matrix. In our
experience, a more robust and efficient low-order scheme is obtained with [33]

Di j = max{di j,d ji}I, di j = |ei j ·v j|+ |ei j|c j, (46)

where ci =
√

γ pi/ρi is the speed of sound at node i. In the context of implicit
schemes, scalar dissipation may be used for preconditioning purposes even if tenso-
rial artificial viscosity of the form (42) or (43) is favored for accuracy reasons.

6 Algebraic Flux Correction

The semi-discrete Galerkin scheme (20) admits a conservative splitting into the
nonoscillatory low-order part (41) and an antidiffusive correction:

MC
dU

dt
= KU+ S(U) ⇔ ML

dU

dt
= LU+ S(U)+ F(U), (47)

where F(U) is the vector of raw antidiffusive fluxes. By definition of ML and D

Fi = ∑
j 6=i

Fi j, Fi j = mi j

(
dUi

dt
−

dU j

dt

)
+Di j(Ui−U j). (48)

In the process of flux correction, Fi is replaced with its limited counterpart

F̄i = ∑
j 6=i

F̄i j, F̄i j := αi jFi j, 0≤ αi j ≤ 1. (49)

In Section 9, we discuss various generalizations of scalar limiting techniques to
systems. All of them produce a constrained semi-discrete problem of the form

ML
dU

dt
= R(U), (50)
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where R(U) = LU+ S(U)+ F̄(U) incorporates the nonlinear antidiffusive correction.
Let Un denote the vector of solution values at the time level tn = n∆ t, where ∆ t

is a constant time step. Integration in time by the two-level θ -scheme yields

ML
Un+1−Un

∆ t
= θR(Un+1)+(1−θ)R(Un), (51)

where θ ∈ (0,1] is the implicitness parameter. In the fully discrete form of (48), the

time derivative dUi
dt is replaced with Un+1

i −Un
i

∆ t and Di j(Ui−U j) becomes

θ Dn+1
i j (Un+1

i −Un+1
j )+(1−θ)Dn

i j(Un
i −Un

j).

The structure of the constrained flux F̄i j depends on the adopted limiting strategy.

7 Solution of Nonlinear Systems

Following a common practice [10, 14, 67], we linearize the contribution of R(Un+1)
to the right-hand side of (51) about Un using the Taylor series expansion

R(Un+1)≈ R(Un)+

(
∂R
∂ U

)n

(Un+1−Un). (52)

Plugging this approximation into (51), one obtains the linear algebraic system[
ML

∆ t
−θ

(
∂R
∂ U

)n]
(Un+1−Un) = R(Un). (53)

If the steady-state solution is of interest, we use the backward Euler method
(θ = 1) and gradually increase the pseudo-time step ∆ t. When the solution begins
to approach the steady state (R(U) = 0) , the removal of the mass matrix can greatly
speed up the convergence process since (53) reduces to Newton’s method

−
(

∂R
∂ U

)n

(Un+1−Un) = R(Un) (54)

in the limit of infinitely large (pseudo)-time steps. On the other hand, removing the
mass matrix too soon may have an adverse effect on the convergence rates [62].

Trépanier et al. [67] found it useful to freeze the Jacobian after the residuals reach
a prescribed tolerance. This can significantly reduce the cost of matrix assembly.

Neglecting the nonlinearity of L = K +D, we approximate the Jacobian by [18]

∂R
∂ U
≈ K +D+

∂ S

∂ U
+

∂ F̄

∂ U
. (55)
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If the blocks of the Galerkin transport operator K are defined by (23), the use of
K(Un) instead of K(Un+1) boils down to replacing the flux F j = An+1

j Un+1
j with the

flux F j = An
j Un+1

j . Thus, the above linearization about Un is conservative.
Since the vector of boundary fluxes S(U) depends on the solution of a Riemann

problem, its differentiation is a rather laborious process. For details, we refer to
Gurris [18] who derived a formula for ∂ S

∂ U using a repeated application of the chain
rule. His numerical study indicates that the implicit treatment of the weakly imposed
boundary conditions makes it possible to achieve unconditional stability.

The use of a non-differentiable flux limiter rules out the derivation of closed-
form expressions for ∂ F

∂ U . In principle, the antidiffusive term can be differentiated
numerically using finite differencing [50, 51]. However, the significant overhead
cost and the sensitivity to the choice of the free parameter restrict the practical utility
of this approach. Moreover, the resultant matrix is not as sparse as the low-order
Jacobian since the use of limiters widens the computational stencils. For this reason,
we currently favor a semi-explicit treatment of limited antidiffusion.

Instead of linearizing the nondifferentiable antidiffusive term about Un, one can
update it in an iterative fashion. Given an approximate solution U(m) ≈ Un+1 to (53),
a new approximation U(m+1) is obtained by solving the linear system

J(U(m))(U(m+1)−Un) = R(Un)+θ(F̄(U(m))− F̄(Un)), (56)

J(U) = ML
∆ t −θ

(
L(U)+ ∂ S

∂ U

)
. (57)

Due to the semi-explicit treatment of F̄(Un+1), the so-defined defect correction
scheme may converge rather slowly. However, it can be converted into a quasi-
Newton method using the Anderson convergence acceleration technique [26].

The repeated evaluation of the antidiffusive term can be avoided using a lineariza-
tion about the solution of the low-order system. This predictor-corrector strategy is
appropriate if the transient flow behavior dictates the use of small time steps. In this
case, the following algorithm [28, 33] is a cost-effective alternative to (53)

1. Calculate the end-of-step solution UL ≈ Un+1 to the low-order system

J(Un)(UL−Un) = L(Un)Un + S(Un). (58)

2. Calculate the vector of raw antidiffusive fluxes Fi j linearized about UL

Fi j = mi j
(

U̇L
i − U̇L

j
)
+Di j(UL

i −UL
j ), (59)

where U̇L
i is a low-order approximation to the time-derivative at node i

U̇L = M−1
L [L(UL)UL + S(UL)]. (60)

3. Apply the flux limiter and calculate the final solution Un+1

Un+1
i = UL

i +
1
mi

∑
j 6=i

F̄i j. (61)
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8 Solution of Linear Systems

In the 3D case, there are 5 unknowns (density, 3 momentum components, and en-
ergy) per mesh node. Hence, each linear system to be solved can be written as

J11 J12 J13 J14 J15
J21 J22 J23 J24 J25
J31 J32 J33 J34 J35
J41 J42 J43 J44 J45
J51 J52 J53 J54 J55




∆u1
∆u2
∆u3
∆u4
∆u5

=


r1
r2
r3
r4
r5

 . (62)

Simultaneous update of all variables is costly in terms of CPU time and memory
requirements. The coupled system can be split into smaller subproblems using an
iterative method of block-Jacobi or block-Gauss-Seidel type. In the former case,
the new value of ∆uk is calculated using ∆ul from the last outer iteration:

Jkk∆u(m+1)
k = rk−∑

k 6=l
Jkl∆u(m)

l , ∆u(0) := 0, (63)

where m is the iteration counter and k is the subproblem index. Replacing ∆u(m)
l

with ∆u(m+1)
l for l < k, one obtains the block-Gauss-Seidel method

Jkk∆u(m+1)
k = rk−∑

l>k
Jkl∆u(m)

l −∑
l<k

Jkl∆u(m+1)
l . (64)

This segregated solution strategy is easy to implement but may require many iter-
ations per time step. A more robust iterative solver for (62) can be designed using
a Krylov-subspace or multigrid method equipped with a smoother/preconditioner
that involves solution of small coupled problems on elements/patches. In the next
chapter, we will use such a method to solve the discrete saddle point problem for
the finite element discretization of the incompressible Navier-Stokes equations.

9 Flux Limiting for Systems

The design of flux limiters for hyperbolic systems is more involved than that for
scalar conservation laws. If the density, momentum, and energy increments are lim-
ited separately, undershoots/overshoots are likely to arise in all quantities of interest.
The following remedies to this problem have been proposed [41, 42, 73, 74, 76]

• synchronization of the correction factors for selected control variables;
• transformations to nonconservative (primitive, characteristic) variables;
• a posteriori control and postprocessing of the flux-corrected solution.

In the synchronized version of the FCT limiter [42, 41], all components of the
raw antidiffusive flux Fi j are multiplied by the same correction factor αi j. No syn-
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chronization of αi j is required if a transformation to the local characteristic variables
is performed. However, this sort of flux correction is computationally expensive and
requires dimensional splitting for the diffusive and antidiffusive fluxes.

Limiters that constrain the primitive (density, velocity, pressure) or characteristic
variables are typically quite reliable but the involved linearizations may also cause
them to fail, no matter how carefully they are designed. While it is impossible to
rule out the formation of spurious maxima and minima a priori, they can be easily
detected and removed at a postprocessing step. This approach was introduced by
Zalesak [76] who used it to maintain the nonnegativity of pressures and internal
energies in a characteristic FCT method for the compressible Euler equations.

9.1 Transformation of Variables

We begin with the presentation of a symmetric limiter for a general set of dependent
quantities. In classical high-resolution schemes for the Euler equations, the required
transformations between the conservative and nonconservative variables are usually
performed edge-by-edge [40, 73, 74, 76]. The solution-dependent transformation
matrix Ti j = T ji is evaluated using a suitably defined average of Ui and U j.

A very general limiting strategy for systems was proposed by Löhner [40]. Given
a tentative solution U and the corresponding vector of raw antidiffusive fluxes

Fi j = [ f ρ

i j , f
ρv
i j , f ρE

i j ]T , (65)

the following algorithm can be used to calculate the synchronized correction factors
αi j for a given set of possibly nonconservative control variables:

1. Initialize the three auxiliary arrays for the generalized Zalesak limiter

P±i := 0, Q±i := 0, R±i := 1. (66)

2. For each pair of neighbor nodes, perform the local change of variables

F̂i j := Ti jFi j, ∆ Wi j := Ti j(U j−Ui), (67)
F̂ ji :=−F̂i j, ∆ W ji :=−∆ Wi j. (68)

3. Update the sums of positive/negative components to be limited

P±i,k := P±i,k +
max
min {0, f̂ k

i j}, P±j,k := P±j,k +
max
min {0, f̂ k

ji}. (69)

4. Update the upper/lower bounds for the sum of limited increments

Q±i,k := max
min

{
Q±i,k,∆wk

i j

}
, Q±j,k := max

min

{
Q±j,k,∆wk

ji

}
. (70)
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5. Calculate the nodal correction factors for positive/negative edge contributions

R±i,k = min

{
1,

γiQ±i,k
P±i,k

}
, (71)

where γi > 0 is a positive scaling factor (γi = mi/∆ t for generalized FCT).

6. Determine the edge correction factors for the given quantity of interest

α
k
i j = min{Rk

i j,R
k
ji}, Rk

i j =

{
R+

i,k, if f̂ k
i j ≥ 0,

R−i,k, if f̂ k
i j < 0.

(72)

7. Multiply all components of Fi j and F ji by the synchronized correction factor

αi j = min
k

α
k
i j. (73)

Instead of calculating αk
i j independently and taking the minimum, one can rede-

fine αk
i j as the correction factor for the raw antidiffusive flux [33]

Fk
i j := α

k−1
i j Fk−1

i j . (74)

This sequential limiting procedure amounts to the multiplication of F0
i j := Fi j by

αi j = α
k
i j ·αk−1

i j · ... ·α
1
i j. (75)

In contrast to (73), the result depends on the order in which the correction factors
αk

i j are calculated. However, the raw antidiffusive fluxes (74) already include the net
effect of previous corrections, which makes the limiter less diffusive.

In our experience, averaging across shocks and contact discontinuities may give
rise to unbounded solutions in some particularly sensitive problems. This has led us
to prefer a node-based approach to the transformation of variables for the synchro-
nized flux limiter [33]. In the revised version, we replace (67) and (68) with

F̂i j := TiFi j, ∆ Wi j := T jU j− TiUi, (76)
F̂ ji :=−T jFi j, ∆ W ji :=−∆ Wi j. (77)

Since the transformation matrices Ti and T j are generally different, the transformed
antidiffusive fluxes are no longer skew-symmetric, i.e., F̂ ji 6= −F̂i j. However, the
flux-limited scheme remains conservative since the synchronized correction factor
αi j is applied to the vector of original fluxes (65). It is neither necessary nor desirable
to require that the increments to nonconservative variables be skew-symmetric.

The node-based approach makes the limiter more robust. First, the transforma-
tion matrix Ti is the same for all antidiffusive fluxes into node i. Second, the upper
and lower bounds are defined using the correct nodal values of the nonconservative
variables. Moreover, the revised algorithm requires less arithmetic operations.
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9.2 Limiting Primitive Variables

In this section, we describe the synchronized FCT limiter with node-based transfor-
mations to the primitive variables. The flux-corrected solution is given by

miUi = miU
L
i +∑

j 6=i
αi jFi j, (78)

where UL denotes the low-order predictor. To calculate αi j, we define [33]

vi =
(ρv)i

ρi
, pi = (γ−1)

[
(ρE)i−

|(ρv)i|2

2ρi

]
, (79)

fv
i j =

fρv
i j −vi f ρ

i j

ρi
, f p

i j = (γ−1)
[

f ρE
i j +

|vi|2

2
f ρ

i j −vi · fρv
i j

]
. (80)

Let uL
i be the low-order approximation to ρ , v, or p. The raw antidiffusive ‘flux’

from node j into node i is denoted by f u
i j. In accordance with the FCT philosophy,

the choice of the correction factor αu
i j must ensure that the limited antidiffusive

correction does not increase the local maxima and minima of uL. The node-based
approach to computation of αu

i j involves the following algorithmic steps [33]:

1. Compute the sums of positive/negative antidiffusive increments to node i

P+
i = ∑

j 6=i
max{0, f u

i j}, P−i = ∑
j 6=i

min{0, f u
i j}. (81)

2. Compute the distance to a local maximum/minimum of the low-order solution

Q+
i = umax

i −uL
i , Q−i = umin

i −uL
i . (82)

3. Compute the nodal correction factors for the net increment to node i

R±i := min
{

1,
miQ±i
∆ tP±i

}
. (83)

4. Define αu
i j = αu

ji so as to satisfy the LED constraints for nodes i and j

α
u
i j = min{Ri j,R ji}, Ri j =

{
R+

i , if f u
i j ≥ 0,

R−i , if f u
i j < 0. (84)

If all primitive variables are selected for limiting, the synchronized correction
factor αi j for the explicit solution update (78) can be defined as [32, 41, 42]

αi j = min{αρ

i j,α
v
i j,α

p
i j} (85)

or
αi j = α

ρ

i jα
v
i jα

p
i j. (86)
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In the multidimensional case, small velocity fluctuations in the crosswind direction
may result in the cancellation of the entire flux. To avoid this, we set αv

i j := 1 or
define αv

i j as the correction factor for the streamline velocity [33].
Since the change of variables in (79) and (80) involves a linearization about UL

i ,
there is no guarantee that the flux-corrected solution given by (61) will stay within
the original bounds, especially in the presence of large jumps. Therefore, our FCT
limiting strategy includes a postprocessing step in which all undershoots and over-
shoots are detected and removed. The first ‘failsafe’ flux limiter of this kind was
proposed by Zalesak (see [76], pp. 36 and 56). His recipe is very simple: “if, after
flux limiting, either the density or the pressure in a cell is negative, all the fluxes into
that cell are set to their low order values, and the grid point values are recalculated.”
It is tacitly assumed that the low-order solution is free of nonphysical values.

A similar approach can be used to enforce local FCT constraints in a failsafe
manner [33]. The flux-corrected value ui of the control variable u is acceptable if

umin
i ≤ ui ≤ umax

i . (87)

If any quantity of interest (density, velocity, pressure) has an undershoot/overshoot
at node i, then a fixed percentage of the added antidiffusive fluxes αi jFi j and α jiF ji
is removed until the offense is eliminated [33]. The number of correction cycles N
depends on the effort invested in the calculation of αi j. If the synchronized FCT
limiter is applied to all primitive variables, then undershoots and overshoots are an
exception, so that N = 1 is optimal. On the other hand, 3-5 cycles may be appropriate
in the case αi j =α

ρ

i j or αi j =α
p
i j. The choice of N affects only the amount of rejected

antidiffusion. The bounds of the low-order solution are guaranteed to be preserved
even for αi j ≡ 1. Hence, the failsafe corrector can not only reinforce but also replace
the synchronized FCT limiter, as demonstrated by the numerical study in [33].

9.3 Limiting Characteristic Variables

The idea of flux limiting in terms of local characteristic variables dates back to
the work of Yee et al. [73, 74] on total variation diminishing (TVD) schemes for the
Euler equations. The traditional approach to implementation of such high-resolution
schemes in edge-based finite element codes is based on the reconstruction of local
1D stencils [2, 9, 40, 46, 57, 58]. The development of a genuinely multidimensional
characteristic limiter is complicated by the fact that the eigenvalues and eigenvec-
tors of the Jacobian matrices ei j ·Ai j depend on the orientation of ei j, whereas all
components of the sums P±i must correspond to the same set of local characteristic
variables. For this reason, we use artificial viscosity of the form (43) and limit the
antidiffusive fluxes associated with each coordinate direction independently.

In contrast to the synchronized FCT algorithm for primitive variables, it is worth-
while to use different correction factors for different waves. In this case, an edge-
based transformation of variables is required to keep the scheme conservative.



16 D. Kuzmin, M. Möller, M. Gurris

The multiplication by the matrix of left eigenvectors Li j = R−1
i j of a directional

Jacobian Ad
i j, 1≤ d ≤ n transforms U j−Ui into the characteristic difference

∆ Wi j = R−1
i j (U j−Ui).

Since the local characteristic variables are essentially decoupled, the components of
∆ Wi j can be limited separately. If a one-sided limiting strategy is adopted, the sign
of the eigenvalue λk determines the upwind direction for the k-th wave. Let

I =
{

i, if λk ≥ 0,
j, if λk < 0. (88)

In the process of flux limiting, a nodal correction factor R±I,k is applied to ∆wk
i j

∆̂wk
i j =

{
R+

I,k∆wk
i j, if ∆wk

i j ≤ 0,

R−I,k∆wk
i j, if ∆wk

i j > 0.
(89)

The multiplication by the matrix of right eigenvectors transforms the remaining
artificial viscosity (if any) to the conservative variables. The flux to be added is

Φ(ed
i jAd

i j,U j−Ui) := |ed
i j|Ri j|Λ i j|(∆ Wi j− ∆̂ Wi j). (90)

Clearly, the use of dimensional splitting makes this sort of algebraic flux correc-
tion more expensive than the synchronized FCT algorithm. However, flux limiting in
terms of local characteristic variables is very reliable and produces accurate results.
We refer to Zalesak [76] for a presentation of characteristic FCT limiters.

10 Constrained Initialization

The initialization of data is an important ingredient of numerical algorithms for
systems of conservation laws. If the initial data are prescribed analytically, it is es-
sential to guarantee that the numerical solution has the right total mass, momentum,
and energy when the simulation begins. The pointwise definition of nodal values

U0
i =U0(xi) (91)

is generally nonconservative. This may result in significant errors if the computa-
tional mesh is too coarse in regions where U0 is discontinuous. On the other hand,
conservative high-order projections tend to produce undershoots and overshoots.

The first use of FCT in the context of constrained data projection (initialization,
interpolation, remapping) dates back to the work of Smolarkiewicz and Grell [63]
who introduced a class of nonconservative monotone interpolation schemes. Con-
servative FCT interpolations were employed by Váchal and Liska [69] and Liska
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et al. [39]. Farrell et al. [12] introduced a bounded L2 projection operator for glob-
ally conservative interpolation between unstructured meshes. In the monograph by
Löhner ([40], pp. 257–260), the FCT limiter is applied to the difference between
the consistent and lumped-mass L2 projections. The latter serves as the low-order
method that satisfies the maximum principle for linear finite elements [12].

A general approach to synchronized FCT projections for systems of conserved
variables was presented in [33]. Let U denote the initial data or a numerical solution
from an arbitrary finite element space. The standard L2 projection is defined by∫

Ω

whUH
h dx =

∫
Ω

whU dx, ∀wh. (92)

The nodal values of the high-order approximation UH
h satisfy the linear system

MCUH = R, (93)

where MC = {mi j I} is the consistent mass matrix and R is the load vector

Ri =
∫

Ω

ϕiU dx. (94)

If the functions ϕi and U are defined on different meshes, numerical integration can
be performed using a supermesh that represents the union of the two meshes [12].

The lumped-mass approximation to (93) is a linear system with a diagonal matrix

MLUL = R. (95)

The so-defined low-order solution UL
h has the same ‘mass’ as UH

h but is free of
undershoots and overshoots, at least in the case of linear finite elements [12].

The difference between UH
i and UL

i admits the conservative flux decomposition

UH
i = UL

i +∑
j 6=i

Fi j, Fi j = mi j(UH
i −UH

j ). (96)

The process of flux limiting involves the same algorithmic steps as the FEM-FCT
scheme for the Euler equations. The use of failsafe postprocessing is optional.

11 Boundary Conditions

The implementation of boundary conditions for the Euler equations is an issue of
utmost importance. The solution to a hyperbolic system is a superposition of several
waves traveling in certain directions at finite speeds. Hence, the proper choice of
boundary conditions depends on the wave propagation pattern [17, 24, 61, 71]. In
this section, we review the underlying theory and discuss the numerical treatment
of characteristic boundary conditions in an implicit finite element formulation.
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11.1 Physical Boundary Conditions

The number of physical boundary conditions (PBC) to be imposed is determined
using a transformation to the local characteristic variables associated with the unit
outward normal n. The result is a set of five decoupled convection equations

∂wk

∂ t
+λk

∂wk

∂n
= 0, k = 1, . . . ,5, (97)

where wk are the so-called Riemann invariants and λk are the eigenvalues of the
directional Jacobian n ·A. The matrix-vector form of system (97) reads

∂W
∂ t

+Λ
∂W
∂n

= 0. (98)

The matrix Λ = diag{λ1, . . . ,λ5} and vector W = [w1, . . . ,w5]
T are given by [71]

Λ = diag{vn− c,vn,vn,vn,vn + c} (99)

and

W =

[
vn−

2c
γ−1

,s,vξ ,vη ,vn +
2c

γ−1

]T

. (100)

Here vn = n · v is the normal velocity, vξ and vη are the two components of the

tangential velocity τττ ·v, c is the speed of sound, and s = cv log
(

p
ργ

)
is the entropy.

Since the evolution of the Riemann invariants is governed by pure convection
equations, a boundary condition is required for each incoming wave. Hence, the
number of PBC equals the number of negative eigenvalues Nλ . By virtue of (99),
the sign of λk depends on vn, as well as on the local Mach number

M =
|vn|
c

.

The following types of boundaries may need to be considered when it comes to
formulating a well-posed boundary-value problem for the Euler equations:

• Supersonic inlet: vn < 0, M > 1. All eigenvalues are negative, so Nλ = 5.
• Supersonic outlet: vn > 0, M > 1. All eigenvalues are positive, so Nλ = 0.
• Subsonic inlet: vn < 0, M < 1. Only λ5 = vn + c is nonnegative, so Nλ = 4.
• Subsonic outlet: vn > 0, M < 1. Only λ1 = vn− c is negative, so Nλ = 1.
• Solid wall boundary: vn = M = 0. Only λ1 =−c is negative, so Nλ = 1

In many cases, the Nλ boundary conditions are given in terms of the conservative
or primitive variables. It is also possible to prescribe the total enthalpy, entropy,
temperature, or inclination angle. These data define the “free stream” state U∞ for
the computation of the Dirichlet/Neumann boundary conditions (14) and (15).
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11.2 Numerical Boundary Conditions

The need for numerical boundary conditions (NBC) arises whenever 0 < Nλ < 5
so that the boundary values and normal fluxes cannot be determined using the pre-
scribed PBC alone. The missing information is obtained by solving a Riemann prob-
lem. The internal state U is defined as the numerical solution to the Euler equations
at the given point. The external state U∞ can be obtained as follows [14, 61, 71]:

1. Convert the given numerical solution U to the Riemann invariants W .
2. Set W∞ :=W and overwrite the incoming Riemann invariants by PBC.
3. Given the modified vector W∞, calculate the free stream values U∞.

In contrast to cell-centered finite volume methods, there is no need for extrapo-
lation because the values of Uh are readily available at each boundary point.

The right-hand side G(U,U∞) of the Dirichlet boundary condition (14) is defined
as the exact or approximate solution to the boundary Riemann problem associated
with the states U and U∞. Likewise, the normal flux Fn(U,U∞) for the Neumann
boundary condition (14) can be calculated using Toro’s [65] exact Riemann solver
or Roe’s approximate Riemann solver [55]. The latter approach yields

Fn(U,U∞) = n · F(U)+F(U∞)

2
− 1

2
|n ·A(U,U∞)|(U∞−U), (101)

where A(U,U∞) is the Roe matrix for the states U and U∞. This approach to weak
imposition of characteristic boundary conditions is closely related to their numerical
treatment in finite volume and discontinuous Galerkin methods [10, 67].

11.3 Practical Implementation

In a practical implementation, it is worthwhile to initialize W∞ by the vector of free
stream values and overwrite the Riemann invariants associated with nonnegative
eigenvalues by the corresponding components of W . Such an algorithm is well-
suited for boundaries of any type since it determines the direction of wave propaga-
tion and the upstream values of the characteristic variables automatically.

The transformation of the internal state U to the vector of Riemann invariants W
is performed using definition (100). The inverse transformation is given by [61, 71]

ρ =

[
c2

γ
exp
(
−w2

cv

)] 1
γ−1

, (102)

ρv = ρ(vnn+ vξ τττξ + vη τττη), (103)

ρE =
p

γ−1
+

ρ

2
(v2

n + v2
ξ
+ v2

η), (104)

where τττξ and τττη are two unit vectors spanning the tangential plane, and
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vn =
w5−w1

2
, vξ = w3, vη = w4,

c =
γ−1

4
(w5−w1), p =

ρc2

γ
.

If the physical boundary conditions are given in terms of primitive variables or other
quantities, a conversion to the Riemann invariants is required. The practical imple-
mentation of such boundary conditions depends on the type of the boundary.

11.3.1 Open Boundary Conditions

At a supersonic inlet, the free stream values of the conservative variables U∞ can be
prescribed without transforming to the Riemann invariants. At a supersonic outlet,
the exterior state is given by U∞ =U so that the Roe flux (101) reduces to

Fn(U,U) = n ·F(U).

At a subsonic inlet, it is common to prescribe the density ρin, pressure pin, and
tangential velocity τττ ·vin. In this case, the Riemann invariants w3 and w4 are given,
whereas w2 = cv log( pin

ρ
γ

in
) is computable. The last incoming Riemann invariant is

w1 = w5−
4

γ−1

√
γ pin

ρin
. (105)

In the case of a subsonic outlet with a prescribed exit pressure pout , we have [61]

w1 = w5−
4

γ−1

√
γ pout

ρout
, (106)

where ρout depends on the calculated interior density ρ and pressure p as follows:

ρout = ρ

(
pout

p

) 1
γ

.

The outgoing Riemann invariant w5 is evaluated using the trace of the finite element
solution. The open boundary conditions (105) and (106) are generally regarded as
more physical than a prescribed upstream value of the Riemann invariant w1.

11.3.2 Wall Boundary Conditions

At a solid surface, there is no convective flux across the boundary. Hence, the normal
velocity vn must vanish. The so-defined no-penetration / free slip condition

n ·v = 0 (107)
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constrains a linear combination of the three velocity components. The numerical
implementation of this condition in an implicit scheme presents a considerable dif-
ficulty if the boundary is not aligned with the axes of the coordinate system.

In finite element methods for incompressible flow problems, the free slip condi-
tion (107) is usually imposed in the strong sense using element-by-element trans-
formations to a local reference frame spanned by the normal and tangential vectors
[7, 11]. The same effect can be achieved using an iterative projection of the veloc-
ity vector on the tangential plane [32]. However, the semi-explicit treatment of the
wall boundary condition slows down the iterative solver and may result in a lack of
robustness. Therefore, a fully implicit treatment is to be preferred.

In the weak form of the free slip condition, the free stream values for the compu-
tation of Fn(U,U∞) are calculated using the mirror (reflection) condition

n · (v∞ +v) = 0.

The density, tangential velocity, and total energy remain unchanged. Thus

U∞ =

 ρ

ρv∞

ρE

 , v∞ = v−2n(v ·n).

Another popular weak form of the zero flux boundary condition is given by

Fn =

 0
np
0

 . (108)

This version does not involve the solution of a Riemann problem and has been used
in FEM codes with considerable success [4, 10, 60]. However, the Roe flux (101)
constitutes a more physical wall boundary condition than (108). In any case, the
weak imposition of the free slip condition may give rise to a nonzero normal velocity
on the wall. This problem can be fixed by adding a penalty term [18].

11.3.3 Calculation of Surface Integrals

The imposition of natural boundary conditions requires the evaluation of the numer-
ical flux Fn(U,U∞) at each quadrature point x̂i. The exterior state U∞ is associated
with a ghost node x̂i,∞ located on the other side of the boundary. The ghost nodes
provide the free stream values of the Riemann invariants and play the same role as
image cells in cell-centered finite volume schemes for the Euler equations [67].

If a curved boundary is approximated using isoparametric (linear or bilinear) fi-
nite elements, then the normal vector n is generally discontinuous at the vertices
and edges of the surface triangulation. The boundary integrals can be assembled
element-by-element using the unique normal to the boundary of each cell [18]. How-
ever, the value of Fn(U,U∞) at x̂i should be obtained by interpolating the (unique)
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nodal values to ensure consistency with the group FEM approximation (18). Other-
wise, numerical side effects may arise in the boundary layer and pollute the solution
in the interior of the computational domain. As a remedy, a unique normal direction
can be determined using a suitable averaging procedure [11, 50] or an analytical
description of the curved boundary. For a detailed discussion of solid wall boundary
conditions in curved geometries, we refer to Krivodonova and Berger [25].

12 Numerical Examples

The results presented in this section illustrate some properties of our algebraic flux
correction schemes for the Euler equations. We consider a suite of 2D benchmark
problems covering a relatively wide range of Mach numbers and boundary condi-
tions. The objective of the below numerical study is to investigate the dependence
of the error on the mesh size h and on the choice of the limiting strategy.

The accuracy of a numerical solution uh ≈ u is measured in the global norms

E1(u,h) = ∑
i

mi|u(xi)−ui| ≈ ‖u−uh‖1, (109)

E2(u,h) =
√

∑
i

mi|u(xi)−ui|2 ≈ ‖u−uh‖2. (110)

The rate of grid convergence is illustrated by the expected order of accuracy

p = log2

(
Ei(u,2h)
Ei(u,h)

)
, i = 1,2. (111)

To begin with, we will evaluate the performance of the linearized FCT algorithm
for unsteady compressible flow problems [28]. Next, we will investigate the conver-
gence behavior of a characteristic TVD-like limiter for steady-state computations
[29]. In this work, stationary solutions are obtained using pseudo-time-stepping.
For additional numerical examples, the interested reader is referred to [18, 33].

12.1 Shock Tube Problem

Sod’s shock tube problem [64] is a standard benchmark for the unsteady Euler equa-
tions. The domain Ω = (0,1) is initially separated by a membrane into two sections.
When the membrane is removed, the gas begins to flow into the region of lower
pressure. The initial condition for the nonlinear Riemann problem is given byρL

vL
pL

=

1.0
0.0
1.0

 ,
ρR

vR
pR

=

0.125
0.0
0.1

 , (112)
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where the subscripts refer to the subdomains ΩL = (0,0.5) and ΩR = (0.5,1). The
reflective wall boundary conditions are prescribed at the endpoints of Ω .

The removal of the membrane at t = 0 releases a shock wave that propagates to
the right with velocity satisfying the Rankine-Hugoniot conditions. All of the prim-
itive variables are discontinuous across the shock which is followed by a contact
discontinuity. The latter represents a moving interface between the regions of dif-
ferent densities but constant velocity and pressure. A rarefaction wave propagates
in the opposite direction providing a smooth transition to the original values of the
state variables in the left part of the domain. Hence, the flow pattern in the shock
tube is characterized by three waves traveling at different speeds [35].

The dashed lines in Fig. 1 show the exact solution to the Riemann problem (112)
at the final time T = 0.231. This solution was calculated using the exact Riemann
solver HE-E1RPEXACT [66]. The numerical solution U0

h was initialized by means
of the FCT-constrained data projection (96) and advanced in time by the semi-
implicit Crank-Nicolson scheme with the time step ∆ t = h/10. For each algorithm
under consideration, a grid convergence study was performed on a sequence of uni-
form grids with mesh spacing h = 1/N for N = 100, 200, 400, 800, 1600, 3200.

All numerical solutions shown in Fig. 1a-h were calculated on a uniform mesh of
100 linear finite elements. The results produced by the low-order schemes (αi j = 0)
are nonosillatory but the excess numerical diffusion gives rise to strong smearing
of the moving fronts. In this example, Roe’s approximate Riemann solver (Fig. 1a)
performs slightly better than the Rusanov scalar dissipation (Fig. 1b).

The linearized FCT algorithm (58)–(61) produced the snapshots displayed in
Figs. 1c-f. In this study, the correction factors αi j were calculated via sequential
limiting of the control variables listed in the parentheses. Similar results were ob-
tained with synchronization of the form (73). The computation of the low-order
predictor using Roe’s formula (42) was found to generate undershoots/overshoots
that carry over to the FCT solution even if the limiter is applied to all primitive
variables (Fig. 1c). Synchronized limiting of all conservative variables was the only
FCT method to produce satisfactory results (not shown here, see Table 2) with the
Roe-type low-order scheme. In the case of the Rusanov scalar dissipation, nonoscil-
latory solutions were obtained with the density-pressure FCT limiter (Fig. 1d).

The failsafe control of density and pressure (see Section 9.2) makes the solutions
less sensitive to the choice of control variables for the base limiter. The nonoscilla-
tory results shown in Fig. 1e-f were obtained using the density-pressure postpocess-
ing for the Roe-FCT scheme with αi j(ρ, p) and αi j(ρ,ρE), respectively. The results
in Figs. 1g-h indicate that it is even possible to deactivate the main limiter, i.e., set
αi j := 1 and remove (a fraction of) the antidiffusive flux in regions where the local
FCT constraints (87) are violated. However, this practice is not generally recom-
mended since it might trigger aggressive limiting at the postprocessing step.

In contrast to high-resolution schemes of TVD type, the raw antidiffusive flux
(59) includes a contribution of the consistent mass matrix. The lumped-mass version
(U̇L := 0) of the FCT algorithm produces the solution shown in Fig. 1h. The superior
phase accuracy of the consistent-mass Galerkin discretization justifies the additional
effort invested in the computation of the approximate time derivative (60).
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(a) Low order (Roe-type), αi j = 0
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(c) FCT (Roe-type), αi j(ρ, p,v)
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(e) FCT (Roe-type), αi j(ρ, p) + failsafe
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(g) failsafe (consistent mass), αi j = 1
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(b) Low order (Rusanov-type), αi j = 0
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(d) FCT (Rusanov-type), αi j(ρ, p)
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(f) FCT (Roe-type), αi j(ρ,ρE) + failsafe
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(h) failsafe (lumped mass), αi j = 1
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Fig. 1 Shock tube problem: h= 10−2, ∆ t = 10−3. Snapshots of the density (blue), velocity (green),
and pressure (red) distribution at the final time T = 0.231.
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The error norms for the density, pressure, and velocity fields calculated with the
above algorithms are listed in Tables 1-4. The expected order of accuracy p was
estimated by formula (111) using the solutions computed on the two finest meshes.
As expected, the largest errors are observed for the low-order approximations. The
accuracy of Roe’s approximate Riemann solver is marginally better than that of the
Rusanov scheme. The rate of grid convergence for the density approaches p = 2/3,
which is in good agreement with the results presented in [5]. Tables 2-4 confirm that
the linearized FCT algorithm converges much faster than the underlying low-order
scheme. The expected order of accuracy attains values in the range 0.9–1.1.

The presented grid convergence study sheds some light on various aspects of
flux limiting for the unsteady Euler equations. As a rule of thumb, constraining the
density and pressure or total energy is a good choice in the context of synchronous
FCT. The failsafe feature improves the robustness of the algorithm but may increase
the amount of numerical diffusion. To achieve optimal phase accuracy for time-
dependent problems, the raw antidiffusive flux must include the contribution of the
consistent mass matrix. Of course, the overall performance of the algorithm also
depends on the accuracy of the time-stepping scheme and on the time step size.

Table 1 Shock tube problem: grid convergence of the low-order schemes (αi j = 0).

Roe’s scheme Rusanov’s scheme

h E1(ρ,h) E1(u,h) E1(p,h) E1(ρ,h) E1(u,h) E1(p,h)

1/100 2.1788e-02 4.2199e-02 1.9789e-02 2.8687e-02 5.4016e-02 2.6282e-02
1/200 1.3969e-02 2.4904e-02 1.1995e-02 1.9468e-02 3.2518e-02 1.6138e-02
1/400 8.8233e-03 1.3737e-02 7.0753e-03 1.2659e-02 1.8557e-02 9.6411e-03
1/800 5.5562e-03 7.5261e-03 4.1293e-03 8.1083e-03 1.0478e-02 5.6589e-03
1/1600 3.4900e-03 4.0920e-03 2.3835e-03 5.1423e-03 5.8427e-03 3.2668e-03
1/3200 2.2003e-03 2.2017e-03 1.3609e-03 3.2579e-03 3.2178e-03 1.8593e-03

p = 0.67 p = 0.89 p = 0.81 p = 0.66 p = 0.86 p = 0.81

Table 2 Shock tube problem: grid convergence of FCT without failsafe correction.

Roe-type predictor, αi j(ρ,ρE,ρv) Rusanov-type predictor, αi j(ρ, p)

h E1(ρ,h) E1(u,h) E1(p,h) E1(ρ,h) E1(u,h) E1(p,h)

1/100 7.2976e-03 1.1244e-02 5.6132e-03 9.2527e-03 1.0041e-02 4.6990e-03
1/200 3.8044e-03 6.8249e-03 2.9742e-03 5.1909e-03 6.2159e-03 2.5124e-03
1/400 1.9693e-03 3.3300e-03 1.4743e-03 2.8313e-03 3.0024e-03 1.2358e-03
1/800 1.0334e-03 1.5903e-03 7.2550e-04 1.4237e-03 1.4209e-03 6.0422e-04
1/1600 5.3461e-04 7.3201e-04 3.5412e-04 7.0374e-04 6.4491e-04 2.9243e-04
1/3200 2.8770e-04 3.3918e-04 1.7761e-04 3.5707e-04 2.9345e-04 1.4587e-04

p = 0.89 p = 1.11 p = 1.00 p = 0.98 p = 1.13 p = 1.00
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Table 3 Shock tube problem: grid convergence of FCT with failsafe correction.

Roe-type predictor, αi j(ρ, p) Roe-type predictor, αi j(ρ,ρE)

h E1(ρ,h) E1(u,h) E1(p,h) E1(ρ,h) E1(u,h) E1(p,h)

1/100 8.4389e-03 9.0475e-03 4.2509e-03 7.9186e-03 8.8199e-03 4.2180e-03
1/200 5.0820e-03 5.7128e-03 2.2982e-03 4.7613e-03 5.6378e-03 2.2879e-03
1/400 3.0545e-03 2.7739e-03 1.1361e-03 2.6349e-03 2.7383e-03 1.1309e-03
1/800 1.8737e-03 1.3183e-03 5.5785e-04 1.4212e-03 1.2924e-03 5.5345e-04
1/1600 1.1502e-03 5.9718e-04 2.7068e-04 7.0388e-04 5.8257e-04 2.6794e-04
1/3200 6.6805e-04 2.7102e-04 1.3611e-04 3.5656e-04 2.6259e-04 1.3413e-04

p = 0.78 p = 1.14 p = 0.99 p = 0.98 p = 1.15 p = 1.00

Table 4 Shock tube problem: grid convergence of Roe-type failsafe FCT for αi j = 1.

consistent mass matrix lumped mass matrix

h E1(ρ,h) E1(u,h) E1(p,h) E1(ρ,h) E1(u,h) E1(p,h)

1/100 8.4725e-03 9.2123e-03 4.3338e-03 8.9680e-03 1.0579e-02 5.0899e-03
1/200 5.1763e-03 5.8569e-03 2.3466e-03 5.4849e-03 6.3070e-03 2.6797e-03
1/400 3.0879e-03 2.8643e-03 1.1668e-03 3.2170e-03 3.0904e-03 1.3348e-03
1/800 1.9700e-03 1.3755e-03 5.7960e-04 1.9142e-03 1.4843e-03 6.5940e-04
1/1600 1.2025e-03 6.3730e-04 2.8494e-04 1.1215e-03 6.9581e-04 3.2554e-04
1/3200 7.5109e-04 3.0126e-04 1.4721e-04 6.4676e-04 3.3016e-04 1.6544e-04

p = 0.68 p = 1.08 p = 0.95 p = 0.79 p = 1.08 p = 0.98

12.2 Radially Symmetric Riemann Problem

The second transient benchmark [36] is a radially symmetric 2D counterpart of the
shock tube problem. Before an impulsive start, an imaginary membrane separates
the square domain Ω = (−0.5,0.5)× (−0.5,0.5) into the inner circle

ΩL = {(x,y) ∈Ω |
√

x2 + y2 < 0.13}

and the complement ΩR = Ω\ΩL. Reflective boundary conditions are prescribed
on the boundary of Ω . The gas is initially at rest. Higher pressure and density are
maintained inside ΩL than outside. The interior and exterior states are given byρL

vL
pL

=

 2.0
0.0

15.0

 ,
ρR

vR
pR

=

1.0
0.0
1.0

 .
The abrupt removal of the membrane at t = 0 gives rise to a radially expanding
shock wave driven by the pressure difference. The challenge of this test is to capture
the moving discontinuities while preserving the radial symmetry of the solution.

All computations are performed using linear finite elements on unstructured
meshes constructed via regular subdivision of the coarse mesh depicted in Fig. 2.
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Fig. 2 Radially symmetric Riemann problem: coarse mesh, 824 triangles, 453 vertices.

As explained in Section 10, it is advisable to initialize the numerical solution in a
conservative manner. The total mass and energy of the initial data are given by∫

Ω

ρ dx = 1+(0.13)2 ·π ≈ 1.05309291584567,∫
Ω

ρE dx = 2.5+35 · (0.13)2
π ≈ 4.35825205459836.

Since the exact solution is discontinuous, the load vector (94) was assembled us-
ing adaptive cubature formulas [70]. The density profiles produced by 4 different
initialization techniques are shown in Figs. 3a-d. It can readily be seen that the con-
sistent L2 projection fails to preserve the bounds of the initial data, while its lumped
counterpart gives rise to significant numerical diffusion. The synchronized FCT lim-
iter (96) with αi j = αi j(ρ, p) makes it possible to achieve a crisp resolution of the
discontinuous initial profile without generating undershoots or overshoots.

Table 5 reveals that the pointwise initialization of nodal values is nonconserva-
tive. The consistent-mass L2 projection preserves the total mass and energy but the
initial density exhibits undershoots and overshoots of about 20%. Moreover, the ini-
tial pressure attains negative values, which results in an immediate crash of the code.
In contrast, the nodal values obtained with the lumped-mass L2 projection and the
flux-corrected version satisfy 1.0≤ ρ0

h ≤ 2.0 and 1.0≤ p0
h ≤ 15.0 as desired.
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(a) Pointwise initialization

Density
1.00 1.25 1.50 1.75 2.00

(c) lumped-mass L2 projection, αi j = 0

Density
1.00 1.25 1.50 1.75 2.00

(b) Consistent L2 projection, αi j = 1

Density
0.798 1.15 1.51 1.87 2.22

(d) constrained L2 projection, αi j(ρ, p)

Density
1.00 1.25 1.50 1.75 2.00

Fig. 3 Radially symmetric Riemann problem: initial density ρ0
h on the coarse mesh.

The evolution of the numerical solution initialized by the constrained L2 pro-
jection was studied on the mesh obtained with 4 global refinements. The Crank-
Nicolson time-stepping was employed with ∆ t = 2 ·10−3. Figures 4a-d display snap-
shots of the density (left) and pressure (right) at the final time T = 0.13. These solu-
tions were obtained using the Roe tensorial dissipation and linearized FCT with the
density-pressure limiter. Remarkably, both the low-order solution (top) and its flux-
corrected counterpart (bottom) preserve the radial symmetry on the unstructured
mesh. The symmetry plots shown in Figs. 4e-f show the nodal values ρi = ρh(xi,yi)

Table 5 Radially symmetric Riemann problem: constrained initialization on the coarse mesh.∫
Ω

ρ0
h dx

∫
Ω
(ρE)0

h dx min(ρ0
h ) max(ρ0

h ) min(p0
h) max(p0

h)

(a) 1.04799 4.17949 1.0 2.0 1.0 15.0
(b) 1.05309 4.35823 7.9845e-01 2.2239e+00 -1.8216e+00 1.8135e+01
(c), (d) 1.05309 4.35823 1.0 2.0 1.0 15.0
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(e) Low order (Roe-type), αi j = 0 (f) FCT (Roe-type), αi j(ρ, p)

Fig. 4 Radially symmetric Riemann problem: density (red) and pressure (blue) at T = 0.13.

and pi = ph(xi,yi) versus distance to the origin. The presented results are in a good
agreement with the reference solutions computed using CLAWPACK [38].
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12.3 Double Mach Reflection

A more challenging test for the unsteady Euler equations is the double Mach reflec-
tion problem of Woodward and Colella [72] . In this benchmark, a Mach 10 shock
impinges on a reflecting wall at the angle of 60◦ degrees. The computational domain
is the rectangle Ω = (0,4)× (0,1). The following pre-shock and post-shock values
of the flow variables are used to define the initial and boundary conditions [3]

ρL
uL
vL
pL

=


8.0

8.25cos(30◦)
−8.25sin(30◦)

116.5

 ,


ρR
uR
vR
pR

=


1.4
0.0
0.0
1.0

 . (113)

Initially, the post-shock values are prescribed in ΩL = {(x,y) | x < 1/6+y/
√

3} and
the pre-shock values in ΩR =Ω\ΩL. The reflecting wall corresponds to 1/6≤ x≤ 4
and y = 0. No boundary conditions are required along the line x = 4. On the rest of
the boundary, the post-shock conditions are prescribed for x < 1/6+(1+20t)/

√
3

and the pre-shock conditions elsewhere [3]. The so-defined values along the top
boundary describe the exact motion of the initial Mach 10 shock.

The density fields (30 isolines) depicted in Figs. 5-7 were computed using bilin-
ear finite elements on a sequence of structured meshes with equidistant grid spac-
ings h = 1/64, 1/128, 1/256, and 1/512. Integration in time was performed until
T = 0.2 by the Crank-Nicolson scheme with the time step ∆ t = 64h ·10−4. The low-
order solution displayed in Fig. 5 was calculated using the Roe-type artificial viscos-
ity. Due to strong numerical diffusion, the complex interplay of incident, reflected,
and Mach stem shock waves is resolved rather poorly, and so is the slipstream at
the triple point. The use of FCT with synchronized limiting on primitive (Fig. 6)
or conservative (Fig. 7) variables yields a marked improvement without producing
‘staircase structures’ or other artefacts observed by Woodward and Colella [72].

12.4 GAMM Channel

In the remainder of this section, we present the results of a numerical study for the
stationary Euler equations. To begin with, we simulate the steady transonic flow in
the GAMM channel with a 10% circular bump. For a detailed description of this
popular benchmark, we refer to Feistauer et al. [13]. The gas enters the channel at
free stream Mach number M∞ = 0.67 and accelerates to supersonic velocities as
it flows over the bump. The Mach number varies between approximately 0.22 and
1.41. An isolated shock wave forms in the local supersonic region. The inlet and
outlet lie in the region of subsonic flow. Hence, the results are sensitive to the choice
of physical and numerical boundary conditions. This makes the GAMM channel
problem rather challenging when it comes to computing steady-state solutions.
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(a) h = 1/64, ∆ t = 10−4

(b) h = 1/128, ∆ t = 5 ·10−5

(c) h = 1/256, ∆ t = 2.5 ·10−5

(d) h = 1/512, ∆ t = 1.25 ·10−5

Fig. 5 Double Mach reflection: isodensity contours at T = 0.2; low-order scheme, αi j = 0.
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(a) h = 1/64, ∆ t = 10−4

(b) h = 1/128, ∆ t = 5 ·10−5

(c) h = 1/256, ∆ t = 2.5 ·10−5

(d) h = 1/512, ∆ t = 1.25 ·10−5

Fig. 6 Double Mach reflection: isodensity contours at T = 0.2; unsafe FCTRoe, αi j(ρ, p).
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(a) h = 1/64, ∆ t = 10−4

(b) h = 1/128, ∆ t = 5 ·10−5

(c) h = 1/256, ∆ t = 2.5 ·10−5

(d) h = 1/512, ∆ t = 1.25 ·10−5

Fig. 7 Double Mach reflection: isodensity contours at T = 0.2; unsafe FCTRoe, αi j(ρ,ρE).
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Unless mentioned otherwise, the free stream boundary values for all stationary
benchmark problems are given in the following dimensionless form [61]

variable free stream value
ρ∞ 1
u∞ M∞

v∞ 0
p∞

1
γ

E∞
M2

∞

2 + 1
γ(γ−1)

The unstructured triangular mesh shown in Fig. 8b is successively refined to con-
struct the computational mesh for the GAMM channel. Table 6 lists the number of
vertices (NVT) and elements (NEL) for up to 5 quad-tree refinements. The station-
ary Mach number distribution computed with an algebraic flux correction scheme
of TVD type [18, 19, 29] on mesh level 6 is presented in Fig. 8a. It can readily be
seen that the resolution of the shock wave is rather crisp and nonoscillatory.

The numerical solution to the Euler equations was initialized by the above free
stream values and marched to the steady state using pseudo-time-stepping in con-
junction with the semi-implicit linearization procedure (see Section 7). At the initial
stage, we neglect the nonlinear antidiffusive term and begin with the inexpensive
computation of a low-order predictor. When the residuals of the low-order scheme
reach the prescribed tolerance, the limited antidiffusive correction is switched on,
and the iteration process continues until convergence to a stationary solution.

During the startup phase, the pseudo-time-stepping scheme runs at the moder-
ately large CFL number ν = 100. When the relative residual falls below 10−2, the
linearization becomes sufficiently accurate, and ν can be chosen arbitrarily large. In
our experience, the semi-implicit algorithm converges even for ν = ∞.

Figure 9 presents the convergence history for the flux-corrected Galerkin scheme
and its low-order counterpart. In either case, the Neumann-type boundary conditions
are imposed in a weak sense. The log-scale plots show the residual of the nonlin-
ear system versus the number of pseudo-time steps for various CFL numbers. The
employed mesh (refinement level 4) contains a total of 9,577 vertices.

Remarkably, convergence to the steady-state solution accelerates as the CFL
number increases. In the case of the low-order scheme, ν = ∞ delivers the best
convergence rates, whereby the norm of the residual falls below 10−12 after just ten
iterations. Small values of the CFL number imply slow convergence, whereas fast
and almost monotone error reduction is observed for large pseudo-time steps.

The flux-corrected Galerkin scheme exhibits a similar convergence behavior but
requires a larger number of nonlinear iterations. As the CFL number is increased,
the convergence rates improve until the threshold ν = 100 is reached. A further in-
crease of the pseudo-time step does not result in faster convergence. In contrast to
the findings of Trépanier et al. [67], the rate of convergence does not deteriorate but
stays approximately the same for all ν ≥ 100. However, the lagged treatment of the
non-differentiable antidiffusive term and the oscillatory behavior of the correction
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(a)

(b)

Fig. 8 GAMM channel: (a) stationary Mach number distribution and (b) the coarse grid.

(a) Low-order scheme (b) Characteristic TVD scheme

Fig. 9 GAMM channel: convergence history for various CFL numbers on mesh level 4.
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factors produced by the limiter impose an upper bound on the rate of convergence.
A better preconditioning of the discrete Jacobian operator and/or the use of conver-
gence acceleration technique are likely to yield a further gain of efficiency.

Table 6 GAMM channel: relative L2 errors and grid convergence rates.

Level NVT NEL ELow
2 pLow ELim

2 pLim

1 176 292 5.47 ·10−2 0.59 3.05 ·10−2 0.56
2 643 1168 3.64 ·10−2 0.64 2.07 ·10−2 1.04
3 2453 4672 2.34 ·10−2 0.59 1.01 ·10−2 0.99
4 9577 18688 1.55 ·10−2 0.61 5.07 ·10−3 1.45
5 37841 18688 1.01 ·10−2 1.85 ·10−3

6 150433 299008

The results of a grid convergence study for stationary solutions to the GAMM
channel problem are presented in Table 6. The relative L2 error defined as

Erel
2 =

‖Uh−U‖2

‖U‖2
(114)

is calculated using the reference solution U computed on mesh level 6. The effective
order of accuracy is p ≈ 0.6 for the low-order predictor and p ≈ 1.0 for the high-
resolution scheme. The higher accuracy of the flux-corrected solution justifies the
additional computational effort. The errors generated near the shock can be reduced
using adaptive mesh refinement based on a goal-oriented error estimate [30].

A proper implementation of boundary conditions is crucial for the overall accu-
racy of a numerical scheme for the Euler equations. Errors caused by an inappro-
priate boundary treatment may propagate into the interior of the domain and inhibit
convergence to steady-state solutions. For an in-depth numerical study of the bound-
ary conditions for the GAMM channel problem, we refer to Gurris et al. [18, 19].
It turns out that the fully implicit treatment of weakly imposed boundary conditions
(see Section 11) leads to a much more robust and efficient implementation than the
predictor-corrector algorithm described in the first edition of this chapter [32].

13 NACA 0012 Airfoil

In the next example, we simulate the steady gas flow past a NACA 0012 airfoil. The
upper and lower surfaces are given by the function f± : [0,1.00893] 7→ R with

f±(x) =±0.6
(
0.2969

√
x−0.126x−0.3516x2−0.1015x4) . (115)

We consider three test configurations labeled Case I-III. The corresponding values
of the free stream Mach number M∞ and inclination angle α are listed in Table 7.
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Table 7 NACA 0012 airfoil: Test cases

Case α M∞

I 2◦ 0.63
II 1.25◦ 0.8
III 1◦ 0.85

The outer boundary of the computational domain is a circle of radius 10 centered
at the tip of the airfoil. The unstructured coarse mesh and a zoom of the reference so-
lution for Case II are displayed in Fig. 10. The stationary Mach number distribution
is in a good agreement with the numerical results presented in [13, 23, 32, 53].

The low-order solution is initialized by the free stream values, and a few itera-
tions with the CFL number ν = 10 are performed before increasing the pseudo-time
step. As before, the low-order predictor serves as an initial guess for the algebraic
flux correction scheme equipped with the characteristic limiter of TVD type.

The nonlinear convergence history for mesh level 2 and the results of a grid con-
vergence study for Case 2 are presented in Fig. 11 and Table 8, respectively. As
in the previous example, the semi-implicit pseudo-time-stepping scheme converges
faster as the CFL number is increased. In the case of ν = ∞, the residual falls below
10−15 in 20 iterations. The high-resolution scheme exhibits similar convergence be-
havior, although the total number of iterations is much larger. It takes approximately
200 iterations for the residual to reach the tolerance 10−8. Increasing the CFL num-
bers beyond the threshold ν = 100 yields just a marginal improvement. The errors
for ν = 100, 1000, and ∞ are almost identical but considerably smaller than those
for ν = 1 and 10. The effective order of accuracy is about 0.5 for the low-order
scheme and 1.0 for the characteristic FEM-TVD scheme (see Table 8).

The drag and lift coefficients for all test cases are displayed in Table 9. They
agree well with the available reference data [8, 15, 53], although the lift is slightly
underestimated. This fact can be attributed to the relatively small size of the compu-
tational domain. It was shown in [8, 53] that the value of the lift coefficient tends to
increase with the distance to the artificial far field boundary. The results presented
therein were computed with far field distances of up to 2048 chords, while the far
field boundary of our domain is located as few as 10 chords away from the airfoil.

Table 8 NACA 0012 airfoil: relative L2 errors and grid convergence rates.

Level NVT NEL ELow
2 pLow ELim

2 pLim

1 2577 4963 4.08 ·10−2 0.51 1.68 ·10−3 1.02
2 10117 19852 2.86 ·10−2 0.46 8.27 ·10−4 1.02
3 40086 79408 2.08 ·10−2 2.68 ·10−4

4 159580 317632
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Fig. 10 NACA 0012 airfoil: coarse mesh and the Mach number distribution (zoom).



Algebraic Flux Correction II 39

(a) Low-order scheme (b) Characteristic TVD scheme

Fig. 11 NACA 0012 airfoil: convergence history for various CFL numbers on mesh level 2.

Table 9 NACA 0012 airfoil: drag and lift coefficients for all configurations.

(a) Case I

Level CD CL

1 2.8194 ·10−3 0.2791
2 3.5473 ·10−4 0.2977
3 1.2927 ·10−4 0.3071
4 1.1355 ·10−4 0.3120

(b) Case II

Level CD CL

1 2.0043 ·10−2 0.3065
2 1.9198 ·10−2 0.3169
3 1.9501 ·10−2 0.3199
4 1.9933 ·10−2 0.3200

(c) Case III

Level CD CL

1 5.2434 ·10−2 0.3205
2 5.3217 ·10−2 0.3400
3 5.4087 ·10−2 0.3441
4 5.4636 ·10−2 0.3436

14 Converging-Diverging Nozzle

In the last numerical example, we simulate the transonic flow in a converging-
diverging nozzle. The free slip boundary condition (107) is prescribed on the upper
and lower walls of the nozzle defined by the function g± : [−2,8] 7→ R with [23]

g±(x) =


±1 if −2≤ x≤ 0,

± cos( πx
2 )+3
4 if 0 < x≤ 4,

±1 if 4 < x≤ 8.

(116)

At the subsonic inlet (x =−2, −1≤ y≤ 1), the free stream Mach number equals
M∞ = 0.3. To facilitate comparison with the results presented by Hartmann and
Houston [23], we define the free stream pressure as p∞ = 1 rather than p∞ = 1

γ
. At

the subsonic outlet (x = 8, −1 ≤ y ≤ 1), the exit pressure pout =
2
3 is prescribed

as explained in Section 11.3.1. As the nozzle converges, the gas is accelerated to
supersonic velocities. After entering the diverging part, the flow begins to decelerate
and passes through a shock before becoming subsonic again [23].

A mesh of bilinear elements is generated from a structured coarse mesh using
global refinements. The numbers of vertices and elements for 7 levels of refinement
are listed in Table 10. Figure 12 displays the numerical solution computed on mesh
level 7. There is a good agreement with the results obtained by Hartmann [22].
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Table 10 Converging-diverging nozzle: mesh properties.

Level NVT NEL
1 33 20
2 105 80
3 369 320
4 1377 1280
5 5313 5120
6 20865 20480
7 82689 81920

Fig. 12 Converging-diverging nozzle: FEM-TVD solution on mesh level 7.

To assess the numerical error in the outlet boundary condition pout =
2
3 , we

present the pressure distribution at the outlet Γout in Fig. 13. The relative L2 error

Eout
2 =

‖p− pout‖2,Γout

‖pout‖2,Γout

(117)

and the effective order of accuracy pout for mesh levels 5-7 are listed in Table 11,
where NVTout is the number of nodes at the outlet. It can be seen that the errors
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Fig. 13 Converging-diverging nozzle: exit pressure distribution.

are very small, even on a relatively coarse mesh. As the mesh is refined, the errors
shrink. This illustrates the consistency of the proposed boundary treatment.

Table 11 Grid convergence study: outflow boundary condition.

Level NVT NEL NVTout Eout
2 pout

5 5313 5120 33 2.50 ·10−3 1.32
6 20865 20480 65 1.00 ·10−3 1.12
7 82689 81920 129 4.62 ·10−4

15 Conclusions

This chapter sheds some light on the aspects of algebraic flux correction for systems
of conservation laws. We extended the scalar limiting machinery to the compressible
Euler equations and discussed various implementation details (initial and bound-
ary conditions, linearization techniques, iterative solvers etc). Furthermore, we pre-
sented a new approach to constraining the primitive variables in synchronized FCT
algorithms. It differs from other flux limiters for systems in that the transformation
of variables is performed node-by-node rather than edge-by-edge. The generalized
Zalesak limiter was equipped with a simple failsafe corrector designed to preserve
the bounds of the low-order solution. A numerical study was performed to illustrate
the practical utility of the proposed limiting techniques for the Euler equations.

In summary, flux limiting for hyperbolic systems may require (i) a careful choice
of the variables to be controlled, (ii) a suitable synchronization of the correction
factors, and (iii) a mechanism that makes it possible to ‘undo’ the antidiffusive cor-
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rection whenever it turns out to be harmful. The accuracy and efficiency of the code
depend on the employed linearizations. Moreover, the implementation of character-
istic boundary conditions can make or break the numerical algorithm. All of these
issues must be taken into account when it comes to solving real-life problems.
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[50] M. Möller, Adaptive High-Resolution Finite Element Schemes. PhD thesis,
Dortmund University of Technology, 2008.
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Appendix

In this Appendix, we derive the artificial diffusion operator for the piecewise-linear
Galerkin approximation to the one-dimensional Euler equations

∂U
∂ t

+
∂F
∂x

= 0. (118)

In the 1D case, we have

U =

 ρ

ρv
ρE

 , F =

 ρv
ρv2 + p

ρHv

 . (119)

The differentiation of F by the chain rule yields the equivalent quasi-linear form



Algebraic Flux Correction II 47

∂U
∂ t

+A
∂U
∂x

= 0, (120)

where A = ∂F
∂U is the Jacobian matrix. It is easy to verify that

A =

 0 1 0
1
2 (γ−3)v2 (3− γ)v γ−1

1
2 (γ−1)v3− vH H− (γ−1)v2 γv

 . (121)

The eigenvalues and right/left eigenvectors of A satisfy the system of equations

Ark = λkrk, lkA = λklk, k = 1,2,3 (122)

which can be written in matrix form as AR = RΛ and R−1A = ΛR−1. Thus,

A = RΛR−1, Λ = diag{v− c,v,v+ c} (123)

in accordance with (9). The matrices of eigenvalues and eigenvectors are given by

Λ = diag{v− c,v,v+ c}, (124)

R =

 1 1 1
v− c v v+ c

H− vc 1
2 v2 H + vc

= [r1,r2,r3], (125)

and

R−1 =


1
2

(
b1 +

v
c

) 1
2

(
−b2v− 1

c

) 1
2 b2

1−b1 b2v −b2
1
2

(
b1− v

c

) 1
2

(
−b2v+ 1

c

) 1
2 b2

=

 l1
l2
l3

 , (126)

where

b1 = b2
v2

2
, b2 =

γ−1
c2 .

On a uniform mesh of linear finite elements, the coefficients of the lumped mass
matrix ML and of the discrete gradient operator C are given by

mi = ∆x, ci j =

{
1/2, j = i+1,
−1/2, j = i−1. (127)

The lumped-mass Galerkin approximation is equivalent to the central difference
scheme which can be written in the generic conservative form

dUi

dt
+

Fi+1/2− Fi−1/2

∆x
= 0, (128)

where
Fi+1/2 =

Fi + Fi+1

2
.
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The numerical flux of the low-order scheme with Di+1/2 defined by (42) is

Fi+1/2 =
Fi + Fi+1

2
− 1

2
|Ai+1/2|(Ui+1−Ui), (129)

where Ai+1/2 is the 1D Roe matrix. The so-defined approximation is known as Roe’s
approximate Riemann solver [55]. A detailed description of this first-order scheme
can be found in many textbooks on gas dynamics [24, 37, 65]. Roe’s method fails
to recognize expansion waves and, therefore, may give rise to entropy-violating so-
lutions (rarefaction shocks) in the neighborhood of sonic points. Hence, some ad-
ditional numerical diffusion may need to be applied in regions where one of the
characteristic speeds approaches zero [20, 21]. This trick is called an entropy fix.

The use of scalar dissipation (46) leads to a Rusanov-like low-order scheme with

Fi+1/2 =
Fi + Fi+1

2
−

ai+1/2

2
(Ui+1−Ui), (130)

where ai+1/2 denotes the fastest characteristic speed. Zalesak [76] defines it as

ai+1/2 =
|vi|+ |vi+1|

2
+

ci + ci+1

2
.

For reasons explained in [5], our definition of the Rusanov flux (130) is based on

ai+1/2 := max{|vi|+ ci, |vi+1|+ ci+1}.

This formula yields a very robust and efficient low-order method for FCT [33].


