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Abstract

The flux-corrected-transport paradigm is generalized to implicit finite element
schemes and nonlinear systems of hyperbolic conservation laws. In the scalar case, a
nonoscillatory low-order method of upwind type is derived by elimination of negative
off-diagonal entries of the discrete transport operator. The difference between the
discretizations of high and low order is decomposed into a sum of skew-symmetric
antidiffusive fluxes. An iterative flux limiter independent of the time step is proposed
for implicit schemes. The nonlinear antidiffusion is incorporated into the solution
in the framework of a defect correction scheme preconditioned by the monotone
low-order operator. In the case of a hyperbolic system, the global Jacobian matrix
is assembled edge-by-edge without resorting to numerical integration. Its low-order
counterpart is constructed by rendering all off-diagonal blocks positive definite or
adding scalar artificial diffusion proportional to the spectral radius of the Roe ma-
trix. The coupled equations are solved in a segregated manner within an outer de-
fect correction loop equipped with a block-diagonal preconditioner. After a suitable
synchronization, the correction factors evaluated for an arbitrary set of indicator
variables are applied to the antidiffusive fluxes which are inserted into the global
defect vector. The performance of the new algorithm is illustrated by numerical
examples for scalar transport problems and the compressible Euler equations.

Key Words: convection-dominated flows; hyperbolic conservation laws;
flux correction; finite elements; implicit time-stepping

1 Introduction

The flux-corrected-transport algorithm for convection-dominated flows was the first non-
linear high-resolution scheme to switch between high- and low-order discretizations in an
adaptive fashion depending on the local smoothness of the solution. Its foundations were
laid in the early 1970s by Boris and Book [3]. A genuinely multidimensional generaliza-
tion of their celebrated SHASTA scheme was proposed by Zalesak [44] and successfully
carried over to finite elements by Löhner and his coworkers [27],[28]. The extension of
other high-resolution methods to unstructured meshes proved to be a rather challenging
task due to the one-dimensional nature of the underlying limiting techniques.
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Some finite element codes for compressible flow problems operate with numerical fluxes
designed as in the finite difference context. To this end, a local one-dimensional stencil
is reconstructed for each mesh edge by insertion of ‘dummy nodes’. The solution values
at these nodes are obtained using a suitable interpolation/extrapolation technique, and
a slope limiter is invoked to control the gradients. Unfortunately, the resulting FEM
discretization may still produce nonphysical undershoots and overshoots in some cases.
Moreover, the use of P1-elements is essential to the derivation of the underlying edge-
based data structure as proposed by Peraire et al. [35]. An alternative flux decomposition
procedure, which is applicable to arbitrary finite elements, is introduced in our recent
publication devoted to a fully multidimensional flux limiter of TVD type [22].

In this paper, we present a generalized FEM-FCT formulation which is based on
a representation of diffusive/antidiffusive terms as a sum of skew-symmetric internodal
fluxes. A complete transition to a computationally efficient ‘edge-based’ data structure is
feasible but not mandatory [19],[22]. Hence, the algorithm to be presented can be readily
integrated into an existing finite element code while preserving the conventional element-
by-element matrix assembly and data access. It amounts to modifying the high-order
transport operator so as to enforce the M-matrix property and render the discretization
local extremum diminishing. An in-depth description of the mathematical background is
available in [17],[19],[20]. Our fully discrete approach distinguishes itself in that it deals
with finite element matrices regardless of the underlying mesh, approximation spaces and
even the number of spatial dimensions. Moreover, it can be used in conjunction with
implicit time-stepping schemes, unlike the classical FEM-FCT procedure.

We start with a summary of the new methodology for a scalar convection-diffusion
equation and improve the algorithm in a number of ways. First of all, we observe that
Zalesak’s limiter depends on the time step, so that the unconditional stability/positivity
of our implicit FEM-FCT schemes cannot be duly utilized. To rectify this, we introduce
an iterative limiting strategy, whereby the rejected antidiffusion can be ‘recycled’ and
built into the numerical solution during the subsequent defect correction steps. Further-
more, we clarify the origin of spurious ripples which may develop at the boundary and
propagate into the interior of the computational domain. It turned out that this alarming
phenomenon first mentioned in [17] is due to failure of the standard FCT algorithm to
determine correct upper and lower bounds for the solution values at the inlet and outlet.

The second part of this paper deals with a generalization of implicit FEM-FCT schemes
to the Euler equations of gas dynamics. This is a continuation of the research reported
in our previous publications [19],[20]. The issues to be addressed include the assembly of
the global Jacobian matrix, the iterative treatment of nonlinearities, the construction of
a nonoscillatory low-order scheme for systems of hyperbolic conservation laws, a proper
synchronization of correction factors for decoupled variables and the implementation of
boundary conditions. We will show that many elements of the mathematical theory
and finite difference algorithms developed for the one-dimensional Euler equations can
be incorporated into the finite element framework. Due to the fact that the system at
hand is strongly nonlinear to begin with, the overhead cost incurred by the iterative flux
correction is not very significant. Encouraging results obtained for a number of standard
two-dimensional test problems demonstrate the potential of the new method.
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2 Galerkin FEM for scalar equations

Consider a generic time-dependent conservation law for a scalar quantity u

∂u

∂t
+ ∇ · f = q in Ω, (1)

where q is a source term and f is a (nonlinear) flux function. Let us assume that it is
composed from convective fluxes of the form fc = vu and diffusive fluxes of the form
fd = −ǫ∇u. The weak form of the resulting convection-diffusion equation reads

∫

Ω

w

[

∂u

∂t
+ ∇ · (vu − ǫ∇u) − q

]

dx = 0, ∀w. (2)

A common practice in finite element methods for conservation laws is to interpolate
convective fluxes and source terms in the same way as the numerical solution

u =
∑

j

ujϕj, fc =
∑

j

(vjuj) ϕj, q =
∑

j

qjϕj, (3)

where ϕi denote the basis functions spanning the finite-dimensional subspace. This kind
of approximation was called the group finite element formulation by Fletcher [7] who
found it to provide a very efficient treatment of nonlinear convective terms and even lead
to a small gain of accuracy for the 2D Burgers equation discretized on a uniform grid.

The resulting Galerkin discretization of equation (1) reads

∑

j

[
∫

Ω

ϕiϕj dx

]

(u̇j − qj) +
∑

j

[
∫

Ω

(ϕivj · ∇ϕj + ǫ∇ϕi · ∇ϕj) dx

]

uj = 0. (4)

It is implied that the diffusive flux vanishes at the boundary, so that the surface integral
arising from the integration by parts can be omitted. Note that for most finite elements the
sum of basis functions equals unity:

∑

i ϕi ≡ 1. Summing the semi-discretized equations
over i, one recovers the integral form of the conservation law, which ensures that the total
amount of u in Ω may only change due to boundary fluxes and internal sources or sinks.
This shows that the Galerkin method enjoys the global conservation property.

The above system of ordinary differential equations for the nodal values of the approx-
imate solution can be written compactly in matrix form

MC

du

dt
= Ku + MC q, (5)

where MC = {mij} denotes the consistent mass matrix and K = {kij} stands for the
discrete transport operator. The matrix entries are given by

mij =

∫

Ω

ϕiϕj dx, kij = −vj · cij − ǫ sij, (6)

where cij and sij result from the discretization of differential operators corresponding to
the first- and second-order derivatives, respectively

cij =

∫

Ω

ϕi∇ϕj dx, sij =

∫

Ω

∇ϕi · ∇ϕj dx. (7)
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Note that the coefficients mij, cij, sij remain unchanged as long as the mesh is fixed.
Therefore, they need to be determined just once during the initialization phase. This
enables us to update the matrix K in a very efficient way by computing its entries kij

from formula (6) without resorting to costly numerical integration. It is worth mentioning
that this shortcut is not essential for the subsequent considerations, so that the assembly
of the discrete transport operator can also be performed in the usual way.

3 Discrete upwinding

The FEM-FCT algorithm to be presented prevents the birth and growth of spurious
extrema by blending the oscillatory Galerkin discretization with a monotone low-order
method. The latter should be used in the vicinity of steep gradients, where nonphysical
undershoots and overshoots are likely to arise. In the realm of finite differences and
finite volumes, the upwind scheme is a perfect ‘wiggle-killer’. At the same time, it has
been largely unclear how to perform upwinding in the finite element framework. Most
of the upwind-like finite element methods encountered in the literature resort to a finite
volume discretization for the convective terms [2],[41]. An alternative derivation of the
least diffusive positivity-preserving scheme can be carried out by adding discrete diffusion
depending solely on the magnitude and position of negative matrix entries [16],[17]. This
approach will be elucidated below for the scalar transport equation and extended to
hyperbolic systems of conservation laws in the second part of this paper.

Let us perform mass lumping and represent the ODE for a nodal value ui in the form

mi

dui

dt
=

∑

j 6=i

kij(uj − ui) + riui + miqi, (8)

where mi =
∑

j mij and ri =
∑

j kij. The first term in the right-hand side of (8) is
engendered by the incompressible part of the discrete transport operator, while riui is a
discrete counterpart of u∇ · v which vanishes for divergence-free velocity fields.

For the numerical solution to be nonoscillatory even close to shocks and discontinuities,
all off-diagonal coefficients of K must be nonnegative: kij ≥ 0, j 6= i. This condition
is necessary to enforce the M-matrix property (see below) and make the discretization
local extremum diminishing (LED) for incompressible flows in the absence of source terms
(ri = qi = 0). In this case, the semi-discrete scheme reduces to

dui

dt
=

∑

j 6=i

cij(uj − ui), where cij =
kij

mi

≥ 0. (9)

Such a discretization proves to be stable in the L∞-norm. Indeed, if ui is a maximum,
then uj − ui ≤ 0, ∀j, so that dui

dt
≤ 0. Hence, a maximum cannot increase, and similarly

a minimum cannot decrease. As a rule, the coefficient matrices are sparse, so that kij = 0
unless i and j are adjacent nodes. Arguing as above, one can show that a local maximum
cannot increase, and a local minimum cannot decrease. The LED criterion was introduced
by Jameson [13],[14],[15] as a handy tool for the design of high-resolution schemes on un-
structured meshes. It reduces to Harten’s TVD conditions [9],[10] in the one-dimensional
case but remains valid in multidimensions and is easy to verify.
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Any discrete transport operator K can be rendered local extremum diminishing by
adding a tensor of artificial diffusion D = {dij} designed so as to eliminate its negative
off-diagonal entries. The optimal diffusion coefficients are given by [17],[19]

dii = −
∑

k 6=i

dik, dij = dji = max{0,−kij,−kji}. (10)

By construction, D is a generalized diffusion operator defined as a symmetric matrix
having zero row and column sums [17]. Applying it to the vector u, we obtain

(Du)i =
∑

j

dijuj =
∑

j 6=i

dij(uj − ui) (11)

due to the zero row sum. Therefore, diffusive terms can be decomposed into a sum of
numerical fluxes which reduce the difference between the nodal values

(Du)i =
∑

j 6=i

fij, where fij = dij(uj − ui). (12)

Note that fji = −fij due to the symmetry of D. Hence, the insertion of artificial diffusion
does not violate the discrete conservation principle. This kind of flux decomposition is
feasible for any generalized diffusion operator [17]. In the sequel, we will take advantage
of this fact again and remove excessive diffusion in a mass-conserving fashion.

The elimination of negative matrix entries as proposed above yields the least diffusive
LED scheme obtainable from the original Galerkin discretization. For the pure convection
equation in one dimension, it is equivalent to the upwind difference method [17],[19]. Note
that physical diffusion (if any) built into the coefficients kij is automatically detected and
the amount of artificial diffusion is reduced accordingly. In diffusion-dominated cases, the
discrete transport operators K and L = K + D are identical, since the coefficients are
nonnegative from the outset. Alternatively, this postprocessing technique can be applied
to the convective part of K without taking the physical diffusion into account.

Discrete upwinding should be performed edge-by-edge in accordance with the sparsity
structure of the finite element matrix. Let us start with the Galerkin operator L = K.
For each pair of neighboring nodes i and j the required modification is as follows

lii = lii − dij, lij = lij + dij,

lji = lji + dij, ljj = ljj − dij.
(13)

Let us emphasize that the LED constraint is imposed only on the incompressible part
of the discrete transport operator K as it should be for physical reasons. The additional
term riui + miqi in the right-hand side of (8) allows for an admissible growth and decay
of local extrema due to compressibility and sources/sinks. In order to ensure that the
positivity of thermodynamic variables is reproduced by the numerical solution, this term
may need to be linearized as proposed by Patankar [34]. This procedure is described in our
previous publications [19],[20] which should also be consulted for other algorithmic details
and the underlying theory. For simplicity, we omit the source terms in what follows.
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4 Defect correction

The equations at hand can be discretized in time by the standard θ-scheme. If implicit
time-stepping (0 < θ ≤ 1) is employed, the nonlinearities inherent to the conservation law
and/or to the numerical method must be treated iteratively. Let us update the solution
in each outer iteration using the straightforward defect correction scheme

u(m+1) = u(m) + [A(u(m))]−1r(m), m = 0, 1, 2, . . . (14)

where r(m) denotes the residual vector for the m-th cycle and A is a suitably chosen
‘preconditioner’ which should be easy to invert. The iteration process is terminated when
the norm of the defect or that of the relative changes is small enough.

In a practical implementation, the ‘inversion’ of A is also performed by some iterative
procedure. Hence, a certain number of inner iterations per cycle is required to solve the
linear subproblem for the solution increment which reads

A(u(m))∆u(m) = r(m). (15)

Afterwards, the correction ∆u(m) is applied to the last iterate

u(m+1) = u(m) + ∆u(m), u(0) = un. (16)

Note that the auxiliary problem (15) does not have to be solved very accurately at each
outer iteration. A moderate improvement of the residual (1-2 digits) is sufficient to obtain
a good overall accuracy. The low-order evolution operator

A(u(m)) = ML − θ∆tL(u(m)), where ML = diag{mi}, (17)

constitutes an excellent preconditioner. It can be readily verified that A is an M-matrix,
which makes it amenable to iterative solution. Furthermore, the diagonal dominance of
A can be enhanced by using an implicit underrelaxation strategy [6]. It will be noted
that defect correction preconditioned by the monotone upwind operator is widely used to
enhance the robustness of CFD solvers even in the linear case. This is due to the fact that
an iterative method may fail to converge if applied directly to the ill-conditioned matrix
originating from a high-order discretization of the bad-behaved convective terms.

The defect vector r(m) can be designed so as to obtain the standard Galerkin approx-
imation, the diffusive low-order solution or a nonlinear combination thereof. The finite
element discretizations of high and low order are related by the formula

r(m) = bn + f(un, u(m)) − A(u(m))u(m), (18)

where bn represents the right-hand side for the low-order scheme

bn = MLun + (1 − θ)∆tL(un)un, (19)

while the antidiffusion required to recover the high-order solution is given by

f(un, u(m)) = [(MC − ML) − (1 − θ)∆tD(un)]un

− [(MC − ML) + θ∆tD(u(m))]u(m). (20)

Here D = L−K denotes the artificial diffusion operator which transforms the oscillatory
high-order transport operator into the monotone low-order one as explained above.
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By construction, D is a symmetric matrix with zero row and column sums, and so is
the operator MC −ML which is sometimes referred to as ‘mass diffusion’. Therefore, both
expressions in the brackets represent discrete diffusion operators, so that the antidiffusive
terms can be decomposed into skew-symmetric internodal fluxes of the form

f
(m)
ij = [mij − (1 − θ)∆tdn

ij] (un
j − un

i ) − [mij + θ∆td
(m)
ij ] (u

(m)
j − u

(m)
i ) = −f

(m)
ji . (21)

These raw antidiffusive fluxes offset the error induced by mass lumping and discrete
upwinding. In the fully explicit case (θ = 0) the convective terms must be stabilized by
means of a streamline diffusion operator which also admits a flux decomposition [17],[19].
In this paper we restrict ourselves to implicit finite element methods which do not require
any extra stabilization as far as the discretization is concerned. Linear Galerkin schemes
of this type are of little use, as they are prone to nonphysical oscillations and lead to
finite element matrices with extremely unfavorable properties. At the same time, they
constitute viable high-order methods for the flux-corrected-transport algorithm.

5 Iterative FEM-FCT formulation

The essence of flux correction consists in adding as much antidiffusion as possible without
generating spurious wiggles. In particular, it is important to guarantee that quantities
like densities, temperatures, concentrations etc. remain strictly nonnegative. It is obvious
that LED methods do satisfy this physically motivated constraint at the semi-discrete
level. However, the influence of the time discretization must also be taken into account.
A fully discrete scheme is positivity-preserving if it can be represented in the form

Aun+1 = Bun, un ≥ 0, (22)

where A is an M-matrix and all entries of B are nonnegative [18],[19]. Building on this
positivity criterion, we will derive a nonlinear high-resolution scheme.

To begin with, let us analyze the defect correction method introduced above for the
mixture of high- and low-order discretizations. The substitution of (18) into (14) gives

A(u(m))u(m+1) = bn + f(un, u(m)). (23)

Recall that the low-order preconditioner A was designed to be an M-matrix. Hence, it
suffices to verify the positivity condition for the right-hand side. To this end, we introduce
an auxiliary quantity ũn as the solution to the explicit subproblem

MLũn = MLun + (1 − θ)∆tL(un)un. (24)

In fact, ũn corresponds to an intermediate solution computed at the time instant tn+1−θ

by the explicit low-order method. Note that ũn = un in the fully implicit case θ = 1.
Other time-stepping schemes preserve the positivity of un provided that [17],[19]

∆t ≤ 1

1 − θ
min

i
{−mi/lii| lii < 0} . (25)

This readily computable upper bound follows from the positivity condition set forth above
and can serve as a threshold value for an adaptive time step control.
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According to (22), the positivity of un and ũn is inherited by u(m+1) if we drop the
second term in the right-hand side of (23) and end up with bn = MLũn. On the other
hand, the accuracy of the finite element discretization can be dramatically improved if
we retain a certain portion of the antidiffusive fluxes in regions where the solution is
sufficiently smooth. The family of implicit FEM-FCT schemes proposed in [16],[17] is
based on the following representation of the right-hand side

b
(m+1)
i = bn

i +
∑

j 6=i

α
(m)
ij f

(m)
ij , α

(m)
ij = αij(ũ

n, f
(m)
ij ). (26)

The involved correction factors α
(m)
ij depend on the auxiliary solution ũn and on the

interplay of raw antidiffusive fluxes. They are determined using the universal limiting
strategy presented in the next section. Roughly speaking, the flux correction step makes
sure that there exists a matrix B with no negative entries such that b(m+1) = Bũn. This
enables us to represent the discrete scheme in the desired form (22) with ũn in lieu of un.

Note that ũn is independent of the iteration number m and does not have to be
recalculated in the course of defect correction. Unfortunately, there is a price to be paid for
this convenience. Namely, the numerical solution becomes increasingly diffusive at large
time steps. Equation (21) reveals that the spatial contribution to the raw antidiffusive flux
is proportional to the time step. At the same time, the amount of acceptable antidiffusion
depends solely on ũn, so that the flux must be drastically curtailed as its magnitude
increases with the time step. This is a serious drawback, since the ability to operate with
large time steps was the main reason for using an implicit scheme in the first place.

In order to alleviate the dependence of the final solution on the time step, we resort to
an iterative FEM-FCT formulation, whereby only the rejected portion of the antidiffusive
flux needs to be dealt with. This prevents the flux limiter from returning to the worst
case scenario and makes the choice of correction factors at one particular iteration less
critical. A somewhat similar technique was developed by Schär and Smolarkiewicz [37]
in the finite difference context. However, their flux correction formalism is inherently
explicit, so that the advantages of using an iterative procedure are rather questionable for
efficiency reasons. In addition, Schär and Smolarkiewicz determine the upper and lower
bounds using the old solution rather than the low-order one. This practice may turn out
to be rather dangerous, especially for problems with sink terms [17],[19].

In our new approach, the accepted antidiffusion is incorporated into the intermediate
solution ũ(m) which is no longer fixed and must be updated along with the right-hand side
b(m) for the previous defect correction step

MLũ(m) = b(m), b(0) = bn. (27)

Recall that ML is a diagonal matrix so that no linear system has to be solved and the
overhead cost associated with the computation of ũ(m) is negligible.

The limiting strategy remains unchanged except for the fact that the correction factors
are based on the local extrema of ũ(m) rather than ũn and applied to the difference between
the raw antidiffusive fluxes and the net effect of previous corrections

∆f
(m)
ij = f

(m)
ij − g

(m)
ij , α

(m)
ij = αij(ũ

(m), ∆f
(m)
ij ). (28)
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Subsequently, the limited flux difference is added to the sum of its predecessors

g
(m+1)
ij = g

(m)
ij + α

(m)
ij ∆f

(m)
ij =

m
∑

k=0

α
(k)
ij ∆f

(k)
ij , g

(0)
ij = 0 (29)

and inserted into the global load vector for the next iteration

b
(m+1)
i = b

(m)
i +

∑

j 6=i

α
(m)
ij ∆f

(m)
ij . (30)

In the special case α
(m)
ij ≡ 1, successive substitution yields

b
(m+1)
i = bn

i +
∑

j 6=i

(g
(m)
ij + ∆f

(m)
ij ) = bn

i +
∑

j 6=i

f
(m)
ij . (31)

Therefore, our iterative FEM-FCT technique proves to be consistent in the sense that it
reduces to the standard Galerkin discretization if no limiting is performed.

It is worth mentioning that (30) is of the same form as (26) and even equivalent to it
for m = 0. As before, the flux limiter ensures that b(m+1) = Bũ(m) for some B ≥ 0, so
that the transformation ũ(m+1) = M−1

L Bũ(m) as defined by the inverse diffusion problem
(27) is positivity-preserving. Note that the classical FCT algorithm with un+1 = ũ(1) is
recovered in the fully explicit case (forward Euler time-stepping, lumped mass matrix).
As the iteration process continues, more and more antidiffusion can be built into the
intermediate solution. At the same time, the task of the flux limiter simplifies, because
the remainder ∆f

(m)
ij shrinks and a larger percentage of it can be accepted. This is in

contrast to the old approach, whereby the limiting procedure always starts from scratch
without taking the outcome of previous flux correction steps into account.

In either case, the defect vector for the linear system (15) is redefined as

r(m) = b(m+1) − A(u(m))u(m), (32)

where b(m+1) consists of the low-order part bn and nonlinear antidiffusion. It remains to
describe the algorithm for the computation of correction factors and explain how it works.

6 Limiting strategy

The flux limiter is a key element of the FEM-FCT paradigm. As already pointed out
above, it is supposed to adjust the correction factors αij = αji so as to guarantee that

bi = miũi +
∑

j 6=i

αijfij ≥ 0 if ũ ≥ 0. (33)

Varying αij between zero and unity, one obtains the diffusive low-order solution, the
oscillatory high-order solution or something in-between. If ũi is a local extremum, then
the antidiffusive fluxes trying to enhance it must be canceled completely by setting αij = 0.
Otherwise, the following representation is feasible [16],[19]

bi = (mi − ci)ũi + ciũk, where ci =

∑

j 6=i αijfij

ũk − ũi

(34)

and k is the number of a neighboring node at which a local extremum is attained.
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A sufficient condition for the positivity constraint to be satisfied is given by the double
inequality mi ≥ ci ≥ 0. Let ũmax

i and ũmin
i denote the maximum and minimum solution

values at the stencil Si which consists of node i and its nearest neighbors

ũ
max

min

i =
max
min

ũj, j ∈ Si. (35)

To make sure that ci ≥ 0, we adopt ũk = ũmax
i if the net antidiffusive flux

∑

j 6=i αijfij

is positive and ũk = ũmin
i otherwise. The remaining condition mi ≥ ci must be enforced

by tuning the correction factors. This can be accomplished by invoking Zalesak’s FCT
limiter which was originally derived using heuristic arguments and applicable only in the
framework of an explicit time discretization.

Antidiffusive fluxes directed down the gradient of ũ tend to flatten solution profiles
and should be canceled completely at the outset of the flux correction process

fij := 0, if fij(ũi − ũj) ≤ 0. (36)

In other words, an antidiffusive flux should not be allowed to act as a diffusive one.
This optional prelimiting step can be traced back to the original SHASTA scheme [3].
Zalesak mentioned it as well but argued that the resulting improvement is marginal and
cosmetic in nature [44]. However, without this amendment his multidimensional limiter
is positivity- but not monotonicity-preserving, so that the numerical solution may exhibit
various artifacts in the vicinity of shocks and discontinuities [4],[17],[19].

Following Zalesak [44] and Löhner et al. [27], we introduce the auxiliary quantities

P±
i =

1

mi

∑

j 6=i

max

min
{0, fij}, Q±

i = ũ
max

min

i − ũi, (37)

which represent the sum of all positive/negative antidiffusive fluxes into node i and the
distance to the local extremum, respectively. In the worst case, all contributions are of
the same sign, so that the flux fij should be multiplied by

R±
i =

{

min{1, Q±
i /P±

i }, if P±
i 6= 0,

1, if P±
i = 0.

(38)

Recall that a positive flux fij into node i is always balanced by a negative flux fji = −fij

into node j and vice versa. Hence, the limiter must inspect the sign of the flux and take
the minimum of the nodal correction factors

αij =

{

min{R+
i , R−

j }, if fij ≥ 0,
min{R+

j , R−
i }, if fij < 0.

(39)

Note that Q±
i = 0 implies R±

i = 0 and αij = 0. Hence, any enhancement of local
extrema is prohibited by the limiter. Furthermore, the following estimate holds [17],[19]

miQ
−
i ≤ miR

−
i P−

i ≤
∑

j 6=i

αijfij ≤ miR
+
i P+

i ≤ miQ
+
i . (40)

This proves that the corrected antidiffusive fluxes satisfy the constraint mi ≥ ci.
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7 Boundary treatment

It was reported in [17] that an FCT algorithm based on Zalesak’s limiter may malfunction
for smooth solutions having a nonvanishing gradient at the boundary. In this case, small
ripples may pop up at the outlet and propagate into the interior of the domain as illus-
trated in Figure 1 (left) for the one-dimensional convection equation with v = 1, u0 = x.
Similar problems occur at the inlet but their detrimental effect is alleviated by the Dirich-
let boundary condition. Some preliminary speculations regarding the origin of spurious
ripples can be found in [17]. Recently, an explanation of this phenomenon was given by
Möller [32] who observed that formula (35) yields a poor estimate of upper/lower bounds
at inflow and outflow boundaries. Namely, ũi can be misinterpreted as a local extremum
because it is only compared to nodal values of the solution within the domain. As long as
no information regarding the solution behavior beyond the open boundary is available, it

is impossible to tell whether or not ũ
max

min

i would be an extremum for the extended domain.
As a rule of thumb, antidiffusive fluxes should neither create new minima/maxima, nor

accentuate already existing ones [44]. Ironically, this fundamental law of flux correction
turns out to be the cause of troubles at the boundary. The faulty flux limiter erroneously
anticipates the enhancement of a local extremum and switches to the diffusive low-order
solution, which entails a redistribution of mass due to the discrete conservation principle.
Changing the solution value at one node is accompanied by an adjustment of those at
the neighboring nodes so that the total mass remains unchanged. To illustrate this effect,
the so-called lever model was introduced in [32]. Let the piecewise-linear solution be
represented by levers of variable length hinged at their midpoints, which correspond to
the element mean values, and connected continuously with one another. Pulling down
the rightmost lever results in a shearing force which affects the slopes of all components
as shown in Figure 1 (right). Furthermore, the implications of the optional prelimiting
step (36) can be explained in a similar way. Roughly speaking, diffusive fluxes rotate the
levers in the wrong direction, which results in the formation of kinks and flat plateaus
amidst a steep front. For further details, the interested reader is referred to [32].

Formation of ripples at the outlet
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1

Lever model

Figure 1. Pathological behavior of Zalesak’s limiter.
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To cure the pathological behavior of Zalesak’s limiter, we reset the nodal correction
factors which are based on questionable upper/lower bounds

R±
i := 1 ∀i ∈ Nb, (41)

where Nb denotes the set of nodes belonging to the inflow and outflow boundaries. At
the inlet, it is reasonable to do so anyway because the essential boundary condition
overrides the contribution of incoming antidiffusive fluxes. At the outlet, the off-diagonal
coefficients of the high-order transport operator are typically nonnegative [17],[22] so this
modification does not pose any hazard to positivity either. In addition, any undershoots or
overshoots generated there would be immediately convected away. The newly introduced
postlimiting step should follow (38) and precede (39) in a practical implementation. This
simple remedy produces the desired effect at virtually no additional cost.

8 Summary of the FEM-FCT algorithm

The revised Zalesak’s limiter completes our iterative FEM-FCT formulation which is
applicable to nonlinear conservation laws, multidimensional problems, unstructured finite
element meshes and implicit time-stepping schemes. It can be implemented as a black-box
postprocessing routine which operates with discrete operators regardless of their origin.
The modifications are introduced in a sweep over numerical edges which correspond to
pairs of basis functions with overlapping supports. The list of edges is determined by
the sparsity pattern of the finite element matrix. Specifically, each edge ~ij is associated
with a nonzero off-diagonal coefficient aij in the upper/lower triangular part. The main
algorithmic steps to be performed in the scalar case can be summarized as follows:

In the matrix assembly routine:

1. Retrieve/compute the entries kij and kji of the high-order transport operator.

2. Determine the corresponding artificial diffusion coefficient dij from equation (10).

3. Substitute the diffusive flux (12) into the right-hand side bn (at the first iteration).

4. Update the four entries of the upwind-biased preconditioner A as required by (13).

5. Compute the antidiffusive flux (21) or (28) to be limited and inserted into b(m+1).

In the flux correction module:

6. Initialize/update ũ by solving the explicit subproblem (24) or (27).

7. Invoke Zalesak’s limiter with pre- and postlimiting to compute αij from (39).

8. Insert the limited antidiffusive fluxes into expressions (26) or (29),(30).

In the defect correction loop:

9. Solve the linear system (15) with the defect vector r(m) given by (32).

10. Update the solution according to (16) and proceed to the next iteration.

In what follows, we generalize the above algorithm to systems of hyperbolic conservation
laws and elucidate its implementation for the Euler equations of gas dynamics.
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9 Euler equations

Compressible flows at high velocities are governed by the Euler equations which represent
a system of conservation laws for the mass, momentum and energy of an inviscid fluid

∂ρ

∂t
+ ∇ · (ρv) = 0, (42)

∂(ρv)

∂t
+ ∇ · (ρv ⊗ v) + ∇p = 0, (43)

∂(ρE)

∂t
+ ∇ · (ρhv) = 0, (44)

where ρ, v, p, E and h = E + p/ρ stand for the density, velocity, pressure, total energy
per unit mass and stagnation enthalpy, respectively. This system is complemented by an
equation of state which relates the energy, pressure and density, for instance

p = (γ − 1)ρ

(

E − |v|2
2

)

. (45)

Here γ denotes the ratio of specific heats for a polytropic gas (γ = 1.4 for air).
Introducing the vector of conservative variables U and the triple of fluxes for each

coordinate direction F = (F 1, F 2, F 3) defined as follows

U =













ρ
ρv1

ρv2

ρv3

ρE













, F 1 =













ρv1

ρv2
1 + p

ρv1v2

ρv1v3

ρhv1













, F 2 =













ρv2

ρv1v2

ρv2
2 + p

ρv2v3

ρhv2













, F 3 =













ρv3

ρv1v3

ρv2v3

ρv2
3 + p

ρhv3













(46)

we can represent the Euler equations in the standard divergence form

∂U

∂t
+ ∇ · F = 0, where ∇ · F =

3
∑

d=1

∂F d

∂xd

. (47)

Furthermore, the chain rule yields a quasi-linear formulation, in which the spatial deriva-
tives are applied to the conservative variables rather than fluxes. The resulting system
can be written in terms of the Jacobian matrices A = (A1, A2, A3) such that [12]

∂U

∂t
+ A · ∇U = 0, where A · ∇U =

3
∑

d=1

Ad ∂U

∂xd

. (48)

It is worth mentioning that the fluxes are homogeneous functions of the conservative
variables, so that the relationship between the components of F and A is given by

F d = AdU, Ad =
∂F d

∂U
, d = 1, 2, 3. (49)

Due to the hyperbolicity of the Euler equations, any linear combination of the three
Jacobians is diagonalizable with real eigenvalues. This is a very useful property which
will lead us to a natural generalization of the discrete upwinding technique.
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10 Galerkin matrix assembly

Implicit finite element methods are rarely used for numerical simulation of compressible
flows. Therefore, the issue of efficient matrix assembly has received little attention in the
literature. In this section, we present an edge-based assembly technique for the standard
Galerkin discretization of the Euler equations. Let us start with the divergence form (47)
and interpolate the fluxes using the group finite element formulation which yields

∑

j

[
∫

Ω

ϕiϕj dx

]

dUj

dt
+

∑

j

[
∫

Ω

ϕi∇ϕj dx

]

· Fj = 0. (50)

In order to obtain a (non-)linear system of the form AU = B after an implicit time
discretization, we should represent the semi-discrete problem as follows

MC

dU

dt
= KU, (51)

where MC is the block-diagonal mass matrix for the coupled system and K is a discrete
counterpart of the operator −A · ∇ for the quasi-linear formulation (48).

Recall that the basis functions sum to unity, so that the sum of their derivatives
vanishes. Hence, the coefficients cij defined in (7) satisfy cii = −∑

j 6=i cij and it follows
from (50) that the right-hand side of the five coupled equations for node i is given by

(KU)i = −
∑

j

cij · Fj = −
∑

j 6=i

cij · (Fj − Fi). (52)

Furthermore, it was shown in Roe’s pioneering work on approximate Riemann solvers for
hyperbolic conservation laws [36] that Fj −Fi = Âij(Uj −Ui), where Âij = (Â1

ij, Â
2
ij, Â

3
ij)

corresponds to the continuous Jacobian A evaluated at the intermediate state

ρ̂ij =
√

ρiρj, v̂ij =

√
ρivi +

√
ρjvj√

ρi +
√

ρj

, ĥij =

√
ρihi +

√
ρjhj√

ρi +
√

ρj

. (53)

The density-averaged quantities ρ̂ij, v̂ij and ĥij are called the Roe mean values.
In light of the above, equation (52) admits the following representation

(KU)i = −
∑

j 6=i

cij · Âij(Uj − Ui), where cij · Âij =
3

∑

d=1

cd
ijÂ

d
ij. (54)

The dot product can be interpreted as a ‘projection’ of the triple Âij onto the numerical

edge ~ij. For our purposes, it is expedient to introduce the splitting cij ·Âij = −(aij +bij),
where the two components of the cumulative Roe matrix are defined by [20]

aij = aij · Âij, aij = −cij − cji

2
, (55)

bij = bij · Âij, bij = −cij + cji

2
. (56)
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A similar decomposition can be performed for the contribution of node i to (KU)j

cji · (Fj − Fi) = cji · Âij(Uj − Ui), where cji · Âij = aij − bij. (57)

Furthermore, integration by parts reveals that the coefficients cij and cji are related by

cij + cji =

∫

Γ

nϕiϕj ds, (58)

where n denotes the outward unit normal to the boundary. Thus, we have

aij = −cij +
1

2

∫

Γ

nϕiϕj ds, bij = −1

2

∫

Γ

nϕiϕj ds. (59)

For typical finite elements (linear and multilinear) the surface integral is nonzero only
if both nodes belong to the boundary. Hence, aij = −cij in the interior of the domain,
while bij = 0 and its contribution bij to the local Jacobian vanishes. This means that
just one cumulative Roe matrix, namely aij, needs to be evaluated for each interior edge.
At the boundary, one obtains bij = −n tij/2, where tij =

∫

Γ
ϕiϕj ds corresponds to an

off-diagonal entry of the mass matrix for the surface triangulation. The Roe matrices for
boundary edges consist of a skew-symmetric part aij and a symmetric part bij.

According to (54)–(57), the contribution of the edge ~ij to the term KU reads

(aij + bij)(Uj − Ui) −→ (KU) i (60)

(aij − bij)(Uj − Ui) −→ (KU)j (61)

This representation leads to a very efficient edge-based algorithm for matrix assembly.
Now as before, there is no need for numerical integration as long as the coefficients cij

are initialized and stored. The graph representing the connectivity of the global matrix
depends solely on the underlying mesh and on the type of finite element approximation.
For systems of equations, the array of edges remains the same as in the scalar case.
However, there are interactions not only between basis functions for different nodes but
also between basis functions for different variables. Hence, each coefficient of the discrete
operator turns into a matrix of size equal to the squared number of variables.

It can be readily inferred from (60)–(61) that the four 5× 5 blocks contributed by the
numerical edge ~ij to the global Jacobian matrix K ∈ R

5N×5N are given by

kii = −aij − bij, kij = aij + bij,

kji = −aij + bij, kjj = aij − bij.
(62)

These local Jacobians are evaluated edge-by-edge and their entries k
kl
ij (k, l = 1, . . . , 5)

are scattered to the corresponding positions in the 25 blocks Kkl ∈ R
N×N . The assembly

process is illustrated in Figure 2. In practice, it is not necessary to assemble and store
the gigantic global matrix completely. Due to the nonlinearity of the Euler equations, the
use of an iterative solution technique is indispensable. If we employ the defect correction
method with a block-diagonal preconditioner (see below) then just the five blocks Kkk

will need to be generated explicitly. The remaining part of the matrix will be represented
by the edge contributions (60)–(61) to be inserted directly into the defect vector.
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11 Artificial viscosity

To a large extent, the ability of a FEM-FCT algorithm to withstand the formation of
wiggles depends on the quality of the underlying low-order method. In order to get rid of
oscillations, we perform mass lumping and replace the high-order system (51) by

ML

dU

dt
= LU, (63)

where ML denotes the lumped mass matrix and L is the low-order Jacobian operator.
Recall that we derived its scalar counterpart by elimination of negative off-diagonal entries
from the Galerkin operator. Now this discrete upwinding technique needs to be extended
to hyperbolic systems. In this case, the edge contributions to the global finite element
matrix are no longer scalar quantities but matrices themselves. As a natural generalization
of the LED criterion, we require that all off-diagonal matrix blocks be positive definite.

To achieve the desired effect, we add tensorial artificial viscosity dij ∈ R
5×5 to the

Roe matrices in (62). This straightforward transformation leads to

lii = −aij − dij, lij = aij + dij,

lji = −aij + dij, ljj = aij − dij,
(64)

which corresponds to (13) in the scalar case. The modified edge contributions are built
into the blocks of L as explained above. In essence, dij supersedes the symmetric part
bij of the cumulative Roe matrix which belongs into the raw antidiffusive flux

fij = −
(

mij

d

dt
+ dij − bij

)

(Uj − Ui), fji = −fij. (65)

The block mij = mijI, where I denotes the 5×5 identity matrix, is responsible for the error
induced by mass lumping. After the time discretization, one obtains an expression similar
to (21). It remains to design dij so as to satisfy the generalized positivity constraint.

th rowi

th rowj

th columni
th columnj

ji
kl

jj
kl

ij
kl

ii
kl

KK

K K

i j

i

j

l

k

Figure 2. Edge-based matrix assembly for the Euler equations.
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As already mentioned, the system of Euler equations is hyperbolic, so that any linear
combination of the three Jacobian matrices is diagonalizable with real eigenvalues. Thus,
there exists a diagonal matrix Λ(aij) and a regular matrix R(aij) of right eigenvectors
such that the cumulative Roe matrix aij admits the following factorization

aij = R(aij)Λ(aij)R(aij)
−1, (66)

where diagonal entries of the matrix

Λ(aij) = |aij|diag {v̂ij − ĉij, v̂ij, v̂ij, v̂ij, v̂ij + ĉij} (67)

are proportional to the eigenvalues of aij. The scaling factor |aij| stands for the Euclidean
norm of the coefficient vector aij, while the auxiliary quantities

v̂ij =
aij · v̂ij

|aij|
, ĉij =

√

(γ − 1)

(

ĥij −
|v̂ij|2

2

)

(68)

represent the ‘projection’ of the density-averaged velocity v̂ij onto the numerical edge ~ij
and the local speed of sound for this edge, respectively.

Making use of the characteristic decomposition (66), we can eliminate the negative
eigenvalues of aij and define the tensor dij as follows

dij = |aij| = R(aij) |Λ(aij)|R(aij)
−1, (69)

where the matrix |Λ(aij)| contains the absolute values of the eigenvalues

|Λ(aij)| = |aij|diag {|v̂ij − ĉij|, |v̂ij|, |v̂ij|, |v̂ij|, |v̂ij + ĉij|} . (70)

This kind of artificial viscosity is frequently employed to construct upwind-biased finite
difference schemes for hyperbolic systems [12],[24],[31]. The approach presented in this
paper enables us to incorporate it into a finite element discretization and obtain an analog
of Roe’s approximate Riemann solver based on flux difference splitting.

As an alternative, discrete upwinding for systems of equations can be performed in
the framework of the conservative flux decomposition outlined in [19],[20],[22]

(KU)i = −
∑

j 6=i

gij, where gij = cij · Fi − cji · Fj. (71)

Note that the so-defined Galerkin fluxes are skew-symmetric: gji = −gij. On a uniform
1D mesh, cij = ±1/2 for linear finite elements, so that gij = ±(Fi + Fj)/2. This is
due to the well-known fact that the Galerkin method results in a central difference type
approximation. The replacement of gij by the consistent numerical flux

g
∗
ij = gij −

1

2
dij(Uj − Ui) (72)

yields the same nonoscillatory low-order scheme as the one derived above [19],[20].
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Our generalization of Roe’s approximate Riemann solver constitutes a viable method
per se but it results in considerable overhead costs and is not to be recommended as a
low-order scheme for the FEM-FCT algorithm. A much cheaper alternative is to add
scalar dissipation proportional to the spectral radius of the Roe matrix [19],[20]

dij = dijI, (73)

where dij = |aij|(|v̂ij| + ĉij) is the largest (in magnitude) eigenvalue of aij. It is worth
mentioning that the resulting artificial diffusion operator needs to be applied only to
the five diagonal blocks of the finite element matrix. Moreover, it is the same for all
components, which simplifies bookkeeping and reduces the computational cost. As long
as excessive artificial viscosity is removed in the course of flux correction, a slightly better
accuracy of the costly Riemann solver based on (69) does not pay off. Surprisingly enough,
a slightly overdiffusive low-order method may even produce better results in the framework
of FEM-FCT because of an improvement in the phase accuracy [19]. Therefore, the
definition of dij in formula (73) is preferable from the computational viewpoint.

12 Generalized FEM-FCT algorithm

After the discretization in time by the standard θ-scheme, the methods of high and low
order can be combined in the framework of a defect correction loop as explained above
for the scalar case. The generalization of (14) to systems of equations reads

U (m+1) = U (m) + [A(U (m))]−1R(m), m = 0, 1, 2, . . . (74)

The global defect vector R(m) for the Galerkin discretization is given by

R(m) = Bn + F (Un, U (m)) − A(U (m))U (m). (75)

As before, Bn denotes the constant right-hand side for the low-order scheme

Bn = MLUn + (1 − θ)∆tL(Un)Un, L = K + D. (76)

Piecing together the contributions of raw antidiffusive fluxes (65), we obtain

F (Un, U (m)) = [(MC − ML) − (1 − θ)∆tD(Un)]Un

− [(MC − ML) + θ∆tD(U (m))]U (m). (77)

In a practical implementation, we assemble the vectors Bn and R(m) edge-by-edge
without generating the involved global matrices. The preconditioner A(U (m)) and the

array of raw antidiffusive fluxes f
(m)
ij are updated in the same matrix assembly routine.

The linear system to be solved at each outer iteration can be written symbolically as














A
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. (78)
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The structure and the condition number of A have a great deal of influence on the
computational effort required to solve the system at hand. Working with a global matrix
which is full at the block level is prohibitively expensive. Therefore, it is advisable to use
a block-Jacobi preconditioner such that A

(m)
kl = 0 for l 6= k. In this case, it is sufficient to

assemble and ‘invert’ the five diagonal blocks which we define similarly to (17)

A
(m)
kk = Mkk − θ∆tL

(m)
kk , k = 1, . . . , 5. (79)

Here Mkk denotes the lumped mass matrix restricted to one variable and Lkk is a diagonal
block of the low-order Jacobian operator. This choice of the preconditioner A essentially
decouples the constituents of the compressible Euler equations and makes it possible to
treat them one at a time or, better yet, in parallel. The unwieldy linear system (78)
reduces to a sequence of well-behaved scalar subproblems

A
(m)
kk ∆u

(m)
k = r

(m)
k , k = 1, . . . , 5. (80)

u
(m+1)
k = u

(m)
k + ∆u

(m+1)
k , u

(0)
k = un

k . (81)

As a result, each conservative variable can be advanced separately by solving a problem of
the form (15)–(16) with limited antidiffusion built into the defect vector. Flux correction
can be implemented following the FEM-FCT algorithm for scalar conservation laws.

An important remark is in order regarding the choice of correction factors for systems
of equations. It turns out that an independent limiting of strongly coupled variables may
produce poor results in some cases. Therefore, it is worthwhile to equalize the correction
factors for each edge and apply the common value αij = f(α1

ij, . . . , α
5
ij) to the whole vector

of antidiffusive fluxes fij ∈ R
5. This trick often leads to a dramatic improvement which

can be attributed to the fact that the phase errors become synchronized [27]. Nevertheless,
there is still a large degree of empiricism in the construction of such flux limiters, and
their performance is highly problem-dependent.

Flux correction for the system of Euler equations was addressed by Löhner et al. [27],
[29] who mentioned the following approaches to the design of a synchronized limiter:

• using correction factors associated with a single ‘indicator variable’,

• taking the minimum of those obtained for a certain group of variables,

• flux limiting in terms of arbitrary (nonconservative) variables.

According to [29], the combination of limiters for the density and energy is to be recom-
mended for highly dynamic flows characterized by propagating and/or interacting shock
waves. The minimum of correction factors for the density and pressure is reported to be
appropriate for steady-state problems. At the same time, the minimum of those for all
conservative variables is far too restrictive in the framework of a standard FCT algorithm.
In particular, minor fluctuations in the crosswind velocity may result in a complete cancel-
lation of the antidiffusive flux. Therefore, an equal treatment of all velocity components
does not make sense, especially if the flow takes place in a predominant direction. It is
worth mentioning that the iterative FEM-FCT limiter introduced in this paper is much
less sensitive to the choice of the indicator variables and of the synchronization procedure,
since the rejected antidiffusion can be reused at subsequent flux/defect correction steps.
The prelimiting of antidiffusive fluxes also proves to be an important prerequisite.
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To compute the correction factors for variables other than the ones being solved for,
we convert the solution differences Ũj − Ũi and the fluxes fij into [20]

δŨ ′
ij := T (Ũ)(Ũj − Ũi), f

′
ij := T (Ũ)fij, (82)

where T (Ũ) ∈ R
5×5 is a suitable transformation matrix. Then we invoke Zalesak’s limiter

and apply the synchronized correction factor αij to the original flux vector fij. A general
algorithm for the construction of a flux limiter operating with an arbitrary set of quantities
is outlined in the book by Löhner [29]. Flux limiting in terms of characteristic variables
appears to be particularly attractive. This approach has been widely used in the literature
on TVD-like methods for systems of hyperbolic conservation laws [2],[5],[38],[39].

13 Implementation of boundary conditions

The specification and implementation of boundary conditions for the Euler equations has
always been a bit of a mystery. A comprehensive presentation of the theoretical aspects
is available in a number of popular CFD textbooks [8],[12],[42]. Boundary conditions
can be classified into physical and numerical ones. Physical boundary conditions (PBC)
are required to obtain a well-posed problem, whereas numerical boundary conditions
(NBC) are responsible for the stability and convergence of the algorithm. It is known
that the tradeoff between PBC and NBC depends on the propagation properties of the
hyperbolic system. If Nv is the total number of variables and Np is the number of incoming
characteristics, then Np physical and Nn = Nv −Np numerical boundary conditions are to
be prescribed. At the inlet and outlet, Np and Nn depend on the flow regime as follows:

Inflow boundary Outflow boundary
subsonic supersonic subsonic supersonic

1D 2D 3D 1D 2D 3D 1D 2D 3D 1D 2D 3D
Np 2 3 4 3 4 5 1 1 1 0 0 0
Nn 1 1 1 0 0 0 2 3 4 3 4 5

At the solid wall, the normal velocity component must be set equal to zero: v · n = 0.
This no-penetration or free slip boundary condition prevents the smuggling of data into
or out of the computational domain by convective fluxes.

As a rule, some or all boundary conditions are specified in terms of nonconservative
variables like the total enthalpy, entropy, pressure or deflection angle. Therefore, it is
impossible to implement them as usual Dirichlet boundary conditions. It is common
practice to recover the desired boundary values by changing to the characteristic variables,
evaluating the incoming Riemann invariants from the physical boundary conditions and
extrapolating the outgoing ones from the interior of the domain [12],[42],[43]. The inverse
transformation yields the values of the conservative variables at the boundary which
can be used to compute the numerical fluxes for a finite volume method or treated as
Dirichlet boundary conditions for a finite difference method. Unfortunately, the extra-
polation of Riemann invariants lacks a proper justification and is expensive to perform
on unstructured meshes. In addition, we are not aware of any publication devoted to
the implementation of characteristic boundary conditions for an implicit finite element
method. Let us briefly describe the simple technique we developed for this purpose.
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In order to predict the solution values at boundary nodes, we modify the five diagonal
blocks A

(m)
kk of our preconditioner A(U (m)) = {akl

ij} by picking out the corresponding rows
and setting their off-diagonal entries equal to zero. In other words, if node i belongs to
the boundary, then akl

ij = 0, ∀j 6= i, ∀l 6= k. This enables us to update the components of
the vector Ui = [u1,i, . . . , u5,i]

T explicitly prior to solving the linear system (80). To this

end, we simply divide the components of the nodal defect vector R
(m)
i = [r

(m)
1,i , . . . , r

(m)
5,i ]T

by the diagonal entries of the preconditioner and increment the old iterate

u∗
k,i = u

(m)
k,i + r

(m)
k,i /akk

ii , k = 1, . . . , 5. (83)

Next, we transform the provisional solution U∗
i to the vector of Riemann invariants Wi.

Recall that the number of physical boundary conditions is equal to the number of incoming
characteristics. Therefore, we can evaluate the incoming Riemann invariants analytically
and substitute the exact values for the predicted ones which generally do not satisfy the
imposed PBC. The outgoing Riemann invariants, which are associated with the NBC,
remain unchanged. Finally, we convert the modified vector W ∗

i back to the conservative

variables, assign the result to U
(m)
i and nullify all components of the defect vector R

(m)
i .

The flow chart for the algebraic manipulations to be performed for boundary nodes before
the solution of scalar subproblems (80)–(81) is as follows

U
(m)
i −→ U∗

i −→ Wi −→ W ∗
i −→ U

(m)
i , R

(m)
i := 0. (84)

The last modification along with the fact that only the diagonal entry of row i in the
matrices A

(m)
kk is nonzero implies that ∆U

(m+1)
i = 0 and U

(m+1)
i = U

(m)
i . In essence, the

corrected values U
(m)
i act as Dirichlet boundary conditions for the end-of-step solution.

Note that there is no need for an ad hoc extrapolation of data from the interior.
In principle, all boundary conditions can be handled in this way. However, a shortcut

is feasible for the free slip condition. The predicted momentum wi = [u∗
2,i, u

∗
3,i, u

∗
4,i]

T can
be projected onto the tangent plane without changing to the Riemann invariants:

w∗
i := wi − (wi · ni)ni, (85)

where ni denotes the outward unit normal at node i. This gives the three momentum
components for the corrected U

(m)
i , whereas the density and energy are provided by U∗

i .
Yet another option is to apply the above modification to the defect for the momentum
equation before computing U

(m)
i := U∗

i from equation (83).

14 Numerical examples

In the remainder of this paper, we apply our iterative FEM-FCT schemes to a number
of two-dimensional test problems. The generality of the new approach makes it possible
to perform flux correction in 1D and 3D using the same postprocessing routine. Three-
dimensional simulation results for bubbly flows in gas-liquid reactors can be found in [21].
In the case θ = 0, our algorithm is largely equivalent to the classical FEM-FCT procedure
and iterative flux correction is impractical. Therefore, we restrict ourselves to implicit
time-stepping in what follows. Numerical results for the flux-corrected Lax-Wendroff
scheme can be found in [17],[18]. For many more examples and a numerical analysis of
the discretization error for our FEM-FCT methods the reader is referred to [32].
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14.1 Solid body rotation

Rotation of solid bodies with discontinuities and small scale features is frequently used as
a challenging test problem for transport algorithms. In the first example, we consider the
benchmark configuration proposed by LeVeque [26]. It is intended to examine the ability
of a numerical method to reproduce both discontinuous and smooth profiles. To this end,
a slotted cylinder, a cone and a smooth hump are exposed to the nonuniform velocity
field v = (0.5 − y, x − 0.5) and undergo a counterclockwise rotation about the center of
the square domain Ω = (0, 1) × (0, 1). Each of these bodies lies within a circle of radius
r0 = 0.15 centered at a point with Cartesian coordinates (x0, y0).

The exact solution to the pure convection equation after each full revolution matches
the initial data depicted in Figure 3 (left). Let us introduce the normalized distance
function r(x, y) = 1

r0

√

(x − x0)2 + (y − y0)2. It follows that u(x, y, 0) = 0 for r(x, y) > 1.
Elsewhere, the reference shape of the three bodies is given by

Cylinder: (x0, y0) = (0.5, 0.75), u(x, y, 0) =

{

1, if |x − x0| ≥ 0.025 ∨ y ≥ 0.85,
0, otherwise.

Cone: (x0, y0) = (0.5, 0.25), u(x, y, 0) = 1 − r(x, y).

Hump: (x0, y0) = (0.25, 0.5), u(x, y, 0) = 0.25[1 + cos(π min {r(x, y), 1})].

The numerical solution at t = 2π produced by the iterative FEM-FCT algorithm is shown
in Figure 3 (right). It was computed on a uniform mesh of 128 × 128 bilinear elements
using the Crank-Nicolson time-stepping with ∆t = 10−3. Triangular finite elements yield
virtually identical results [19]. No spurious wiggles come into being and the resolution
of discontinuities is remarkably crisp. Even the narrow bridge of the cylinder is nicely
preserved and the fill-in of the slot is insignificant. The inevitable ‘peak clipping’ for the
cone does not exceed 10% while the hump is reproduced almost exactly. The prelimiting
of antidiffusive fluxes has proved to be essential for this test. If this optional step is
omitted, the sheer ridges of the cylinder are corrupted by optically disturbing kinks.
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Figure 3. Solid body rotation, 128 × 128 bilinear elements, t = 2π.
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Figure 4. Cutlines for the FEM-FCT solution at t = 2π.

To examine the numerical results with extra scrutiny and facilitate comparison with
those obtained by LeVeque [26] using a TVD method, four cutlines are presented in
Figure 4. The solid lines designate the analytical solution while the dots represent the
nodal values of the numerical one. It can be seen that our iterative FCT limiter does a
really nice job. Moreover, the results are much more accurate than those produced by the
TVD method equipped with the superbee limiter which introduces too much antidiffusion
and tends to steepen smooth profiles [26]. In our experience, FCT is usually superior to
TVD for strongly time-dependent problems which call for the use of the consistent mass
matrix. At the same time, TVD schemes are to be recommended for less dynamic flows,
for which mass lumping is appropriate [22]. The optimal choice of the time-stepping
scheme also depends on the dynamics of the flow. In this example, the Crank-Nicolson
method was selected because the fully implicit backward Euler scheme is only first order
accurate and turns out to be diffusive at large time steps [17],[18],[19].

14.2 Rotation of a Gaussian hill

The second test case proposed by Lapin [23] makes it possible to evaluate the magnitude
of artificial diffusion due to the discretization in space and time. This can be accomplished
by applying certain statistical tools to the convection-diffusion equation

∂u

∂t
+ v · ∇u = ǫ∆u in Ω = (−1, 1) × (−1, 1), (86)

where v = (−y, x) is the velocity field and ǫ = 10−3 is the physical diffusion coefficient.
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The initial condition to be imposed is given by u(x, y, 0) = δ(x0, y0), where δ stands
for the Dirac delta function. Clearly, it is impossible to initialize the solution by a singular
function in a practical implementation. Instead, it is reasonable to concentrate the whole
mass at a single node. The integral of a discrete function over the domain Ω can be
computed as the sum of nodal values multiplied by the entries of the lumped mass matrix:
∫

Ω
uh dx =

∫

Ω

∑

i uiϕi dx =
∑

i miui. The total mass of a delta function equals unity.
Hence, one should find node i closest to the peak location (x0, y0) and set u0

i = 1/mi,
u0

j = 0, j 6= i. Alternatively, one can start with the exact solution at a time t0 > 0.

In the rotating Lagrangian reference frame, the convective term vanishes and the
resulting diffusion problem can be solved analytically. It can be readily verified that the
exact solution of (86) is a Gaussian hill defined by the normal distribution function

u(x, y, t) =
1

4πǫt
e−

r
2

4ǫt , r2 = (x − x̂)2 + (y − ŷ)2,

where x̂ and ŷ denote the time-dependent peak coordinates

x̂(t) = x0 cos t − y0 sin t, ŷ(t) = −x0 sin t + y0 cos t.

The actual peak coordinates for a numerical approximation may be quite different.
They can be calculated as the mathematical expectation of the center of mass under the
probability distribution with density uh given by the finite element solution

x̂h(t) =

∫

Ω

xuh(x, y, t) dx, ŷh(t) =

∫

Ω

yuh(x, y, t) dx.

The quality of approximation can be assessed by considering the standard deviation

σ2
h(t) =

∫

Ω

r2
huh(x, y, t) dx, r2

h = (x − x̂h)
2 + (y − ŷh)

2,

which quantifies the rate of smearing caused by both physical and the numerical diffusion.
Due to all sorts of discretization errors, σ2

h may differ considerably from the exact value
σ2 = 4ǫt. This discrepancy represented by the relative variance error

∆σrel =
σ2

h − σ2

σ2
=

σ2
h

4ǫt
− 1

serves as an excellent indicator of numerical diffusion inherent to the discretization scheme.
Let us start with the analytical solution corresponding to x0 = 0, y0 = 0.5 and

t0 = 0.5 π. Figure 5 depicts the exact and numerical solution after one full revolution of
the Gaussian hill. The mesh size and time step are the same as in the previous example.
The iterative FEM-FCT method with Crank-Nicolson time-stepping proves its worth.
Note that no peak clipping takes place. On the contrary, the global maximum reaches
10.1519 as compared to 10.1360 for the exact solution. As the Gaussian hill moves around
the origin, it is being gradually smeared by diffusion. The influence of the time step ∆t
on the value of ∆σrel is illustrated in Figure 6. This diagram enables us to assess the total
amount of numerical diffusion and to estimate the share of the temporal error.
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Exact solution, ||u||∞ = 10.1360
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Figure 5. Rotation of a Gaussian hill, 128 × 128 bilinear elements, t = 2.5 π.

If the first-order accurate backward Euler method is employed, the temporal part
of the relative variance error plays an important role at large time steps and decreases
linearly as the time step is refined. This is also the case for the second-order accurate
Crank-Nicolson scheme but the temporal discretization error is obviously much smaller
than that for the backward Euler method. As expected, the new (iterative) limiter is
able to accommodate more antidiffusion than the old (non-iterative) one. In fact, ∆σrel

may even become negative if the spatial discretization error prevails. This explains the
above-mentioned enhancement of the peak in Figure 5. However, the differences between
the performance of the two FEM-FCT versions are marginal in the range of time steps
considered in this example. The Courant number must be ‘large’ for the advantages of
the iterative approach to become pronounced. Hence, the potential of the new limiter
can only be utilized to the full extent if the time derivative of the transported quantity
is relatively small and temporal accuracy can be sacrificed in favor of the unconditional
positivity offered by the fully implicit FEM-FCT method.
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Figure 6. Gaussian hill: relative variance error vs. the time step.
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14.3 Steady-state convection-diffusion

The proposed FEM-FCT algorithm can be applied to stationary problems in conjunction
with a pseudo-time-stepping technique, whereby the steady-state solution is obtained by
marching into the stationary limit of the associated time-dependent problem. Evolution
details are immaterial in this case, since the time step is merely an artificial parameter
which determines the convergence rates. Hence, it is desirable to choose time steps as large
as possible, so as to reduce the computational cost. The restrictive CFL condition prevents
explicit schemes from operating with large time steps and makes them too inefficient for
our purposes. This drawback can be rectified to some extent by resorting to local time-
stepping but it is obvious that steady-state problems call for an implicit treatment.

In light of the above, the fully implicit backward Euler method, which was found to be
quite diffusive for transient problems, constitutes an excellent iterative solver for steady
or creeping flows. Let us investigate the numerical behavior of the BE/FCT scheme for
the singularly perturbed convection-diffusion equation

v · ∇u − ǫ∆u = 0 in Ω = (0, 1) × (0, 1),

where v = (cos 10o, sin 10o) and ǫ = 10−3. The concomitant boundary conditions read

∂u

∂y
(x, 1) = 0, u(x, 0) = u(1, y) = 0, u(0, y) =

{

1, y ≥ 0.5,
0, y < 0.5.

The solution to this elliptic problem is characterized by the presence of a sharp front
next to the line x = 1. The boundary layer develops because the solution of the reduced
problem (ǫ = 0) does not satisfy the homogeneous Dirichlet boundary condition.

A reasonable initial approximation for the pseudo-time-stepping loop is given by

u(x, y, 0) =

{

1 − x, y ≥ 0.5,
0, y < 0.5.

It is worthwhile to start with the discrete upwind scheme and use the converged low-order
solution as initial data for the time-dependent FEM-FCT algorithm. This ‘educated guess’
should be close enough to the steady-state limit. Hence, the computational overhead due
to the assembly and limiting of antidiffusive fluxes will be insignificant.

The numerical solutions depicted in Figure 7 were computed on a Cartesian grid of
64 × 64 bilinear elements. Both of them were produced by FEM-FCT with backward
Euler time-stepping. The time step ∆t = 0.1 (Courant number ν = 6.4) was intentionally
chosen to be rather large to expose the devastating effect of numerical diffusion for the
non-iterative formulation. The pronounced smearing in the vicinity of the boundary layer
(see the left diagram) compromises the benefits of unconditional stability/positivity which
were the main reason for using an implicit time discretization in the first place. Iterative
flux correction performs much better, as demonstrated by the right diagram. Both the
front and the boundary layer are resolved sharply and the solution is completely free of
oscillations. The time step must be drastically reduced (∆t ≈ 10−3, ν = 0.064) for the
non-iterative limiter to be competitive. An adaptive grid refinement makes it possible
to achieve comparable accuracy on a much coarser mesh consisting of as few as 160
quadrilateral elements [19].
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Figure 7. Steady-state convection-diffusion. BE/FCT, ∆t = 0.1.

14.4 Shock tube problem

The first time-dependent example for the compressible Euler equations is the well-known
shock tube problem [24],[40]. Its physical prototype is a closed tube filled with gas which
is initially at rest and separated by a membrane into the regions of high and low pressure.
Specifically, the initial conditions for the Riemann problem to be solved are given by





ρL

vL

pL



 =





1.0
0.0
1.0



 for x ∈ [0, 0.5],





ρR

vR

pR



 =





0.125
0.0
0.1



 for x ∈ (0.5, 1].

After the membrane is removed, the flow structure in the shock tube is characterized by
three dynamically moving waves. A shock wave sets off for the region of lower pressure
with velocity vs satisfying the Rankine-Hugoniot conditions. All of the primitive variables
are discontinuous across the shock. The pressure jump propels the mass in the same
direction with velocity vp. The moving interface between the regions of different densities
but constant velocity and pressure represents a contact discontinuity. Finally, a rarefaction
wave propagates in the opposite direction providing a smooth transition to the original
values of the state variables in the region of high pressure.

To compare the performance of the low-order methods based on discrete upwinding for
hyperbolic systems (69) and scalar artificial viscosity (73), we present the one-dimensional
simulation results in Figure 8. The snapshots correspond to the time instant t = 0.231.
The Euler equations were discretized using 100 linear finite elements and the Crank-
Nicolson time-stepping with ∆t = 10−3. The analytical solution represented by the dotted
line was obtained using the technique described by Anderson [1]. Both numerical solutions
are completely free of oscillations and qualitatively correct but their accuracy leaves a lot
to be desired. The smearing introduced by scalar dissipation is seen to be stronger than
that for the finite element counterpart of Roe’s approximate Riemann solver but the
differences are quite small. In what follows, we will stick to the former approach because
it is more economical. In addition, some (but not too much) extra diffusion turns out to
be beneficial as long as it can be removed in the antidiffusive step [19].
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Figure 8. Shock tube problem in 1D. Low-order solutions, t = 0.231.

The two-dimensional results displayed in Figure 9 were computed by the iterative
CN/FCT algorithm using 128×128 bilinear elements and ∆t = 10−3. The underlying low-
order method was constructed by adding scalar dissipation proportional to the spectral
radius of the Roe matrix. Following the guidelines provided by Löhner et al. [27],[29], we
performed the synchronization of Zalesak’s limiter by taking the minimum of correction
factors for the density and energy. The solution along the line y = 0.5 (see the 1D diagram
in the lower right corner) demonstrates that the resolution of the shock and of the contact
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Figure 9. Shock tube problem in 2D. Iterative FEM-FCT scheme, t = 0.231.
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discontinuity is dramatically improved as compared to the low-order solutions in Figure 8.
Moreover, no spurious undershoots or overshoots are observed, even though the correction
factors for the momentum were left out of consideration in the limiting process. Due to
the fact that the time step must remain small for accuracy reasons in this example, the
non-iterative FEM-FCT method yields very similar results. However, it becomes rather
diffusive if the minimum of correction factors for all conservative variables is employed
for synchronization. In this case, the iterative limiter performs much better because the
rejected antidiffusion can be built into the intermediate solution step-by-step [32].

14.5 Radially symmetric Riemann problem

The second transient benchmark was proposed by LeVeque [25] to assess the ability of
numerical methods to preserve radial symmetry. In essence, it represents a counterpart of
the shock tube problem in polar coordinates. Before an impulsive start, the unit square
Ω = (−0.5, 0.5)× (−0.5, 0.5) is separated by an imaginary membrane into two subregions:
ΩL = {(x, y) ∈ Ω : r =

√

x2 + y2 < 0.13} and ΩR = Ω\ΩL. The gas is initially at rest,
whereby its pressure and density are higher within the circle ΩL than outside of it:





ρL

vL

pL



 =





2.0
0.0
15.0



 in ΩL,





ρR

vR

pR



 =





1.0
0.0
1.0



 in ΩR.

The abrupt removal of the membrane at t = 0 triggers a radially expanding shock wave
which is induced by the pressure difference. The objective is to capture the moving shock
and to make sure that the numerical solution remains radially symmetric.

The simulation results depicted in Figure 10 were obtained using the same method,
mesh and time step as in the previous example. Note that the contour lines for the density
at t = 0.13 (see the left diagram) have the form of concentric circles, which demonstrates
that our FEM-FCT algorithm does preserve the symmetry. The 1D plot on the right
shows the density distribution along the x−axis for the same solution (dotted line) and
for the one computed on a much finer mesh with more than one million nodes (solid line).
A good agreement is observed between the two curves. The ‘exact’ solution can be derived
by solving a one-dimensional Riemann problem with geometric source terms [25].
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Figure 10. Radially symmetric RP. Density distribution at t = 0.13.
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14.6 Compression corner

To illustrate the potential of the fully implicit FEM-FCT algorithm for the Euler equa-
tions, we apply it to a steady two-dimensional supersonic flow over a wedge which may
imitate e.g. the tip of a projectile. This standard configuration is sometimes referred to
as compression corner and constitutes an excellent test problem because it can be solved
analytically in the framework of the oblique shock theory [1]. The originally uniform su-
personic flow under consideration preserves its free-stream characteristics until it reaches
the wedge which deflects it upward through an angle θ. Provided that θ is not too large,
the change in the flow direction takes place across a shock wave which has the form of a
straight line emanating from the tip of the wedge and running oblique to the original flow
direction. All the streamlines experience the same deflection at the shock, so that the
flow behind it is also uniform and parallel to the surface of the wedge. The Mach number
decreases, whereas the pressure, density and temperature increase across the shock wave.
The so-called θ − β − M relation makes it possible to express the deflection angle θ in
terms of the shock inclination angle β and the upstream Mach number M1 as follows [1]

tan θ = 2 cot β
M2

1 sin2 β − 1

M2
1 (γ + cos 2β) + 2

.

Conversely, one can determine the angle β from this formula if θ and M1 are given.
In particular, the combination M1 = 2.5, θ = 15◦ yields a weak shock with β = 36.94◦.

The downstream Mach number M2 = 1.87 can be evaluated as explained in [1]. This
test case is well documented in the CFD Verification and Validation database of the
NPARC Alliance [33] where additional information and comparison data can be found.
Our simulation results presented in Figure 11 were computed on a boundary-fitted mesh
of 128 × 128 bilinear elements and interpolated onto a Cartesian mesh afterwards for
visualization purposes. The same kind of postprocessing was employed in all the remaining
examples. Since the problem at hand is stationary, it is worthwhile to use the backward
Euler method for the discretization in time (see above). Although it is unconditionally
stable for scalar equations, we had to use a moderate time step ∆t = 10−2 or a strong
underrelaxation to secure the convergence of outer iterations. It is not surprising that
our segregated algorithm for the Euler equations is insufficiently robust for steady flows
which call for the use of a coupled solution technique [11],[41].

The distribution of Mach numbers predicted by the low-order method based on scalar
dissipation looks more or less reasonable (see Figure 11, top). The upstream and down-
stream Mach numbers M1 and M2 are correct but the transition between them is anything
else but discontinuous. The oblique shock is strongly smeared by numerical diffusion and
actually resembles a ‘rarefaction wave’. At the same time, this overly diffusive solution
serves as a good initial guess for the FEM-FCT solver. Even the non-iterative formu-
lation brings about a dramatic improvement in comparison with the low-order method.
Figure 11 (middle) demonstrates that the shock is resolved sharply within 5-6 elements.
However, the accuracy of the results deteriorates as the time step is increased, whereas
the iterative FEM-FCT limiter is free of this drawback. It yields the numerical solution
shown in Figure 11 (bottom), where the shock is resolved within as few as 3-4 elements.
Obviously, this gain of accuracy is only recorded if the number of outer iterations is
sufficiently large for the rejected antidiffusion to be effectively recycled.
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Figure 11. Compression corner. Oblique shock at M1 = 2.5, θ = 15◦.

So far we have only dealt with structured meshes, so that one of the main advantages
of the discrete FEM-FCT approach still awaits numerical verification. In order to study
the performance of the new algorithm on unstructured meshes, let us perform an adap-
tive mesh refinement by clustering the grid points in the vicinity of the stationary shock.
The quadrilateral elements of the coarse mesh shown in Figure 12 are successively subdi-

Figure 12. Coarse mesh with local refinement.
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vided into four subelements which yields a computational mesh with about 10,000 vertices
after two refinements. This top-down approach enables us to generate the hierarchical
quad-tree data structures needed by our geometric multigrid solver for linear systems [41].
The resulting numerical solution to the compression corner problem is shown in Figure 13.
It exhibits superb accuracy and remains absolutely nonoscillatory, which confirms that
the iterative FEM-FCT method is applicable to unstructured meshes and non-rectangular
finite elements. Furthermore, the fully implicit pseudo-time-stepping proves to be appro-
priate for the steady Euler equations and an adaptive time step control [41] is feasible.
It is worth mentioning that our simulation results produced by FEM-FCT appear to be
superior to the ‘reference solution’ from the NPARC database [33].
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Figure 13. Adaptive FEM-FCT solution, M1 = 2.5, θ = 15◦.

14.7 Prandtl-Meyer expansion

Our last example deals with a steady supersonic flow being deflected downward rather
than upward. In this case, the flow behavior is quite different from the one discussed
above for the compression corner. As the gas reaches the kink, it starts spreading and the
flow characteristics change smoothly across the so-called Prandtl-Meyer expansion wave.
The streamlines gradually bend downward and eventually become parallel to the lower
wall as they leave the rarefaction fan which separates the regions of uniform flow. All
flow properties adjust themselves continuously across the rarefaction wave except for the
critical point at which the wall geometry changes abruptly. The Mach number increases,
while the pressure, density and temperature decrease. The analytical solution to this
problem and further details can be found in the book by Anderson [1].

To comply with the NPARC setup for this benchmark [33], we adopt the free-stream
Mach number M1 = 2.5 and the deflection angle θ = 15◦. The resulting expansion fan is
composed from an infinite number of iso-Mach lines lying in the angular sector bounded
by the lines corresponding to µ1 = 23.58◦ upstream and µ2 = 18.0◦ downstream. On exit
from the rarefaction wave, the Mach number equals M2 = 3.24 for the exact solution. The
objective is to investigate the ability of the discretization scheme to reproduce smooth
transitions as opposed to shocks. Let us return to the settings used to obtain the results
in Figure 11. The numerical solutions produced by the same algorithms applied to the
Prandtl-Meyer expansion problem are presented in Figure 14. The numerical diffusion
inherent to the low-order method (top) leads to a pronounced smearing of the expansion
wave, whereas both FEM-FCT solutions (middle/bottom) are seen to be very accurate.
They are virtually identical, since no flux limiting is necessary in smooth regions.

32



Low-order method
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Standard FEM-FCT

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4

0.6

0.8

1

Iterative FEM-FCT

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 14. Prandtl-Meyer expansion at M1 = 2.5, θ = 15◦.

15 Conclusions

An iterative FEM-FCT algorithm for multidimensional conservation laws was presented.
Some deficiencies of the original formulation were exposed and measures were taken to
fill the gaps. Zalesak’s limiter was embedded into a nonlinear defect correction loop. An
extension of the scalar FCT methodology to the compressible Euler equations was carried
out making use of the one-dimensional theory and flux difference splitting tools developed
in the finite difference framework. The need for a proper synchronization of correction fac-
tors was emphasized. An efficient way to perform the matrix assembly was proposed and
other relevant implementation aspects were discussed in detail. Implicit time discretiza-
tion appears to be very attractive for handling stationary problems and/or circumventing
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the stability condition. However, our segregated approach to the solution of the Euler
equations is hardly optimal for steady flows. The convergence rates can be much improved
by using a coupled solution technique and a FMG-FAS multigrid method [11],[30]. An
analog of the local MPSC smoother for the incompressible Navier-Stokes equations [41]
seems to be a superior alternative to the commonly employed collective Gauß-Seidel re-
laxation. The development of robust and efficient iterative solvers for implicit FEM-FCT
schemes constitutes an important direction for further research.
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[29] R. Löhner, Applied CFD Techniques. Wiley, 2001.

[30] J.F. Lynn, Multigrid Solution of the Euler Equations with Local Preconditioning. PhD
thesis, University of Michigan, 1995.

[31] P. R. M. Lyra, Unstructured Grid Adaptive Algorithms for Fluid Dynamics and Heat
Conduction. PhD thesis, University of Wales, Swansea, 1994.
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