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Abstract

A mathematical model for gas-liquid flows subject to mass transfer and chemical

reactions is presented. It is shown that bubble-induced buoyancy resembles natural

convection and can readily be incorporated into an incompressible flow solver by

using an analog of the Boussinesq approximation. Extra transport equations with

nonlinear source terms are introduced to describe the evolution of scalar quantities.

A segregated algorithm is proposed for the numerical treatment of the resulting PDE

system. The Navier-Stokes equations are solved by a projection-like method based

on the Pressure Schur Complement approach. Novel high-resolution finite element

schemes of FCT and TVD type are employed for the discretization of unstable

convective terms. Numerical results for a number of prototypical gas-liquid reactor

configurations illustrate the performance of the developed simulation tools.
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1 Introduction

Bubble columns and airlift loop reactors are widely used in industry as contacting devices
in which gaseous and liquid species are brought together to engage in chemical reactions.
The liquid supplied continuously or in a batch mode is agitated by bubbles fed at the
bottom of the reactor. As the bubbles rise, the gaseous component is gradually absorbed
into the bulk liquid where it may react with other species. The geometric simplicity of
bubble columns makes them rather easy to build, operate and maintain. At the same
time, the prevailing flow patterns are very complex and unpredictable, which represents a
major bottleneck for the design of industrial units. In airlift loop reactors, internal parts
are installed in order to enforce a stable circulation of liquid characterized by the presence
of pronounced riser and downcomer zones. Shape optimization appears to be a promising
way to improve the reactor performance by adjusting the geometry of internals.

In this paper, we touch upon the mathematical modeling of gas-liquid flows and pro-
pose a numerical algorithm based on the finite element method. A hierarchy of successively
refined unstructured meshes is used to deal with complex domains. The velocity-pressure
coupling via the incompressibility constraint is imposed in the framework of the Multilevel
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Pressure Schur Complement formulation originally developed for single-phase flows [29].
The instability of convective terms poses a hazard to the positivity of gas holdup and
concentrations. Standard remedies like upwinding degrade the accuracy of the numerical
solution and produce unacceptable results. The only way to obtain a sharp resolution
of steep fronts without generating wiggles is to use a nonlinear combination of high-
and low-order methods. The main contribution of this paper is a truly multidimensional
generalization of high-resolution TVD schemes to finite element discretizations on arbi-
trary meshes. Alternatively, convective terms can be handled by the implicit FEM-FCT
methodology which is presented in detail elsewhere [11], [13], [14]. Furthermore, we discuss
some other algorithmic aspects relevant for simulation of gas-liquid flows. Numerical ex-
amples are presented to give a flavor of feasible applications. However, a detailed analysis
of the model and of the obtained results is beyond the scope of this paper.

2 Mathematical model

Detailed hydrodynamic models for dispersed two-phase flow can be classified into those of
Euler-Euler and Euler-Lagrange type. The former approach implies that both phases are
treated as space-sharing interpenetrating continua. The macroscopic conservation laws
can be postulated using some heuristic arguments or derived mathematically by applying
a suitable averaging procedure to the associated single-phase continuity and momentum
equations [4], [5]. In the Euler-Lagrange formulation, only the liquid phase is considered to
be continuous, while individual bubbles or bubble clusters are tracked in a Lagrangian way
[15], [25]. The most detailed treatment of gas-liquid flow is provided by direct numerical
simulation (DNS), which amounts to solving a formidable free boundary problem for the
deformation of all bubbles and interactions between them. At present, this is feasible only
for a very limited number of bubbles. Nevertheless, DNS contributes to the understanding
of processes taking place at the microscopic level and constitutes a valuable tool for the
derivation of input parameters and correlations for less sophisticated CFD models.

In this paper, we subscribe to the Euler-Euler approach whereby the computational
cost is largely independent of the number of bubbles present in the flow field. The in-
stantaneous distribution of phases in the reactor is determined by the local gas holdup
αG = ǫ. The volume fraction of liquid equals αL = 1 − ǫ. The macroscopic continuity
equations

∂ρ̃G

∂t
+ ∇ · (ρ̃GuG) = −mint, ρ̃G = αGρG, (1)

∂ρ̃L

∂t
+ ∇ · (ρ̃LuL) = mint, ρ̃L = αLρL (2)

are coupled by the mass transfer term mint which models the absorption of gas into the
liquid. Here and below the tilde denotes multiplication by the volume fraction of the
respective phase. The macroscopic momentum equations read

ρ̃G

[

∂uG

∂t
+ uG · ∇uG

]

= αG∇ · SG + ρ̃Gg + fint, (3)

ρ̃L

[

∂uL

∂t
+ uL · ∇uL

]

= αL∇ · SL + ρ̃Lg− fint, (4)
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where S refers to the stress tensor and the coupling term fint in both right-hand sides is
responsible for the momentum exchange at the gas-liquid interface.

The above system of equations is known as the two-fluid model, which is widespread
in the CFD community. It provides a general description of the two-phase flow but
is practically worthless as long as the terms mint, fint, SG, SL are left unspecified. The
derivation of appropriate closure relations is a challenging task due to various interactions
between the two phases. In what follows, we present constituitive equations suitable for
buoyancy-driven bubbly flows with mass transfer and chemical reaction.

2.1 Interphase mass transfer

The mass transfer rate is proportional to the difference between the concentration cA of
the dissolved gas and an equilibrium concentration c∗A. The latter is related to the local
pressure p via Henry’s law p = Hc∗A, where H is an empirical coefficient depending on the
solubility of gas. The total flux of gas into the liquid is given by

mint = kLaS (c∗A − cA) η, (5)

where aS stands for the specific interfacial area, η denotes the molecular weight of gaseous
species and kL is the liquid-side mass transfer coefficient. As a rule, the resistance to mass
transfer on the gas side can be neglected.

Chemical reactions in the liquid phase can substantially accelerate the absorption
process by increasing the concentration gradient. The concomitant increase in the gas
flux is taken into account by applying an enhancement factor E to the physical mass
transfer coefficient:

kL = Ek0
L, (6)

where k0
L is a function of the Sherwood number Sh which varies with the local Peclet

number Pe. For a first-order irreversible reaction, the standard film theory yields [22]

E = Ha coth Ha, (7)

where Ha is the Hatta number. For vanishing Ha, the hyperbolic tangent tends to zero,
so that the above equation should be replaced by the series

E = 1 +
1

3
Ha2 −

1

45
Ha4 +

2

945
Ha6 −

1

4725
Ha8 + . . . . (8)

The enhancement factor for second-order reactions A + νBB → νP P can be derived
analytically only in a few limiting cases, e.g. for an instantaneous irreversible reaction:

Ei = 1 +
dBcB

νBdAc∗A
, (9)

dA and dB being the molecular diffusion coefficients. For slow and intermediate reactions,
equations of the film model have to be solved approximately. A widely used correlation
of numerical results was introduced by Van Krevelen and Hoftijzer [31]:

E = M coth M, M = Ha

√

Ei − E

Ei − 1
. (10)
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Note that this equation is nonlinear and has to be solved iteratively or approximated by
a simpler formula due to Wellek et al. [32]

1

(E − 1)1.35
=

1

(Ei − 1)1.35
+

1

(E1 − 1)1.35
, E1 = Ha coth Ha. (11)

Recall that the mass transfer term (5) contains the interfacial area aS which still is
to be defined. This key variable depends on the number and size of bubbles which may
vary in space and time. If there is no coalescence and breakup of bubbles, their number
density is conserved and satisfies the continuity equation

∂n

∂t
+ ∇ · (nuG) = 0. (12)

Let us assume that the gas-liquid mixture is locally monodisperse, i.e. the bubbles are
spherical with an average radius r. As long as n represents the number of bubbles per
unit volume, multiplying it by the volume of a single bubble yields the local gas holdup
ǫ = 4

3
πr3n. Hence, the specific interfacial area aS = 4πr2n is given by

aS = (4πn)1/3(3ǫ)2/3, where ǫ =
ρ̃G

ρG

= ρ̃G
RT

pη
. (13)

Here the physical density ρG is evaluated using the ideal gas law. The effective density
ρ̃G is computed from the continuity equation (1) for the gas phase.

2.2 Chemical reactions

The concentrations of all species dissolved in the liquid phase are described by a system
of scalar transport equations with source and/or sink terms due to mass transfer and
chemical reactions. For homogeneous reactions of second order it reads

∂c̃A

∂t
+ ∇ · (c̃AuL − d̃A∇cA) =

mint

η
− k̃2cAcB, (14)

∂c̃B

∂t
+ ∇ · (c̃BuL − d̃B∇cB) = −νBk̃2cAcB, (15)

∂c̃P

∂t
+ ∇ · (c̃PuL − d̃P∇cP ) = νP k̃2cAcB, (16)

where the subscript A denotes the dissolved gas, B the component it reacts with and P the
resulting product. The effective diffusion coefficients d̃A, d̃B, d̃P may involve contributions
of the turbulent dispersion in the liquid phase.

If the reactant B is present in excess, its virtually constant concentration can be built
into the reaction rate k1 = k2cB, and the reaction is said to be a pseudo-first-order one.
In this case, the system of mass balances shrinks to

∂c̃A

∂t
+ ∇ · (c̃AuL − d̃A∇cA) =

mint

η
− k̃1cA, (17)

∂c̃P

∂t
+ ∇ · (c̃PuL − d̃P∇cP ) = νP k̃1cA, (18)

and the enhancement factor is defined by equation (7) rather than (10) or (11). In any
event, the concentration fields have little or no effect on the liquid velocity, so the above
transport equations are essentially decoupled from the rest of the model.
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2.3 Closure of the momentum equations

Both phases are considered to be Newtonian fluids sharing the same pressure field. Hence,
the stress tensor for either phase can be represented as

S(u) = −pI + µeffD(u), (19)

where the pressure p and the deformation rate tensor D are defined by

p = ρG
R

η
T, D(u) =

1

2
[∇u + ∇uT ].

For simplicity, the effective viscosity µeff is assumed to be constant. In general, it consists
of the laminar viscosity µ depending solely on the physical properties of the fluid and the
turbulent eddy viscosity µT modeling the effect of microscopic velocity fluctuations which
are eliminated during the averaging process. The standard k − ǫ turbulence model seems
to perform reasonably well [2], [24] and can be extended to allow for the bubble-induced
turbulence [9], [19]. Nevertheless, turbulence modeling for two-phase flows remains an
open question and no reliable model is available to date.

The coupling term fint in the balance equations (3) and (4) represents the interphase
momentum transfer due to forces exerted by the liquid phase on the rising bubbles. In
spite of the ongoing controversy in the literature, it is generally accepted that fint involves
contributions from the drag force, the virtual mass force and the lift force [5]:

fint = fD + fV M + fL. (20)

By far the most important constituent is the drag force fD experienced by a bubble as it
moves steadily in the surrounding liquid. The ensuing interphase friction is given by

fD = −ǫCD
3

8

ρL

r
|uG − uL|(uG − uL), (21)

where CD is a dimensionless drag coefficient which can be assessed by measuring the
terminal rise velocity of a single bubble. Numerous empirical correlations are available
for CD as a function of the Reynolds number. Note that the drag force is proportional to
the relative velocity so that the bubbles slow down whereas the liquid gains momentum.

The ‘added mass’ of liquid entrained in the wake of accelerating bubbles results in a
virtual mass force of the form

fV M = −ǫCV MρL

(

duG

dt
−

duL

dt

)

. (22)

Depending on the properties of the gas-liquid mixture, the virtual mass coefficient CV M

may deviate appreciably from the default value CV M = 0.5 valid for spherical particles
under some idealistic assumptions.

Additional forces transverse to the direction of motion are typically represented by

fL = −ǫCLρL(uG − uL) × (∇× uL), (23)

where the lift coefficient CL equals 0.25 for dilute flows of spheres.
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2.4 Algebraic slip relation

The implications of the three contributions to the interphase force were analyzed in detail
by Sokolichin and Eigenberger [23]. They demonstrated that the influence of the virtual
mass force fV M on the bubble motion can be neglected. At the same time, they found
the lift force to be rather significant but questioned its existence in the form (23) which
was originally derived for solid particles. In the literature, fL is often misused for fitting
the results to experimental data. In some publications even the sign of the lift coefficient
is reversed. Sokolichin and Eigenberger condemned this practice and argued that the lift
force should be omitted as long as its origins, form and magnitude are unclear.

The interphase momentum transfer is dominated by the drag force fD and the above
arguments indicate that it is the only one which needs to be taken into account. Moreover,
the density of gas is much smaller than that of liquid, so that the inertia and gravity terms
in the gas phase momentum balance (3) can be neglected [23]. Assuming the gas phase
to be inviscid, we insert the stress tensor SG = pI and obtain the equilibrium relation

0 = −ǫ∇p + fD, (24)

which can be used to compute the relative bubble velocity uslip. To this end, it is expedient
to linearize the drag force as proposed by Schwarz and Turner [21]:

fD = −ǫCD
3

8

ρL

r
|uslip|uslip ≈ −ǫCWuslip ⇒ uslip = −

∇p

CW

. (25)

Unlike the standard drag coefficient CD, the linearization parameter CW is a dimensional
quantity. It is commonly assigned the constant value 5 · 104 kg

m3s
which corresponds to the

bubble rise velocity of approximately 20 cm/s.
The above model simplifications make it possible to replace the gas phase momentum

balance by the algebraic slip relation

uG = uL + uslip + udrift, (26)

where the drift velocity udrift was introduced to model the transport of bubbles by turbu-
lent eddies. The net flux of gas due to turbulent dispersion is proportional to the gradient
of the number density and directed opposite to it. The corresponding drift velocity reads

udrift = −dG
∇n

n
. (27)

In general, the bubble path dispersion coefficient dG depends on the eddy viscosity µT

and on the turbulent Schmidt number [23].
If the velocity uG is computed from the slip relation (26) making use of (27), the gas

phase continuity equations (1) and (12) can be rewritten the form

∂ρ̃G

∂t
+ ∇ · (ρ̃G(uL + uslip) − dG∇ρ̃G) = −mint (28)

and
∂n

∂t
+ ∇ · (n(uL + uslip) − dG∇n) = 0, (29)

respectively. Strictly speaking, the diffusive term in (28) is valid only for a constant bubble
mass but this form can be justified if one substitutes the drift velocity after decoupling
the transport and mass transfer (see the description of operator splitting tools below).
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2.5 Drift-flux model

The two-fluid model (1)–(4) is not the only way to describe dispersed two-phase flows using
a fully continuous representation. Alternatively, the gas-liquid mixture can be considered
as a single fluid whose effective density and momentum are defined by

ρ = ρ̃L + ρ̃G, ρu = ρ̃LuL + ρ̃GuG. (30)

The weakly compressible Navier-Stokes equations for these quantities constitute the so-
called drift-flux model. As soon as the mixture velocity u is available, the velocities of
both phases can be recovered using the algebraic slip relation (26).

For bubbly flows, the two-fluid model and the drift-flux model are essentially equivalent
[23]. Indeed, the sum of phasic continuity equations (1) and (2) yields

∂ρ

∂t
+ ∇ · (ρu) = 0. (31)

Furthermore, if the simplified gas phase momentum balance (24) is added to equation (4)
with the stress tensor SL given by (19), the interphase force term vanishes and we obtain

ρ̃L

[

∂uL

∂t
+ uL · ∇uL

]

= −∇p + ∇ · (µ̃effD(uL)) + ρ̃Lg. (32)

Recall that the gas density is very small as compared to that of liquid. Therefore, its
contribution to the mixture density and momentum can be neglected:

ρ ≈ ρ̃L, u ≈ uL. (33)

Under these assumptions, equation (32) reduces to the momentum balance for the mixture.

2.6 Boussinesq approximation

The effective density ρ̃L = (1−ǫ)ρL depends on the local gas holdup, which leads to liquid
circulation due to the buoyancy in aerated regions. Similar processes occur in single-phase
flows in the presence of temperature gradients. Following Sokolichin and Eigenberger
[23], we use an analog of the Boussinesq approximation for natural convection problems
and retain the variable density only in the gravity term of equation (32) dropping the
tilde elsewhere. After these modifications, we recover the incompressible Navier-Stokes
equations with an extra buoyancy term proportional to the gas holdup:

∂uL

∂t
+ uL · ∇uL = −∇p∗ + νeff∆uL − ǫg,

∇ · uL = 0, p∗ =
p − patm

ρL

+ g · x − gh. (34)

At high gas throughputs it is advisable to relax the Boussinesq approximation in the
momentum equation and solve it in its original form (32). As far as the continuity equation
is concerned, the constant density assumption can be retained. This model simplification
is particularly advantageous from the computational viewpoint, since it eliminates the
need for dealing with the evolution of the free surface on top of the reactor [23].
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2.7 Summary of equations

As a bottomline, let us collect the equations to be solved. Our simplified Euler-Euler
model of drift-flux type consists of the following subproblems:

• Navier-Stokes/‘Boussinesq’ equations

∂uL

∂t
+ uL · ∇uL = −∇p∗ + νeff∆u − ǫg,

∇ · uL = 0. (35)

• Continuity equations for the gas phase

∂ρ̃G

∂t
+ ∇ · (ρ̃G(uL + uslip) − dG∇ρ̃G) = −mint, (36)

∂n

∂t
+ ∇ · (n(uL + uslip) − dG∇n) = 0. (37)

• Transport equations for the liquid phase

∂c̃A

∂t
+ ∇ · (c̃AuL − d̃A∇cA) =

mint

η
− k̃2cAcB, (38)

∂c̃B

∂t
+ ∇ · (c̃BuL − d̃B∇cB) = −νBk̃2cAcB, (39)

∂c̃P

∂t
+ ∇ · (c̃PuL − d̃P∇cP ) = νP k̃2cAcB. (40)

These partial differential equations are supplemented by the algebraic closure relations

uslip = −
∇p

CW

, mint = Ek0
LaS

( p

H
− cA

)

η,

ǫ =
ρ̃GRT

pη
, aS = (4πn)1/3(3ǫ)2/3, νeff = const.

The problem statement is to be completed by specifying appropriate initial and boundary
conditions which depend on the particular application.

3 Numerical algorithm

The main features of the numerical algorithm are summarized below. The discretization
in space is performed by an unstructured grid finite element method in order to provide
an accurate treatment of non-Cartesian geometries with internal obstacles. The incom-
pressible Navier-Stokes equations call for the use of an LBB-stable finite element pair. A
suitable candidate is the nonconforming Rannacher-Turek element (rotated multilinear
velocity, piecewise-constant pressure) [20]. Standard multilinear elements are employed
for other variables. The manually generated coarse mesh is successively refined to produce
hierarchical data structures for the multigrid solver [27], [28].
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The coupled subproblems are solved one at a time within a block-iterative loop of
Gauß-Seidel type. A two-way coupling is implemented only for the hydrodynamic part
(uL, p, ǫ). We solve the Navier-Stokes equations using the gas holdup from the last outer
iteration, then update the gas holdup and repeat this procedure until the residual of
the momentum equation or the relative changes of the gas holdup distribution are small
enough. The resulting velocity field is substituted into the transport equations (37)–(40)
and remains fixed until the end of the time step.

Operator splitting is employed to separate convection-diffusion and absorption-reaction
processes. First, all scalar quantities are transported without taking the sources/sinks into
account. The homogeneous equations (41)–(44) are decoupled and can be processed in
parallel. The updated concentration fields serve as initial data for an ODE system which
describes the accumulation and consumption of species. Equations (45)–(48) are nonlin-
ear and strongly coupled but the nodal ODE systems are independent of one another.

Step 1: convection-diffusion

∂ρ̃G

∂t
+ ∇ · (ρ̃G(uL + uslip) − dG∇ρ̃G) = 0, (41)

∂c̃A

∂t
+ ∇ · (c̃AuL − d̃A∇cA) = 0, (42)

∂c̃B

∂t
+ ∇ · (c̃BuL − d̃B∇cB) = 0, (43)

∂c̃P

∂t
+ ∇ · (c̃PuL − d̃P∇cP ) = 0. (44)

Step 2: absorption-reaction

dρ̃G

∂t
= −mint, (45)

dc̃A

dt
=

mint

η
− k̃2cAcB, (46)

dc̃B

dt
= −νBk̃2cAcB, (47)

dc̃P

dt
= νP k̃2cAcB. (48)

Note that operator splitting is applied locally in time, i.e. within each time step. The
solution is integrated in time from tn to tn+1 = tn + ∆tn by the following algorithm:

1. Solve the Navier-Stokes equations (35) for uL and p.

2. Recover the pressure gradient ∇p using an L2-projection.

3. Calculate the slip velocity as uslip = − ∇p
CW

.

4. Advance ρ̃G using (41) and recompute ǫ = ρ̃GRT
pη

.

5. Substitute ǫ into (35) and evaluate the residual.

6. If converged then proceed to 7, otherwise go to 1.

7. Update the number density n according to (37).

8. Solve the homogeneous transport equations (42)–(44).

9. Compute the interfacial area aS = (4πn)1/3(3ǫ)2/3.

10. Solve the ODE system (45)–(48) for each node.
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An implicit time discretization of Crank-Nicolson or backward Euler type is employed for
all equations. The value of the implicitness parameter θ and of the local time step can
be selected individually for each subproblem so as to maximize accuracy and/or stability.
This provides an efficient treatment of physical processes occurring simultaneously but on
entirely different time scales. The communication between the subproblem blocks takes
place at the end of the common macro time step ∆tn which is chosen adaptively so as
to control the changes of the gas holdup distribution (see below). The linear systems
are solved using preconditioned BiCGSTAB or multigrid methods. In what follows, we
elucidate some constituents of the numerical algorithm in detail.

3.1 Treatment of incompressibility

The Boussinesq system (35) is solved using the academic code FEATFLOW [27]. This
open-source software package represents a collection of robust discretization tools and
optimized multigrid solvers for incompressible flow problems. Below, we briefly outline
the Pressure Schur Complement method adopted for gas-liquid flow simulations.

The fully discretized Navier-Stokes equations represent a saddle point problem, in
which the pressure acts as a Lagrange multiplier for the incompressibility constraint:

[

S ∆tB
BT 0

] [

u

p

]

=

[

f

0

]

. (49)

The velocity can be formally written as u = S−1(f −∆tBp) and plugged into the discrete
continuity equation BTu = 0 to derive the missing equation for the pressure:

BT S−1Bp = ∆t−1BT S−1f . (50)

This discrete problem can be solved by the preconditioned Richardson iteration [26]

p(l+1) = p(l) + [BT M−1
L B]−1∆t−1BT S−1(f − ∆tBp(l)), (51)

where l is the outer iteration counter and ML is the lumped mass matrix which proves to
be a reasonable approximation to the evolution operator S at high Reynolds numbers.

Each Pressure Schur Complement iteration can be interpreted and implemented as a
projection cycle which consists of the following algorithmic steps:

1. Compute the velocity ũ from the Burgers equation

Sũ = f − ∆tBp(l)

2. Solve the discrete ‘Pressure-Poisson’ problem

BT M−1
L Bq = ∆t−1BT ũ

3. Correct the pressure and the intermediate velocity

p(l+1) = p(l) + q, u(l+1) = ũ − ∆tM−1
L Bq
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In a nutshell, the right-hand side of the momentum equation is assembled using the old
pressure iterate and the resulting intermediate velocity ũ is projected onto the subspace of
divergence-free functions so as to satisfy the condition BTu(l+1) = 0. The Pressure Schur
Complement approach constitutes a very general framework which unites coupled solution
techniques and classical projection schemes, the degree of coupling being determined by
the number of outer iterations. For details the interested reader is referred to [29].

3.2 Treatment of convection

Convection is notoriously difficult to treat numerically. The standard Galerkin method
is a ‘centered’ scheme which gives rise to an unstable discretization of convective terms.
A common remedy is to add streamline diffusion which provides the necessary stabiliza-
tion without reducing the order of approximation. However, even stabilized high-order
methods tend to produce nonphysical undershoots and overshoots in the vicinity of steep
gradients. As a result, negative gas holdups or concentrations may arise, which is clearly
unacceptable. It is possible to get rid of oscillations by adding adaptive artificial diffusion
depending on the local solution behavior. The high-order scheme can be used in smooth
regions but near discontinuities it should be replaced by a low-order scheme like ‘upwind’
which is diffusive enough to prevent the formation of wiggles.

The first discretization procedure to utilize the idea of adaptive switching between
high- and low-order methods was the flux-corrected-transport algorithm introduced in
the early 1970s by Boris and Book [3]. The state-of-the-art generalization proposed by
Zalesak [33] has made it possible to incorporate FCT into unstructured grid methods.
The foundations of flux correction for finite elements were laid by Löhner et al. [17]. In
a series of recent publications [11], [13], [14] we refined the FEM-FCT methodology and
extended it to implicit time stepping. Unfortunately, Zalesak’s limiter leads to some loss
of accuracy for large time steps, which compromises the advantages of implicit schemes.

A class of high-resolution methods with artificial diffusion independent of the time
step was developed by Harten [7]. His total variation diminishing schemes and extensions
thereof rest on a firm mathematical basis and are widely used in CFD computations.
At the same time, it has been largely unclear how to apply them in the finite element
context. In the scarce publications on that subject, TVD-like artificial viscosities were
designed using some reconstruction of a local 1D stencil [18]. The use of P1 elements
was essential to the derivation of the underlying edge-based data structure. Below we
propose an alternative approach which is applicable to arbitrary Galerkin discretizations.
The (anti-)diffusive terms are represented as an array of internodal fluxes. A complete
transition to an edge-based data structure is feasible [14] but not mandatory.

3.2.1 Galerkin discretization

Consider a time-dependent conservation law for a scalar quantity u:

∂u

∂t
+ ∇ · (f − d∇u) = 0 in Ω, (52)

where f = vu stands for the convective flux and d denotes the diffusion coefficient. All of
our homogeneous transport equations (37), (41)–(44) can be written in this form.
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The concomitant boundary conditions are specified in terms of normal fluxes:

−n · (f − d∇u) = g on Γ1,

n · (f − d∇u) = 0 on Γ2,

n · ∇u = 0 on Γ3,

where n denotes the outward unit normal. On the feed boundary Γ1 the incoming flux is
determined by the operating conditions. In particular, the total gas throughput divided
by the aerated area yields the value of g for the continuity equation (41). Obviously,
there is no flux through the solid wall Γ2. On the outflow boundary Γ3 the diffusive flux
is cancelled while the convective one is left free as required by the hyperbolic limit of pure
convection (d = 0). It is implied that v · n < 0 on Γ1 while v · n > 0 on Γ3.

Using the divergence theorem to integrate the spatial derivatives in the weak form of
equation (52) by parts and inserting the natural boundary conditions, we obtain

∫

Ω

w
∂u

∂t
dx −

∫

Ω

∇w · (f − d∇u) dx +

∫

Γ3

w f · n ds =

∫

Γ1

wg ds. (53)

A common practice in finite element methods for conservation laws is to interpolate the
fluxes in the same way as the approximate solution:

uh =
∑

j

ujϕj, fh =
∑

j

fj ϕj =
∑

j

(vjuj) ϕj, (54)

where ϕi are the basis functions spanning the finite-dimensional subspace. The resulting
Galerkin discretization of equation (52) reads

∑

j

[
∫

Ω

ϕiϕj dx

]

duj

dt
−

∑

j

[
∫

Ω

∇ϕi · (vjϕj − d∇ϕj) dx

]

uj

+
∑

j

[
∫

Γ3

ϕiϕjvj · n ds

]

uj =

∫

Γ1

ϕig ds. (55)

This ODE system can be written in compact matrix form as follows

MC
du

dt
= (K − B)u + q, (56)

where MC is the consistent mass matrix, K is the discrete transport operator, B is the
contribution of the surface integral over the Neumann boundary and q is the source term
due to incoming fluxes. The matrix entries are given by

mij =

∫

Ω

ϕiϕj dx, kij = vj · cij − d sij, (57)

where cij and sij stand for the constant coefficients

cij =

∫

Ω

∇ϕiϕj dx, sij =

∫

Ω

∇ϕi · ∇ϕj dx. (58)

corresponding to the first- and second-order derivatives, respectively. For customary finite
elements, the sum of basis functions is identically one so that the sum of their derivatives
vanishes. Hence, the above coefficient matrices have zero column sums and so does the
discrete transport operator:

∑

i kij = vj ·
∑

i cij − d
∑

i sij = 0.
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Note that the differential operators defined by equation (58) do not change and need
to be assembled just once. As long as they are available, the matrix K can be updated in
an efficient way by computing the off-diagonal entries kij from the formula (57) without
resorting to costly numerical integration. Due to the zero column sum property, the
diagonal matrix entries can be recovered as kjj = −

∑

i6=j kij.
The boundary terms are assembled separately. It is expedient to calculate the surface

integrals approximately using a one-point quadrature rule. For each boundary edge/face
∂Ek we evaluate the normal flux at the midpoint, multiply it by the respective area |∂Ek|
and distribute between the nodes. This leads to a diagonal matrix B with entries

bi =
1

m

∑

k∈J i
1

vi · nk|∂Ek|, J i
1 = { j : xi ∈ ∂Ej ∩ Γ1}, (59)

where m denotes the number of local degrees of freedom per edge/face and nk is the
(unique) outward normal to ∂Ek. The source term is assembled in a similar way:

qi =
1

m

∑

k∈J i
3

gk|∂Ek|, J i
3 = { j : xi ∈ ∂Ej ∩ Γ3}. (60)

Clearly, q does not have to be recomputed as long as the boundary conditions are fixed.
An important advantage of using piecewise-constant normal fluxes in the assembly

process is that the disjoint boundary components Γ1, Γ2, Γ3 are unambiguously defined
and the boundary conditions are allowed to have a jump at the interface.

3.2.2 Construction of a linear LED scheme

Let us perform mass lumping and represent the semi-discrete problem in the form

ML
du

dt
= (K − B)u + q ⇔ mi

dui

dt
=

∑

j 6=i

kij(uj − ui) + riui + qi, (61)

where mi =
∑

j mij and ri =
∑

j kij − bi. The term riui is a discrete counterpart of
u∇ · v which vanishes for incompressible flows. It is instructive to consider the special
case ri = qi = 0 in which the discrete transport operator K has zero row sum. Such a
discretization would be local extremum diminishing [8] if all off-diagonal coefficients kij

were nonnegative. Indeed, if ui is a maximum, then kij(uj − ui) ≤ 0, so that dui

dt
≤ 0.

Hence, a maximum cannot increase, and similarly a minimum cannot decrease. In one
dimension, a LED scheme is total variation diminishing and monotonicity preserving.

The Galerkin transport operator K can be rendered LED by adding a tensor of arti-
ficial diffusion D designed so as to eliminate negative off-diagonal entries [13], [14]

L = K + D, dii = −
∑

k 6=i

dik, dij = dji = max{0,−kij,−kji}. (62)

The diffusion coefficients dij are associated with the edges of the graph representing the
connectivity of the matrix. For each pair of neighboring nodes i and j, a negative off-
diagonal coefficient (say, kij) is set to zero, while its mirror image kji is incremented by
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−kij and the diagonal entries kii, kjj are updated so as to maintain zero column sums.
This yields the least diffusive linear LED scheme which reduces to the standard upwind
approximation for scalar convection problems in one dimension [13]. The row number
of the nullified off-diagonal entry determines which of the two nodes is located ‘upwind’.
Without loss of generality, we will assume that i is the upwind node for the numerical
edge ~ij, so that lij = 0 whereas lji = |kji − kij|. The diffusive flux dij(uj − ui) reduces the
difference between the nodal values so as to enforce the positivity constraint.

Note that the artificial diffusion coefficients dij as defined in (62) are independent of
the diagonal part ri which allows for the physical growth and decay of extrema due to
compressibility. The boundary terms qi are assumed to be nonnegative and may only
increase the value of u in the interior. Physical diffusion (if any) built into the coefficients
kij is automatically detected and the amount of artificial diffusion is reduced accordingly.
Alternatively, discrete upwinding can be performed only for the convective part of K.

3.2.3 Defect correction

According to the well-known Godunov theorem, linear monotonicity preserving schemes
can be at most first order accurate. To obtain a nonlinear high-resolution scheme, we com-
bine the Galerkin discretization and the associated low-order method within an iterative
defect correction loop for the fully discretized problem:

u(l+1) = u(l) + ω(l)[C(u(l))]−1R(u(l)), l = 0, 1, 2, . . . (63)

In a practical implementation one solves a linear subproblem for the solution increment
and applies the weighted correction to the last iterate:

C(u(l))∆u(l) = R(u(l)), u(l+1) = u(l) + ω(l)∆u(l), u(0) = un. (64)

Specifically, we take the ‘preconditioner’ to be the low-order evolution operator

C(u(l)) = ML − θ∆tL(u(l)), 0 ≤ θ ≤ 1,

where θ is the implicitness parameter. By construction, C is an M-matrix which makes
it amenable to iterative solution. The residual vector is given by

R(u(l)) = ML(un − u(l)) + θ∆t[L(u(l)) −A(u(l))]u(l) + (1 − θ)∆t[L(un) −A(un)]un + qn+θ,

where A is a nonlinear antidiffusion operator to be defined below.
The difference between K∗ = L−A = K +D−A and the original transport operator

K is a matrix with zero row and column sums. Hence, the diffusive-antidiffusive terms
can be decomposed into skew-symmetric internodal fluxes:

(K∗u)i =
∑

j

kijuj +
∑

j 6=i

(fd
ij + fa

ij), where fd
ij = dij(uj − ui) = −fd

ji. (65)

The antidiffusive flux fa
ij from node j into node i is designed so as to comply with the

LED principle for the discrete scheme. The objective is to add as much antidiffusion as
possible without generating wiggles. This can be accomplished by applying flux limiters
of TVD and FCT type presented in the next two subsections.
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3.2.4 TVD flux limiter

For the discrete scheme to be LED, the antidiffusive flux fa
ij must be interpretable as a

diffusive flux from some other node(s). To provide this property, we may consider

fa
ij = aijL(1, θi)(ui − uj) = aijL(ui − uj, ∆uij), fa

ji = −fa
ij. (66)

Extra antidiffusion due to the consistent mass matrix can be included and limited as in
the FEM-FCT framework (see below). Let us leave the antidiffusion coefficient aij and the
difference ∆uij = θi(ui −uj) unspecified for the time being. The flux limiter L represents
a limited average operator satisfying certain properties which guarantee the positivity of
coefficients [8], [18]. In particular, L(a, b) = 0 if a and b have opposite sign. Another
useful property is symmetry: L(a, b) = L(b, a). Some popular TVD limiters are:

• L(a, b) = S(a, b) · min{|a|, |b|} minmod

• L(a, b) = S(a, b) ·
2ab
|a+b| Van Leer

• L(a, b) = S(a, b) · min

{

|a+b|
2 , 2|a|, 2|b|

}

2-mean

• L(a, b) = S(a, b) · max{min{2|a|, |b|}, min{|a|, 2|b|}} superbee

where S(a, b) = (sign(a) + sign(b))/2.
Recall that the numerical edge ~ij connects an upwind node i and a downwind node j.

Its contributions to the modified convective term can be written as

node i : k∗
ij(uj − ui) = aijL(1, θi)(ui − uj) = aijL(1, 1/θi)∆uij,

node j : k∗
ji(ui − uj) = (|kji − kij| − aijL(1, θi))(ui − uj).

The increment to node j exhibits a LED structure provided that the coefficient k∗
ji is

nonnegative. All of the flux limiters presented above satisfy the inequality 0 ≤ L(1, θ) ≤ 2.
Hence, the antidiffusion coefficient is taken to be

aij = min{dij, |kji − kij|/2}. (67)

The increment to node i will also be local extremum diminishing as long as the upwind
difference ∆uij can be cast in the form ∆uij =

∑

k 6=i cik(uk − ui) with cik ≥ 0.
In one-dimensional TVD schemes, θi represents the slope ratio at the upwind node,

so that ∆uij = uk − ui, where k 6= j refers to the second neighbor of node i. However,
the choice of ∆uij for finite element discretizations on unstructured meshes is nontrivial.
A geometric approach commonly employed in the literature is to reconstruct a local one-
dimensional stencil by introducing two dummy nodes on the continuation of the edge
~ij [8], [18]. The difference ∆uij is defined as in the 1D case using the interpolated or
extrapolated solution value at the dummy node k adjacent to the upwind node.
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A detailed comparison of various techniques for the recovery of uk can be found in
[18]. It was shown that the numerical results strongly depend on the employed procedure.
In particular, those obtained by means of the gradient reconstruction

∆uij = (xi − xj) · ∇hui, where ∇hui =
1

mi

∑

k 6=i

cki(uk − ui) (68)

were found to be quite poor. It is quite clear why this choice of the upwind difference may
fail to produce non-oscillatory results. The L2-projection of the discrete gradient using
Galerkin differential operators is not monotone. Some of the coefficients in the formula
for ∆uij may be negative, so that it will not possess the desired form. To rectify this,
we employ a low-order projection operator designed by resorting to discrete upwinding
as proposed above. Note that cki = −cik (for internal nodes), so that the elimination of
negative off-diagonal coefficients leads to the following LED-type expression:

∆uij =
2

mi

∑

k 6=i

max{0, cki · (xi − xj)}(uk − ui).

For uniform meshes in one dimension, this kind of extrapolation corresponds to using the
upwind gradient and yields the standard value ∆uij = uk − ui.

3.2.5 FCT flux limiter

As an alternative, we outline another flux limiter based on the generalized FEM-FCT
formulation [11], [13]. In this case, the raw antidiffusion is given by

fij = a
(l)
ij (u

(l)
i − u

(l)
j ) + an

ij(u
n
i − un

j ), fji = −fij, (69)

where
a

(l)
ij = mij + θ∆td

(l)
ij , an

ij = −mij + (1 − θ)∆tdn
ij. (70)

Solution-dependent correction factors αij ∈ [0, 1] are applied to fij in order to preclude
the arising of nonphysical oscillations. The admissible antidiffusive fluxes fa

ij = αijfij are

inserted into the defect vector R(u(l)) to reduce the errors induced by mass lumping and
discrete upwinding. The unified limiting strategy proposed in [11], [13] is as follows.

At the beginning of each time step, the explicit subproblem

MLũ = [ML + (1 − θ)∆tL(un)]un (71)

is solved for ũ to determine the local extrema ũmax
i and ũmin

i . Note that the auxiliary
solution ũ is associated with the time instant tn+1−θ and reduces to un for the backward
Euler method. Following Zalesak [33], we introduce

P±
i =

1

mi

∑

j 6=i

max

min
{0, fij}, Q±

i = ũ
max

min

i − ũi. (72)

For the scheme to be positivity-preserving, the flux into node i should be multiplied by

R±
i =

{

min{1, Q±
i /P±

i }, if P±
i 6= 0,

0, if P±
i = 0.

(73)
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Due to the fact that fji = −fij the ‘optimal’ correction factors are given by

αij =

{

min{R+
i , R−

j }, if fij ≥ 0,
min{R+

j , R−
i }, if fij < 0.

(74)

The ins and outs of the FEM-FCT methodology are elucidated in [13], [14], [16].

3.3 Solver and time step

Finally, let us briefly discuss the choice of the iterative solver and of the time discretization.
In general, explicit schemes are rather inefficient due to severe stability limitations which
require taking impractically small time steps. For this reason, we restrict ourselves to the
implicit Crank-Nicolson and backward Euler methods which are unconditionally stable
and permit large time steps at the expense of solving nonsymmetric linear systems.

In our experience, BiCGSTAB and geometric multigrid constitute excellent solvers as
long as the parameters are properly tuned and the underlying smoothers/preconditioners
are consistent with the size of the time step. If ∆t is rather small, standard components
like Jacobi, Gauß-Seidel and SOR schemes will suffice. For large time steps, the condition
number of the matrix deteriorates and convergence may fail. This can be rectified by
resorting to an ILU factorization in conjunction with an appropriate renumbering scheme.

In order to capture the dynamics of the two-phase flow in a computationally efficient
way, one needs a smart strategy for the time step control. So far we have used a fairly
simple PID controller due to Valli et al. [30]. In our case, the algorithm reads

1. Monitor the relative changes of the gas holdup distribution

en =
||ǫn+1 − ǫn||

||ǫn+1||

2. If en > δ reject the solution and repeat the time step using

∆t∗ =
δ

en

∆tn

3. Adjust the time step smoothly so as to approach the
prescribed tolerance for the relative changes

∆tn+1 =

(

en−1

en

)kP
(

TOL

en

)kI
(

e2
n−1

enen−2

)kD

∆tn

4. Limit the growth and reduction of the time step so that

∆tmin ≤ ∆tn+1 ≤ ∆tmax, m ≤
∆tn+1

∆tn
≤ M

Note that the local gas holdup ǫ is a perfect indicator variable because the bubble-induced
buoyancy represents a major driving force behind the flows in gas-liquid reactors.
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4 Numerical examples

The developed finite element software builds on the FEATFLOW package [27] and on the
underlying FEAT libraries [28]. The multidimensional TVD limiter was incorporated into
the matrix assembly routine for the momentum equation and has proved its worth for the
nonconforming Q̃1 finite elements. The subroutines for the solution of scalar transport
equations were equipped with both FCT and TVD limiters. The performance of these
high-resolution schemes was found to be similar. Let us substantiate the mathematical
model and the numerical algorithm by preliminary simulation results.

The first example deals with the startup of a locally aerated cylindrical bubble column.
The gas is injected at the center into the initially quiescent liquid. The buoyancy induced
by the ascending bubbles results in a circulation of liquid with upflow in the middle. The
evolution of the gas holdup distribution during the first seconds after the onset of aeration
is shown in Figure 1 along with fragments of the employed computational mesh. Similar
mushroom-like shapes were observed previously in 2D simulations [10], [15], [25].

Next, we present our three-dimensional results for the airlift loop reactor which was
investigated both experimentally and numerically by Becker et al. [1]. The aeration takes
place at the bottom of the riser section where both phases flow cocurrently in the upward
direction. At the upper surface, the bubbles escape while the liquid is diverted into the

Figure 1. Startup of a locally aerated cylindrical bubble column.
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Figure 2. Airlift loop reactor: startup (left) and steady state (right).

gas-free downcomer forming a closed loop. The two-phase flow reaches a steady state
within a few seconds after the startup of the reactor. Figure 2 (left) displays snapshots of
the developing gas holdup distribution (top) and instantaneous velocity fields (bottom) in
the middle cross section. The ragged boundary of the internal part is due to the Cartesian
mesh used for visualization. The three-dimensional stationary solution superimposed on
the actual block-structured computational mesh is shown on the right.

To give an insight into the complex interplay of physical and chemical phenomena, let
us consider the absorption of CO2 in a locally aerated bubble column filled with water.
The construction parameters are those defined by Becker et al. [1] and adopted in our
first 2D simulations for this test case [10], [12]. In the absence of mass transfer, the rising
bubbles would expand due to the fall of hydrostatic pressure. However, carbon dioxide is
highly soluble in water so that the growth is diminished and the bubbles may even shrink.
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These effects are nicely reproduced by our model. In the case of physical absorption,
the gas dissolves rather slowly and neither the instantaneous gas holdup distribution
(Figure 3, top) nor the velocity fields (Figure 3, middle) are significantly affected by the
absorption process [10]. The flow structure consisting of three large vortices is reflected
by the concentration fields for the dissolved carbon dioxide (Figure 3, bottom).

Figure 3. Physical absorption of CO2 (2D simulation).
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The flow pattern is totally different if the mass transfer is accelerated by chemical
reactions in the liquid phase. Let us demonstrate this by taking an aqueous solution of
sodium hydroxide instead of water. The reaction CO2 + 2NaOH → Na2CO3 + H2O is so
fast that the bubbles are completely dissolved within 20 cm from the inlet (Figure 4, top).
There is no liquid circulation in the upper part of the reactor since the gas does not reach

Figure 4. Reaction-enhanced absorption of CO2 (2D simulation).
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it. A large vortex develops in the vicinity of the gas sparger (Figure 4, middle) twisting the
concentration of the produced sodium carbonate into a spiral shape (Figure 4, bottom).
A 3D simulation predicts essentially the same flow behavior depicted in Figure 5. The
results are in good agreement with experimental data reported by Fleischer et al. [6].
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Figure 5. Reaction-enhanced absorption of CO2 (3D simulation).
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5 Conclusions

The drift-flux model for buoyancy-driven bubbly flows was coupled with scalar transport
equations describing the absorption of gas followed (and enhanced) by chemical reactions
in the liquid phase. An unstructured grid finite element method was proposed for the
numerical solution. The discretization of the troublesome convective terms was performed
by a novel high-resolution scheme. Nested iterations were used to provide the coupling of
model equations, get rid of nonlinearities and solve the linear systems. The subtleties of
the algorithm were discussed in detail. The strong interdependence of the hydrodynamics,
mass transfer and chemical reaction processes was illustrated by numerical examples.
Turbulence effects were not considered and will be addressed in a forthcoming paper.
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[11] D. Kuzmin, Positive finite element schemes based on the flux-corrected transport
procedure, In: Computational Fluid and Solid Mechanics, Elsevier, 887-888 (2001).

23



[12] D. Kuzmin and S. Turek, Efficient numerical techniques for flow simulation in bubble
column reactors. In: Preprints of the 5th German-Japanese Symposium on Bubble
Columns , VDI/GVC, 2000, 99-104.

[13] D. Kuzmin and S. Turek, Flux correction tools for finite elements. J. Comput. Phys.
175 (2002) 525-558.
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[17] R. Löhner, K. Morgan, J. Peraire and M. Vahdati, Finite element flux-corrected
transport (FEM-FCT) for the Euler and Navier-Stokes equations. Int. J. Numer.
Methods Fluids 7 (1987) 1093–1109.

[18] P. R. M. Lyra, Unstructured Grid Adaptive Algorithms for Fluid Dynamics and Heat
Conduction. PhD thesis, University of Wales, Swansea, 1994.

[19] D. Pfleger, S. Gomes, N. Gilbert and H.-G. Wagner, Hydrodynamic simulations
of laboratory scale bubble columns - Fundamental studies of the Eulerian-Eulerian
modelling approach. Chem. Eng. Sci. 54 (1999) 5091–5098.

[20] R. Rannacher and S. Turek, A simple nonconforming quadrilateral Stokes element.
Numer. Methods Partial Differ. Equations 8 (1992), no. 2, 97-111.

[21] M. P. Schwarz and W. J. Turner, Applicability of the standard k–ǫ turbulence model
to gas-stirred baths. Appl. Math. Modelling 12 (1988) 273–279.

[22] T. K. Sherwood, R. L. Pigford and C. R. Wilke, Mass Transfer. McGraw-Hill, New
York, 1975.

[23] A. Sokolichin and G. Eigenberger, Modellierung und effiziente numerische Simu-
lation von Gas-Flüssigkeits-Reaktoren mit Blasenströmungen nach dem Euler-Euler-
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