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Abstract

New results on the theoretical solvability of nonlinear algebraic flux correction (AFC)
problems are presented and a Newton-like solution technique exploiting an efficient com-
putation of the Jacobian is introduced. The AFC methodology is a rather new and
unconventional approach to algebraically stabilize finite element discretizations of convec-
tion-dominated transport problems in a bound-preserving manner. Besides investigations
concerning the theoretical solvability, the development of efficient iterative solvers seems
to be one of the most challenging problems. The purpose of this paper is to take the next
step to remove such obstacles: For the linear convection-reaction equation, the existence of
a unique solution is shown under a mild coercivity condition and some restriction on the
limiter. Additionally, the numerical effort for solving such problems is drastically reduced
by the use of a highly customized implementation of the Jacobian. The benefit of this
approach is illustrated by in-depth numerical studies.

Keywords. finite elements, algebraic flux correction, well-posedness, Newton-like methods,
Jacobian

1 Introduction
In the CFD community, it is well-known that the Galerkin discretization of convection-
dominated transport problems is highly unstable for continuous finite elements. Particularly
in the case of vanishing diffusivity, Galerkin approximations might be polluted by spurious
oscillations and unphysical solution values can occur. For that reason, many stabilization
techniques have been invented to improve the accuracy of the solution and significantly reduce
the amount of overshoots and undershoots. For example, the streamline upwind/Petrov-
Galerkin (SUPG) method [BH82] adds an appropriate stabilization term to the Galerkin
discretization for penalization of steep gradients in streamline direction. While this approach
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might not completely prevent the generation of unphysical function values, the resulting system
of equations stays linear and can be solved efficiently.

However, some applications do not allow even small violations of physical bounds and require
the use of property-preserving numerical schemes. One representative of this family is the
algebraic flux correction (AFC) scheme introduced by Kuzmin [Kuz07]. A nonlinear artificial
diffusion operator is incorporated into the residual of the Galerkin scheme to make the validity
of discrete maximum principles algebraically provable [Bar+16; Bar+18; Loh19]. Recent
years have witnessed an increased interest on this scheme so that several investigations have
been conducted for improvements and theoretical analysis of the methodology. For example,
more sophisticated limiting techniques were developed to guarantee the linearity preservation
property [BB17; Bar+17b; Bar+17a; Kuz+17]. Barrenechea, John, and Knobloch [Bar+16]
and Barrenechea et al. [Bar+18] made great progress establishing in theoretical foundations of
the AFC methodology for the convection-diffusion-reaction equation. They proved a priori
error estimates, showed the validity of local and global discrete maximum principles, and
guaranteed the existence of a solution under some mild assumptions. On the other hand, first
investigations concerning efficient iterative solution were performed by Möller [Möl07; Möl08]
who used finite differences to approximate the Jacobian for Newton-like solution techniques.
Badia and Bonilla [BB17] smoothened their non-differentiable scheme to guarantee second
order of convergence for their iterative solver. In contrast to this, Jha and John [JJ18; JJ19]
analyzed the influence of different preconditioners for solving nonsmooth problems. Even if
the total number of iterations can be drastically reduced by using improved preconditioners,
more involved iterations may still lead to an increase of the total computational time. For
that reason, Jha and John [JJ19] concluded that the simplest Richardson iteration employing
a fixed preconditioner might be the most efficient solver for the nonlinear problem.

In this work, the objectives of individual sections are as follows: Section 2 presents the
main idea of the AFC methodology for the linear convection-reaction equation and briefly
summarizes some statements on its theoretical solvability. In Section 3, we prove the existence
of a unique solution for some specific problems. The counterexample presented in Section 4
illustrates why further assumptions might be necessary to extend the result of uniqueness to
more practical test cases. After these theoretical investigations, we propose a way to perform
efficient assembly of the Jacobian for a specific family of limiters in Section 5. This matrix is
well-suited to act as a preconditioner in the iterative solution technique of Section 6. Different
limiters are presented in Section 7 and finally analyzed in the numerical studies of Section 8.

2 Definition of AFC scheme
In this work, we present some new results on the algebraic flux correction methodology for
hyperbolic equations. The model problem under consideration is given by the steady and
linear convection-reaction equation in non-conservative form

v · grad(u) + cu = f in Ω, (1a)
u = uin on Γin :=

{
s ∈ ∂Ω

∣∣ n(s) · v(s) < 0
}
, (1b)

where uin : Γin → R denotes the inflow boundary data and Ω ⊂ Rd, d ∈ {2, 3}, is a polyhedral
domain with outward normal vector n : ∂Ω→ Rd. Furthermore, the velocity field is given by
v : Ω̄→ Rd while c : Ω→ R and f : Ω→ R are the reactivity and the external source term.
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For discretization purposes, we assume that Th is an admissible triangulation of Ω containing
only triangular or quadrilateral elements (tetrahedra or hexahedra in three space dimensions)
and a total number of N nodes. The space of (multi-)linear finite elements is denoted by Vh

while ϕ1, . . . , ϕN are the commonly used Lagrange basis functions. Based on these definitions,
the Galerkin discretization with weakly imposed boundary conditions reads: Find a solution
uh =

∑N
i=1 uiϕi ∈ Vh s.t. ∑

j∈Ni

aijuj = gi ∀i ∈ {1, . . . , N}, (2a)

where Ni ⊆ {1, . . . , N} denotes the nodal stencil of index i, i.e.,

Ni :=
{
j ∈ {1, . . . , N}

∣∣ supp(ϕi) ∩ supp(ϕj) 6= ∅
}
,

while the system matrix A = (aij)
N
i,j=1 and the right hand side vector g = (gi)

N
i=1 are given by

aij :=

∫
Ω
ϕiv · grad(ϕj) +

∫
Ω
cϕiϕj +

∫
Γin

|v · n|ϕiϕj ∀i, j ∈ {1, . . . , N}, (2b)

gi :=

∫
Ω
fϕi +

∫
Γin

|v · n|ϕiuin ∀i ∈ {1, . . . , N}. (2c)

The finite element approximation corresponding to the solution of (2) is frequently polluted
by spurious oscillations. In particular, unphysical solution values might occur when the inflow
boundary profile uin is discontinuous. To avoid such drawbacks, the algebraic flux correction
methodology was introduced by Kuzmin [Kuz07]. This approach stabilizes the Galerkin
method in a way which makes the boundedness of the degrees of freedom provable [Bar+16;
Bar+18; Loh19]. The corresponding nonlinear system of equations reads∑

j

aijuj −
∑

j∈Ni\{i}

(
1− αij(u)

)
dij(uj − ui) = gi ∀i ∈ {1, . . . , N} (3)

and possesses the residual R : RN → RN(
R(v)

)
i
:=

∑
j

aijvj −
∑

j∈Ni\{i}

(
1− αij(v)

)
dij(vj − vi)− gi ∀i ∈ {1, . . . , N} ∀v ∈ RN . (4)

Here, the artificial diffusion operator D = (dij)
N
i,j=1 is defined by

dij :=

{
max{aij , 0, aji} : j 6= i,

−
∑

k 6=i dik : j = i
∀i, j ∈ {1, . . . , N} (5)

and αij = αji : RN → [0, 1] are so called correction factors. If these scaling parameters
vanish, the scheme coincides with a linear low order method. On the other hand, the Galerkin
discretization is recovered when αij = 1 for all i, j ∈ {1, . . . , N}, i 6= j. Therefore, the
correction factors should be chosen as large as possible but at every local extremum they must
be equal to zero to guarantee the validity of discrete maximum principles [Loh19]. Examples
for the definition of αij can be found in Section 7 or in the literature mentioned in the
introduction.
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Based on the results presented by Barrenechea, John, and Knobloch [Bar+16], the existence
of a solution to (3) can easily be shown whenever the residual is a continuous function and
the following coercivity condition is satisfied [Loh19, Theorem 4.65]:

∃c0 > 0 : L∞(Ω) 3 Λ := c− 1
2 div(v) > c0 a.e. in Ω. (6)

Furthermore, Lohmann [Loh19, Theorem 4.68] proved the uniqueness of the solution if the
reactive term of (1) is treated in a lumped manner, i.e.,

aij :=

∫
Ω
ϕiv · grad(ϕj) + δij

∫
Ω
cϕi +

∫
Γin

|v · n|ϕiϕj ∀i, j ∈ {1, . . . , N},

and the condition

Lmax
i

(∫
Ω

∣∣div(vϕi)
∣∣+ ∫

∂Ω
max(0,v · n)ϕi

)
<

(
inf
x∈Ω

c(x)
)
min
i

mi (7)

holds for some Lipschitz constant L > 0 that satisfies∣∣αij(u)(uj − ui)− αij(ū)(ūj − ūi)
∣∣ 6 L‖uk − ū‖∞ ∀u, ū ∈ RN .

Therefore, the uniqueness of the solution is guaranteed for a given limiter if the reactivity
parameter c is sufficiently large. On the other hand, the result on uniqueness holds true
whenever infx∈Ω c(x) > 0 and the limiter is chosen so that condition (7) is valid. Unfortunately,
the positivity of the reactivity parameter is not a consequence of the coercivity condition (6)
and results in a further restriction on the coefficients of (1). For that reason, more general
statements for the existence of a unique solution are of interest. In the following section, we
prove the uniqueness only requiring the validity of the coercivity condition (6), at least for a
sufficiently small Lipschitz constant L.

3 Uniqueness of AFC solution for specific problems

Similarly to the analysis presented in [Loh19, Section 4.5.1.1], we henceforth require that the
employed limiter function be Lipschitz continuous and satisfy the condition∣∣αij(u)(uj − ui)− αij(ū)(ūj − ūi)

∣∣2 6 L2
∑

k∈Ni∪Nj

(uk − ūk)
2 ∀u, ū ∈ RN (8)

for some constant L > 0. Furthermore, it is assumed that the system matrix A is positive
definite, i.e.,

∃c1 > 0 :
∑
i,j

uiaijuj > c1‖u‖22 ∀u ∈ RN . (9)

This requirement is met if the coercivity condition (6) holds [Loh19, Remark 3.7] and, hence,
can be interpreted as a discrete version of (6). Let us now suppose that uh, ūh ∈ Vh are two
distinct finite element approximations whose degrees of freedom solve the AFC system (3).
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Then we have

c1
∑
i

(ui − ūi)
2 6

∑
i,j

(ui − ūi)aij(uj − ūj)

6
∑
i,j

(ui − ūi)(aij − dij)(uj − ūj)

=
∑
i

(ui − ūi)
∑

j∈Ni\{i}

dij
(
αij(ū)(ūj − ūi)− αij(u)(uj − ui)

)
6 L

∑
i

∑
j∈Ni\{i}

|ui − ūi|dij
( ∑
k∈Ni∪Nj

(uk − ūk)
2
) 1

2

6
L

2

∑
i

∑
j∈Ni\{i}

(
(ui − ūi)

2d2ij +
∑

k∈Ni∪Nj

(uk − ūk)
2
)

6
L

2

∑
i

(
(ui − ūi)

2d2ii

+
∑

j∈Ni\{i}

(∑
k∈Ni

(uk − ūk)
2 +

∑
k∈Nj

(uk − ūk)
2
))

6
L

2

∑
i

(
(ui − ūi)

2
(
d2ii + 2max

j
|Nj |2

))
6

L

2

(∑
i

(ui − ūi)
2
)(

max
j

d2jj + 2max
j
|Nj |2

)
due to the negative semidefiniteness of D [Loh19, Lemma 4.36]. Therefore, uh and ūh must
coincide if

c1 >
L

2

(
max

j
d2jj + 2max

j
|Nj |2

)
(10)

and the solution of (3) is unique if L is sufficiently small. Obviously, this condition might be
very restrictive and not meaningful for practical test problems. However, it guarantees the
uniqueness of the solution without further requirements on the reactivity parameter c.

4 Example of ill-posedness
In the previous section, the existence of a unique solution is proved if the system matrix is
positive definite and the Lipschitz constant of the limiter is sufficiently small. In what follows,
we see that this result cannot be readily extended to arbitrarily chosen limiters without further
requirements on the problem at hand. For this purpose, let us consider the following model
problem in one space dimension:

vu′ = f in (0, 1), u(0) = uin, (11)

where v > 0 denotes a constant velocity field while f : (0, 1)→ R and uin ∈ R are an external
source term and the inflow boundary data, respectively. A variational formulation with weakly
imposed boundary conditions reads∫ 1

0
vϕu′ + vϕ(0)u(0) =

∫ 1

0
ϕf + vϕ(0)uin ∀ϕ.
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Let us now discretize the domain by one element so that Vh is the space of globally linear
functions on [0, 1] with two degrees of freedom. Then the Galerkin discretization leads to the
linear system of equations Au = g, where

A =
1

2

(
v v
−v v

)
∈ R2×2, g =

(
g1
g2

)
∈ R2.

Even if the coercivity condition (6) does not hold, the system matrix is positive definite due to

u>Au = v
2 (u

2
1 + u1u2 − u1u2 + u22) =

v
2 (u

2
1 + u22) =

v
2‖u‖

2
2 ∀u ∈ R2.

The nonlinear AFC problem corresponding to the Galerkin discretization is given by

v
2u1 +

v
2u2 − (1− α12)

v
2 (u2 − u1) = g1, (12a)

−v
2u1 +

v
2u2 − (1− α12)

v
2 (u1 − u2) = g2, (12b)

where α12 = α12(u1, u2) ∈ [0, 1] is the only correction factor of this system.
Let us now assume that g2 > 0 and the correction factor is defined in an unconventional

way by

α12 :=

min
(
1, 2

max
(
0,max(u1,u2)−u1−|v−1g2|

)
|u2−u1|

)
: u1 6= u2,

0 : u1 = u2,

then the vector u = (u1, u2)
> ∈ R2 with components

u1 := v−1(g1 + g2)−
2g2

v(2− γ)
, u2 := v−1(g1 + g2) (13)

solves (12) no matter how γ ∈ [0, 1] is chosen. To prove this statement, we first notice that

u2 − u1 =
2g2

v(2− γ)
>

g2
v

> 0,

which can be exploited to show

max(u1, u2)− u1 − |v−1g2| = u2 − u1 − v−1g2 =
2g2

v(2− γ)
− g2

v

=
2g2 − g2(2− γ)

v(2− γ)
=

g2γ

v(2− γ)
=

γ

2
(u2 − u1).

It follows that

0 6
max(u1, u2)− u1 − |v−1g2|

|u2 − u1|
6

1

2
∀γ ∈ [0, 1]

and, hence, the correction factor satisfies

α12 = γ ∀γ ∈ [0, 1].
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Exploiting this result, we deduce that

v
2u1 +

v
2u2 − (1− α12)

v
2 (u2 − u1) =

v
2

(
u1 + u2 − (1− γ)(u2 − u1)

)
= v

2

(
2u1 + γ(u2 − u1)

)
= g1 + g2 −

2g2
2− γ

+
γg2
2− γ

= g1,

−v
2u1 +

v
2u2 − (1− α12)

v
2 (u1 − u2) =

v
2

(
−u1 + u2 − (1− γ)(u1 − u2)

)
= v

2 (γ − 2)(u1 − u2) =
v
2 (γ − 2)

2g2
v(γ − 2)

= g2

and the solution defined by (13) solves (12) no matter how γ ∈ [0, 1] is chosen. In particular,
the solution is not unique even if the application of α12 is Lipschitz continuous by [Bar+16,
Lemma 6] and the system matrix is positive definite.

5 Jacobian of AFC residual
In the following sections, we focus on the numerical solution of the nonlinear system of
equations. Unfortunately, the residual of the AFC system (3) is not only highly nonlinear, but
might also be non-differentiable so that the standard version of Newton’s method may not be
applicable. Badia and Bonilla [BB17] tackled this problem by introducing small parameters
to smoothen the correction factors in an appropriate manner. The residual of the so-defined
regularized AFC system is twice continuously differentiable and a quadratic rate of convergence
can be expected for Newton’s method. Due to the regularization of the scaling factors, the
method is only approximately linearity preserving while discrete maximum principles hold no
matter how the adjustable parameters are chosen.

Even if the AFC residual is a twice continuously differentiable function, the application
of Newton’s method can still be costly: In each iteration, a linear system of equations with
the Jacobian has to be solved. By definition of the correction factors, the sparsity pattern of
this matrix is more densely occupied than that of the system matrix. This fill-in results in
more expensive solution algorithms. Additionally, the entries of the Jacobian depend on the
current iterate and have to be recalculated in each iteration of Newton’s method. Due to the
extended stencil of the Jacobian’s connectivity graph, several nested loops might be necessary
to compute all nonzero entries.

In this section, we exploit a special structure of frequently used correction factors to derive
a convenient decomposition of the Jacobian. In fact, this matrix can be written in terms
of auxiliary matrices with the same sparsity pattern as the system matrix. Therefore, the
application of the Jacobian is equivalent to a few matrix-vector multiplications and, hence,
can be performed very efficiently. The factorized representation can also be used to explicitly
compute its entries.

5.1 Efficient implementation

Let the correction factors of the stationary AFC system be defined by

αij = βijβji ∀i, j ∈ {1, . . . , N}, j 6= i, (14)
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where βij : Ni → [0, 1] are differentiable functions that depend only on the degrees of freedom
in the direct neighborhood of node i. Furthermore, we assume that βij can be either written
as

βij = βi ∀i, j ∈ {1, . . . , N}, j 6= i (15a)

or satisfies the ‘upwinding condition’ [Loh19; Kno17]

βij =

{
1 : aij 6 0,

βi : aij > 0
∀i, j ∈ {1, . . . , N}, j 6= i (15b)

for some nodal correction factors βi : Ni → [0, 1], i ∈ {1, . . . , N}. If the auxiliary quantities βij
are defined by (15a), we set

d̂ij = dij ∀i, j ∈ {1, . . . , N}, j 6= i.

Otherwise, we introduce

d̂ij =

{
0 : aij < 0,

dij : aij > 0
∀i, j ∈ {1, . . . , N}, j 6= i.

Then the Jacobian J ∈ RN×N of the residual R satisfies

J v −
∑
i

∑
j∈Ni

ei(aij − dij)vj −
∑
i

ei
∑

j∈Ni\{i}

dijαij(vj − vi)

=
∑
i

ei
∑
k

∂uk

( ∑
j∈Ni\{i}

dijβijβji(uj − ui)
)
vk

−
∑
i

ei
∑

j∈Ni\{i}

dijβijβji(vj − vi)

=
∑
i

ei
∑
k

∑
j∈Ni\{i}

dij
(
βij(∂uk

βji) + (∂uk
βij)βji

)
(uj − ui)vk

=
∑
i

ei
∑

j∈Ni\{i}

∑
k∈Nj

dijβij(∂uk
βji)(uj − ui)vk

+
∑
i

ei
∑

j∈Ni\{i}

∑
k∈Ni

dij(∂uk
βij)βji(uj − ui)vk

=
∑
j

∑
i∈Nj\{j}

∑
k∈Nj

eidijβij(∂uk
βji)(uj − ui)vk

+
∑
i

∑
j∈Ni\{i}

∑
k∈Ni

eidij(∂uk
βij)βji(uj − ui)vk

=
∑
i

∑
j∈Ni\{i}

∑
k∈Ni

dij(∂uk
βij)βji(ui − uj)vk(ej − ei)

=
∑
i

∑
j∈Ni\{i}

∑
k∈Ni

d̂ij(∂uk
βi)βji(ui − uj)vk(ej − ei)

=
∑
i

( ∑
j∈Ni\{i}

d̂ijβji(ui − uj)(ej − ei)
)(∑

k∈Ni

(∂uk
βi)vk

)
∀v ∈ RN ,
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where ei ∈ RN is the i-th unit vector, i.e., (ei)j = δij for all j ∈ {1, . . . , N}. Therefore, the
application of the Jacobian is equivalent to a few matrix-vector multiplications, where all the
matrices involved have the same sparsity pattern as the system matrix A. In particular, the
Jacobian can be written as

J = A−D + D̃ − PQ, (16a)

where D̃ = (d̃ij)
N
i,j=1, P = (pij)

N
i,j=1, and Q = (qij)

N
i,j=1 are defined by

d̃ij :=

{
αijdij : i = j,

−
∑

k 6=i d̃ik : i 6= j
∀i, j ∈ {1, . . . , N}, (16b)

pij :=

{
d̂jiβij(ui − uj) : i = j,

−
∑

k 6=i pki : i 6= j
∀i, j ∈ {1, . . . , N}, (16c)

qij := ∂ujβi ∀i, j ∈ {1, . . . , N}. (16d)

Formula (16a) is valid because

PQv =
∑
j,i,k

ejpjiqikvk =
∑
i

∑
j,k∈Ni

ejpjiqikvk

=
∑
i

(∑
j∈Ni

ejpji

)(∑
k∈Ni

qikvk

)
=

∑
i

( ∑
j∈Ni\{i}

(ej − ei)pji

)(∑
k∈Ni

qikvk

)
= −

∑
i

( ∑
j∈Ni\{i}

d̂ijβji(ui − uj)(ej − ei)
)(∑

k∈Ni

(∂uk
βi)vk

)
∀v ∈ RN

holds due to the fact that D, P, and Q have the same sparsity pattern as A and D.
In many cases, the computation of ∂uiβi is more complicated than that of ∂ujβi for j ∈ Ni\{i}.

However, if the nodal correction factor βi depends only on (ui − uj)j∈Ni\{i}, the entry eii does
not need to be calculated from scratch. It can be computed efficiently as follows:

qii = ∂uiβi = −
∑

j∈Ni\{i}

∂ujβi = −
∑

j∈Ni\{i}

qij ∀i ∈ {1, . . . , N}. (17)

In this case, the matrices D̃ and Q have vanishing row sums while the entries (pij)
N
i=1 sum up

to zero for every column j ∈ {1, . . . , N}.

5.2 Numerical effort
Formula (16) yields an efficient way to determine the entries of the Jacobian and can also be
used to perform a matrix-vector multiplication without calculating the entries. To analyze the
numerical effort of an explicitly and implicitly stored matrix J , let us consider a structured
quadrilateral/hexahedral mesh and ignore degrees of freedom associated with nodes close to the
boundary. In this case, each row of the system matrix A has at most 3d nonzero entries due to
the compact support property of the basis functions (cf. Fig. 1). By the assumption that the
nodal correction factors βi depend only on degrees of freedom uj in the direct neighborhood
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Figure 1: Illustration of connectivity graph corresponding to one row of system matrix A (left)
and Jacobian J (right).

Table 1: Effort for storing, applying, and recalculating an implicitly and explicitly defined
Jacobian for a structured quadrilateral/hexahedral mesh. Note that no column index
for A−D + D̃, P, and Q has to be stored due to same sparsity pattern as A.

impl. expl.

A−D + D̃ P Q total J

storage for nonzero matrix entries 3dN 3dN 3dN 3 · 3dN 5dN
storage for nonzero column indices — — — — 5dN

solution-dependent entries 3dN 3dN 3dN 3 · 3dN 5dN

operations per application of J 3dN 3dN 3dN 3 · 3dN 5dN

of node i, i.e., j ∈ Ni, the connectivity graph of the Jacobian possesses one additional layer.
Therefore, each row of J has up to 5d nonvanishing entries (cf. Fig. 1). In contrast to this,
the matrices A−D + D̃, P, and Q have the same sparsity pattern as the system matrix A.
Hence, column indices of nonzero matrix entries have to be stored only once if the compressed
sparse row (CSR) format is used. For this reason, the auxiliary matrices of the implicitly
defined Jacobian can be stored just by saving the values of their nonzero matrix entries. Even
in one space dimension, this might be less expensive than storing the values and column
indices of all nonzero entries for the explicitly defined Jacobian (cf. Table 1). On the other
hand, a matrix-vector multiplication employing the implicit definition of J takes only 8%
longer for d = 2 and should be 54% more efficient in three dimensions. For the explicitly
stored Jacobian, recalculation of its matrix entries takes much more effort than determining
the entries of A−D + D̃, P, and Q. Indeed, the entries of J require all information that is
stored in the auxiliary matrices of an implicitly defined Jacobian. However, the computation
of an explicitly stored matrix J might be worth the effort when direct solvers are used for
corresponding linear systems of equations.

6 Iterative solution procedure

The AFC system under consideration is highly nonlinear by definition of the correction factors
and, hence, calls for the use of an iterative solution technique. This solver must be combined
with a suitable stopping criterion to guarantee that the final result satisfies (3) with desired
precision an discrete maximum principles hold. For that, the difference between two consecutive

10



iterates might vanish even though the iteration procedure stagnates. A more meaningful
control quantity might be (the norm of) the residual R, which measures the defect of the
nonlinear system of equations. Unfortunately, the residual cannot be readily interpreted in
the finite element sense and its `2-norm depends on the number of degrees of freedom. To
obtain a physically meaningful quantity, we introduce the vector r ∈ RN solving

MLr = R(·),

where ML ∈ RN×N = (δijmi)
N
i,j=1 is the lumped mass matrix with diagonal entries

mi :=

∫
Ω
ϕi > 0 ∀i ∈ {1, . . . , N}.

Then the solution vector r =M−1
L R(·) contains the degrees of freedom of a ‘lumped finite

element residual’ rh ∈ Vh. Its L2-norm can be approximated by the following weighted `2-
norm (cf. [RW17, Lemma 4.1]):

‖r‖2̃ :=
( N∑
i=1

mir
2
i

) 1
2 ≈

(∫
Ω
r2h

) 1
2
= ‖rh‖L2(Ω). (18)

Several authors [BB17; Bar+18; JJ19] directly applied an iterative solver to the nonlinear
system of equations (3). They used fixed-point iterations with relaxed Anderson acceleration
or (formal) Newton-like methods. However, the steady problem might be very ill-conditioned
so that algorithms may stagnate or even diverge due to poor initial guesses. To overcome such
drawbacks and stabilize the problem at hand, we introduce a pseudo time stepping technique
based on a lumped mass matrix. In each iteration n ∈ N ∪ {0}, we approximate u ∈ RN by
the solution un+1 ∈ RN of the nonlinear problem

mi

∆t
un+1
i +

∑
j

aiju
n+1
j −

∑
j∈Ni\{i}

(
1− αij(u

n+1)
)
dij(u

n+1
j − un+1

i ) =
mi

∆t
uni + gi

∀i ∈ {1, . . . , N}. (19)

Decreasing the pseudo time increment ∆t > 0 improves the stability of the nonlinear system
of equations but results in a damped convergence of the time dependent solution to a steady
state. For an infinitely large pseudo time increment, i.e., ‘∆t−1 = 0’, problem (19) corresponds
to the steady AFC system (3) so that the stationary solution is computed directly.

As before, we define the residual R̄ : RN → RN of (19) by(
R̄(v)

)
i
:=

mi

∆t
(vi − uni ) +

∑
j

aijvj −
∑

j∈Ni\{i}

(
1− αij(v)

)
dij(vj − vi)− gi

∀i ∈ {1, . . . , N}. (20)

Based on this definition, system (19) can be iteratively solved using the damped fixed-point
iteration

un+1,s+1 = un+1,s − ωJ̃ −1R̄(un+1,s) s = 0, . . . , (21)

where un+1,0 ∈ RN and ω ∈ (0, 1] are a suitable initial guess and a relaxation parameter,
respectively. The preconditioner J̃ possibly depends on un+1,s and approximates the exact
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Jacobian J̄ of R̄(·) in an appropriate manner. Choices for J̃ that are used in our numerical
studies below are either the low order system matrix ∆t−1ML +A−D or the exact Jacobian
J̄ . The former definition does not depend on the current iterate un+1,s. Hence, the initial
calculation of its LU-decomposition can be exploited to efficiently solve the linear system
J̃∆un+1,s = −R̄(un+1,s) in each iteration [JJ19]. In contrast to this, the exact and solution-
dependent Jacobian J̄ possesses an extended sparsity pattern compared to ∆t−1ML +A−D
but its use is likely to improve the convergence behavior of the fixed-point iteration.

Furthermore, the solution procedure of (21) is equipped with a relaxation parameter ω to
improve the robustness. Jha and John [JJ18; JJ19] tuned the value of ω iteratively by following
[JK07, Fig. 12]. In our case, the damping parameter is chosen adaptively and minimizes the
approximate L2-norm of the finite element residual rh [BB17], i.e.,

ω = argmin
ω̃∈(0,1]

∥∥M−1
L R̄(un+1,s + ω∆un+1,s)

∥∥
2̃
. (22)

Practically, the relaxation parameter ω should be bounded below by a small constant ω0 > 0
to avoid stagnation of the iterative algorithm. Solution of (22) might be very costly because
the objective function of the optimization problem is highly nonlinear. Therefore, we ‘loosely’
approximate ω by choosing

ω = argmin
ω̃∈$

∥∥M−1
L R̄(un+1,s + ω∆un+1,s)

∥∥
2̃
,

where $ :=
{
ω0 +

k−1
Nω−1(1− ω0)

∣∣ k ∈ {1, . . . , Nω}
}

(23)

and Nω ∈ N \ {1} denotes the total number of samples. Larger values of Nω obviously lead to
more accurate results for the solution of (22), but increase the computational time and do not
necessarily reduce the total number of iterations. In our numerical studies, we use Nω = 10
and the minimal relaxation parameter ω0 = 10−3 to obtain a good ratio between accuracy
and performance.

The fixed-point iteration (21) is constructed to solve the auxiliary problem (19). However,
our main focus is on the solution of the steady state problem (3). Therefore, it suffices to
approximately solve (19) by performing only a fixed number of iterations, denoted by S ∈ N.
In the numerical studies below, we use only one iteration per pseudo time step and choose
un+1,0 = un = un,1.

The whole procedure for solving the stationary AFC problem (3) is summarized in Algo-
rithm 1, where the initial guess is chosen as the low order approximation u0 := (A−D)−1g.

7 Limiters under consideration
In this section, we briefly describe the limiters which will be considered in our numerical
examples below. The first definition of the correction factors is largely inspired by the BJK
limiter presented by Barrenechea, John, and Knobloch [Bar+17b]. Slight modifications are
necessary to design a limiter that fits into the analysis presented in Section 5 without being
differentiable. In Section 7.2, we define a similar limiter which exploits a regularization
parameter to make the correction factors twice continuously differentiable.
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Algorithm 1 Iterative solution of nonlinear system (3) using pseudo time stepping scheme.
calculate the initial guess u0 = (A−D)−1g
n← 0
while

∥∥M−1
L R(un)

∥∥
2̃
> tol do

un+1,0 ← un

for s ∈ {0, . . . , S − 1} do
solve J̃ (un+1,s)∆un+1,s = −R̄(un+1,s)
determine relaxation parameter ω via (23)
un+1,s+1 ← un+1,s + ω∆un+1,s

end forun+1 ← un+1,S

n← n+ 1
end while
u← un+1

7.1 BJK-like limiters
The original BJK limiter of Barrenechea, John, and Knobloch [Bar+17b] was inspired by
[Kuz12a; Kuz12b] and employs the following definition of the correction factors:

Q+
i := qi|dii|(umax

i − ui), Q−
i := qi|dii|(ui − umin

i ) ∀i ∈ {1, . . . , N}, (24a)

P+
i :=

∑
j∈Ni

dij max(0, ui − uj), P−
i :=

∑
j∈Ni

dij max(0, uj − ui) ∀i ∈ {1, . . . , N}, (24b)

R+
i := min

(
1,

Q+
i

P+
i

)
, R−

i := min
(
1,

Q−
i

P−
i

)
∀i ∈ {1, . . . , N}, (24c)

βij :=


R+

i : ui > uj ,

1 : ui = uj ,

R−
i : ui < uj

αij := min(βij , βji) ∀i, j ∈ {1, . . . , N}, j 6= i, (24d)

where the local bounds umax
i and umin

i are given by

umax
i := max

j∈Ni

uj , umin
i := min

j∈Ni

uj ∀i ∈ {1, . . . , N}

and the parameters qi > 0, i ∈ {1, . . . , N}, can be used to make the scheme linearity preserving
[Bar+17b].

Due to the definition of αij as the minimum of two auxiliary quantities that depend on the
sign of ui − uj , this limiter cannot be written in the form considered in Section 5. For that
reason, we slightly modify the calculation in two steps: First, we define the multiplicative BJK
limiter in which αij is the product of βij and βji. Second, we introduce the modified BJK
limiter in which the auxiliary quantities βi are set to

βi := R+
i R

−
i ∀i ∈ {1, . . . , N} (25)

and βij is determined by employing either (15a) or (15b).
As we will see below, the distinction between ui > uj and ui < uj has only a small positive

impact on the accuracy of the scheme and, hence, might not be worth the effort. Even though
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we did not discuss such a limiter in Section 5, the Jacobian of the corresponding residual can
be written in a form similar to that of (16) but possesses distinct terms P+Q+ and P−Q− for
ui > uj and ui < uj , respectively.

7.2 Regularized limiter
The correction factors of the modified BJK limiter are not (continuously) differentiable and,
strictly speaking, the Jacobian does not exist. Badia and Bonilla [BB17] modified the AFC
system by using smoothed correction factors that depend on two regularizations of the absolute
value. These approximations are defined in terms of a regularization parameter ε > 0 by√

x2 + ε ' |x|, x2√
x2 + ε

/ |x| ∀x ∈ R

and can also be exploited to smooth the maximum and minimum of two quantities: For
example, Badia and Bonilla [BB17] and Jha and John [JJ19] used

maxε(x, y) :=
1

2

(
(x+ y) +

√
(x− y)2 + ε

)
' max(x, y) ∀x, y ∈ R

in their numerical studies. To the best knowledge of the author, this technique cannot be
easily extended to uniquely regularize

Q±
i = qi|dii||umax /min

i − ui| = qi|dii| max
j∈Ni\{i}

max
(
0,±(uj − ui)

)
∀i ∈ {1, . . . , N}

if |Ni| > 3. For that reason, we modify the definition of Q±
i by setting

Q±
i := qi

∑
j∈Ni

dij
∣∣±(uj − ui)

∣∣
+,ε

∀i ∈ {1, . . . , N}, (26a)

where | · |+,ε denotes a smooth approximation of max(0, ·). Additionally, the auxiliary value
Pi is introduced as an approximation of P+

i + P−
i , i.e.,

Pi :=
∑
j∈Ni

dij |uj − ui|ε ∀i ∈ {1, . . . , N}, (26b)

where | · |ε ≈ | · | is a differentiable and nonnegative function. Then the nodal correction
factors βi of the regularized limiter are defined by

βi := 1−max
(
0, 1−

Q+
i Q

−
i

(Pi + ε)2

)p+1
∀i ∈ {1, . . . , N}, (26c)

where p ∈ N must not be smaller than 2 to guarantee that βi is twice continuously differentiable.
The quantities βij and αij are computed by (15a) or (15b) and (14), respectively.

This limiter guarantees the validity of discrete maximum principles if βi satisfies [Loh19]

βi ∈ [0, 1], βi = 0 if ui = umax
i or ui = umin

i , (27)

which is the case whenever

|x|+,ε = 0 if x 6 0, |x|+,ε > 0 if x > 0 (28)
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Figure 2: Illustration of different regularizations for max(0, ·).

holds. Condition (28) is violated for the regularization presented in (7.2) due to the fact
that maxε(0, x) > 0 for every x < 0 (cf. Fig. 2). For that reason, we consider the following
approximations:

|x|ε :=
√
x2 + ε, |x|+,ε :=

max(0, x)p+1

|x|p + ε
∀x ∈ R,

where p ∈ N controls the regularity of | · |+,ε for ε > 0. In the numerical examples presented
below, we choose p = 2 to guarantee that | · |+,ε is twice continuously differentiable.

To study the influence of the regularization in the limit ε → 0, we also introduce the
nonsmooth counterpart of the correction factors using

|x|0 := |x|, |x|+,0 := max(0, x) ∀x ∈ R.

If Pi = 0 holds, we have |uj − ui| = 0 for all j ∈ Ni. In this case, the application of the
correction factors can be continuously extended by the use of

βi = 0 ∀i ∈ {1, . . . , N} s.t. Pi = 0.

8 Numerical examples
In what follows, we discuss the performance of the iterative solver described in Algorithm 1
by considering the problem

v · grad(u) = 0 in Ω = (0, 1)2, (29a)
u = uin on Γin (29b)

for two different velocity fields and inflow boundary conditions. In the discontinuous translation
test case, the inflow boundary profile uin is convected along the streamlines of the constant
velocity field v = (12 ,− sin π

3 )
> while the exact solution is given by

u(x) =

{
1 : x2 > 0.7− 2x1 sin

π
3 ,

0 : otherwise.
(30)

The smooth circular convection benchmark corresponds to the velocity field v = (x2,−x1)>
while the exact solution reads

u(x) =

{
1− cos

(
5π(‖x‖2 − 0.4)

)
: 0.4 < ‖x‖2 < 0.8,

0 : otherwise.
(31)
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Both problems are discretized using a uniform quadrilateral grid, where the mesh size is chosen
to be h = 1

48 if not mentioned otherwise. We approximate the L2-error of the bound-preserving
finite element solution uh by

E2 := ‖uh − Ihu‖L2 =
(∫

Ω
(u− Ihu)

2
)− 1

2 ≈ ‖uh − u‖L2 ,

where Ihu ∈ Vh denotes the finite element interpolant of the exact solution u and is uniquely
determined by the definition of the nodal function values, i.e.,

(Ihu)(xi) = u(xi) ∀i ∈ {1, . . . , N}.

To measure the rate of convergence when refining the mesh, the experimental order of
convergence (EOC) can be determined using the formula [LeV96]

EOC := log
(E2(h2)

E2(h1)

)
log

(h2
h1

)−1
, (32)

where E2(h2) and E2(h1) are the approximate L2-errors corresponding to the mesh sizes h2
and h1.

Our Matlab implementation of Algorithm 1 was executed on a system with two Xeon
E5-2670 CPUs and 64GB main memory. We measured the elapsed time till ‖r‖2̃ became
smaller than tol = 10−10 and aborted the simulation after a maximum of 10 000 iterations. If
the low order system matrix was used as the preconditioner, i.e., J̃ = ∆t−1ML +A−D, we
initially computed the LU-decomposition to efficiently solve the corresponding linear system
of equations in each iteration. In all other cases, the backslash-operator was employed using
explicitly determined matrices.

As already mentioned above, the nodal correction factors βi of the modified BJK limiter and
the regularized limiter with ε = 0 are not differentiable due to the occurrence of maxima and
minima. To determine a ‘Jacobian’ even for these limiters, we generalize the idea presented in
[JJ18; JJ19] and define the following ‘derivatives’:

∂xmax
i

fi(x) := minmod
i∈{j|fj(x)=maxl fl(x)}

f ′
i(x) ∀x ∈ R, (33a)

∂xmin
i

fi(x) := minmod
i∈{j|fj(x)=minl fl(x)}

f ′
i(x) ∀x ∈ R, (33b)

where fi : R→ R are differentiable functions and the minmod-operator reads

minmod
i

vi =


mini vi : mini vi > 0,

maxi vi : maxi vi < 0,

0 : otherwise.

Due to the definition of the correction factors, the sparsity pattern of the Jacobian is more
densely than that of the system matrix A. Jha and John [JJ18] reduced the computational
costs for determining the entries of the Jacobian and solving corresponding linear systems
by neglecting all matrix entries that do not fit into the sparsity pattern of A. To analyze
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the influence of this approximation and simplify our notation, we introduce the restriction
operator S : RN×N → RN×N as follows:

(
S (V)

)
ij
:=

{
vij : j ∈ Ni,

0 : j /∈ Ni

∀i, j ∈ {1, . . . , N} ∀V ∈ RN×N . (34)

If not mentioned otherwise, formula (15b) is employed to determine the correction factors
in an upwind based manner. Corresponding AFC solutions tend to be more accurate than
those based on the symmetric definition of βij and the nonlinearity of the system at hand is
reduced. As we are just considering uniform meshes, our analysis is further restricted to the
case of a constant parameter q > 0, i.e., qi = q > 0 for all i ∈ {1, . . . , N}.

Let us first consider the regularized limiter with ε = 10−6. Solutions for both benchmarks
and different values of q are presented in Figs. 3 and 4. If the parameter q vanishes, all
correction factors are equal to zero and the method coincides with the linear low order scheme
(cf. Figs. 3a and 4a). In this case, the peak of the smooth solution decreases and the
discontinuity is smeared as the solution profile is convected away from the inflow boundary. By
increasing q, this diffusive behavior becomes less pronounced and the accuracy of the method
improves. For q = 3, the AFC approximation to solution (30) exhibits an artificial plateau
at the bottom of the discontinuity. This so called terracing effect is due to an unstable high
order target scheme and might vanish if the Galerkin method is augmented by some high
order stabilization.

While an increase of q leads to more accurate finite element approximations, iterative
solution of system (3) becomes more difficult. Therefore, fixed-point iterations should employ a
suitable preconditioner to improve the iterative solution behavior. Furthermore, a pseudo time
stepping approach can be used to stabilize the problem at hand. We solved the smooth circular
convection benchmark using different preconditioners J̃ and pseudo time increments ∆t. In
Table 2, we summarize the total number of iterations and the computational time which were
required to solve the nonlinear AFC system. Obviously, the notation ∆t−1 = 0 corresponds to
an iterative solver without the use of pseudo time stepping.

For small time increments and a moderate choice of q (like ∆t−1 = 100 and q = 1), the fixed-
point iteration preconditioned by the low order system matrix is the most efficient solver among
the methods under investigation (cf. Table 2). However, if the problem under consideration
becomes more involved due to greater values of ∆t or q, the use of matrices J̃ that must be
recalculated in each iteration may pay off. In particular, the exact Jacobian J̄ seems to result
in a significant reduction of the numerical effort for both benchmarks. The projection of this
matrix to the sparsity pattern of A reduces the number of nonzero matrix entries and might
result in more efficient solvers for each linear system, but degrades the quality of the descent
direction ∆u. In fact, the scheme does not even converge for the smooth circular convection
benchmark if the parameters q = 3 and ∆t−1 = 0.01 or ∆t−1 = 0 are used. However, this
preconditioner drastically reduces the number of iterations when the pseudo time increment
is ∆t = 0.1 and q ∈ {2, 3} is used. For the exact Jacobian J̃ = J̄ , Algorithm 1 converges
faster as the pseudo time increment ∆t increases. Thus, the use of the pseudo time stepping
approach has no positive effect on the computational time.

Similarly to the influence of q, the choice of the relaxation parameter ε has a great impact
on the accuracy of the solution: The reduction of ε generally improves the accuracy of uh but
requires more iterations to solve the problem at hand (cf. Table 4). Therefore, appropriate
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(a) q = 0; E2 = 1.80 · 10−1. (b) q = 1; E2 = 9.69 · 10−2.

(c) q = 2; E2 = 1.43 · 10−2. (d) q = 3; E2 = 1.08 · 10−2.

Figure 3: Smooth circular convection: AFC approximations obtained using regularized limiter
with ε = 10−6 and different values of q.
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(a) q = 0; E2 = 9.52 · 10−2. (b) q = 1; E2 = 7.35 · 10−2.

(c) q = 2; E2 = 3.32 · 10−2. (d) q = 3; E2 = 3.05 · 10−2.

Figure 4: Discontinuous translation: AFC approximations obtained using regularized limiter
with ε = 10−6 and different values of q.
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Table 2: Number of iterations for regularized limiter with ε = 10−6 using different precondi-
tioners J̃ .

(a) Discontinuous translation.

q ∆t−1 J̃ = ∆t−1ML +A−D J̃ = S (J̄ ) J̃ = J̄
iter. time (s) iter. time (s) iter. time (s)

1 100 185 16.9 188 22.5 188 26.2
1 10 49 4.4 31 3.7 32 4.5
1 1 43 3.6 14 1.6 11 1.5
1 0.10 42 3.8 13 1.5 6 0.8
1 0 42 3.9 13 1.5 6 0.8
2 100 867 78.8 499 60.1 501 63.0
2 10 622 56.9 60 7.3 54 7.1
2 1 764 69.1 887 106.3 19 2.4
2 0.01 1071 98.3 1513 179.7 15 2.0
2 0 1055 95.8 1281 153.4 15 1.9
3 100 2186 191.2 929 109.4 881 108.4
3 10 1482 132.0 100 11.9 82 10.2
3 1 2622 234.4 3056 364.5 44 5.8
3 0.01 3198 276.6 3988 471.6 39 5.2
3 0 3193 265.4 3390 406.5 43 5.5

(b) Smooth circular convection.

q ∆t−1 J̃ = ∆t−1ML +A−D J̃ = S (J̄ ) J̃ = J̄
iter. time (s) iter. time (s) iter. time (s)

1 100 353 32.7 350 42.3 350 50.9
1 10 59 5.6 49 5.6 47 8.5
1 1 36 3.4 575 69.8 14 2.5
1 0.01 35 3.2 862 103.7 5 0.8
1 0 35 3.4 1039 118.7 5 0.9
2 100 2595 229.2 1917 225.9 1921 238.6
2 10 986 91.4 186 22.4 184 24.8
2 1 1021 95.3 2491 301.1 29 4.1
2 0.01 1039 97.9 6350 766.3 13 1.9
2 0 1039 97.8 7618 936.8 12 1.6
3 100 4840 427.4 3432 411.7 3427 391.2
3 10 2428 223.2 350 42.0 345 42.8
3 1 2347 214.5 7380 884.4 53 6.5
3 0.01 2501 236.8 — — 47 6.3
3 0 2617 247.3 — — 28 3.7
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Table 4: Smooth circular convection: Number of iterations and approximate L2-error E2 for
regularized limiter using preconditioner J̃ = J̄ .

(a) Number of iterations.

q ∆t−1 ε = 10−1 ε = 10−2 ε = 10−4 ε = 10−8 ε = 0

1 100 266 332 370 325 317
1 10 35 45 50 47 47
1 1 9 12 14 14 14
1 0.01 2 4 5 5 5
1 0 1 2 5 5 4

2 100 282 347 1974 1903 1898
2 10 38 47 194 183 185
2 1 10 13 30 30 38
2 0.01 3 4 11 15 28
2 0 1 3 10 14 27

3 100 291 354 3986 3692 7005
3 10 39 49 410 366 431
3 1 10 13 59 58 171
3 0.01 3 4 22 36 94
3 0 1 3 18 32 72

(b) Approximate L2-error E2.
q ε = 10−1 ε = 10−2 ε = 10−4 ε = 10−8 ε = 0

1 0.180 30 0.179 50 0.096 34 0.097 82 0.097 92
2 0.180 30 0.176 80 0.029 86 0.014 26 0.014 38
3 0.180 30 0.172 00 0.023 96 0.010 13 0.010 17

choices of q and ε might be necessary to obtain the best ratio between accuracy and performance.
The AFC system with ε = 0 seems to be also solvable with a moderate numerical effort by
Algorithm 1 employing J̃ = J̄ . However, a small regularization parameter may still be
exploited to reduce the number of iterations without deteriorating the accuracy.

The reason for the suboptimal rate of convergence for ε = 0 is illustrated in Fig. 5: While
the norm ‖r‖2̃ decreases quadratically for any ε > 0 after a few initial iterations, this behavior
cannot be observed when the relaxation parameter vanishes. A quadratic order of convergence
can only be expected for ε > 0 and ∆t−1 = 0. If a pseudo time stepping approach is used and
S is greater than 1, the inner loop of Algorithm 1 would converge quadratically. However,
we can only observe linear convergence with a rate proportional to ∆t−1 for the norm of the
steady state residual.

Formulas (16) and (33) can also be used to precondition the fixed-point iteration for the
modified BJK limiter by J̄ . In Table 6, this limiter is compared to the regularized limiter
using ε = 0 in terms of accuracy of the solution and total number of iterations which were
required to reach the stopping tolerance. Different values of q and h are considered without
using pseudo time steps, i.e., ∆t−1 = 0. While the modified BJK limiter converges already for
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Figure 5: Smooth circular convection: Evolution of ‖r‖2̃ during nonlinear iterations for regu-
larized limiter with q = 3 using preconditioner J̃ = J̄ .
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Table 6: Smooth circular convection: Comparison of nonsmooth limiters using precondi-
tioner J̃ = J̄ and pseudo time increment ∆t−1 = 0.

q h−1 mod. BJK limiter regularized limiter (ε = 0)
E2 EOC iter. E2 EOC iter.

1 24 5.70 · 10−2 29 1.66 · 10−1 4
1 48 1.96 · 10−2 1.54 34 9.79 · 10−2 0.76 4
1 96 5.51 · 10−3 1.83 38 5.48 · 10−2 0.84 5
1 192 1.43 · 10−3 1.94 39 2.95 · 10−2 0.90 4
2 24 4.49 · 10−2 77 4.77 · 10−2 25
2 48 1.27 · 10−2 1.82 70 1.44 · 10−2 1.73 27
2 96 3.46 · 10−3 1.87 133 3.97 · 10−3 1.86 30
2 192 8.85 · 10−4 1.97 911 1.04 · 10−3 1.93 34
3 24 3.97 · 10−2 258 3.83 · 10−2 144
3 48 1.06 · 10−2 1.90 — 1.02 · 10−2 1.91 72
3 96 2.95 · 10−3 1.85 — 2.93 · 10−3 1.80 136
3 192 7.69 · 10−4 1.94 — 7.78 · 10−4 1.91 380

q = 1 with the optimal order 2, the regularized limiter requires q > 2 to achieve nearly the
same order of convergence. For q = 3 and h > 1

96 , the latter limiter is more accurate than
the modified BJK limiter. However, we were not able to compute the solution for mesh sizes
h 6 1

48 and the modified BJK limiter using Algorithm 1 without pseudo time steps.
For both benchmarks, the upwind version of the modified BJK limiter is more accurate

than the original BJK limiter (cf. Table 7). This improvement is due to the fact that the sign
of the system matrix entries is taken into account in the definition of αij : For the hyperbolic
problem (29) and a solenoidal velocity field, we have aij = −aji if xi /∈ ∂Ω or xj /∈ ∂Ω.
Therefore, the correction factors employing (15b) depend either on βi or on βj and, hence,
are greater than those of the symmetric version. If we just replace the definition of αij for
the original BJK limiter by (14) and use the symmetric definition of βij instead of (24d), the
accuracy of the solution deteriorates slightly.

In Table 9, the solution behavior of the fixed-point iteration using J̄ is compared to the
algorithm employing ∆t−1ML +A − D for the discontinuous translation test case and the
modified BJK limiter. As already observed in Table 2, the low order system matrix acting
as a preconditioner results in more efficient solvers only for small values of q and ∆t. As the
problems become more involved, the recalculation of J̄ in each iteration pays off and reduces
the computational time up to 10 times. In contrast to the regularized limiter with ε = 10−6 (cf.
Table 3a), the use of pseudo time steps may reduce the number of iterations for the modified
BJK limiter even if the ‘exact Jacobian’ J̄ is used as a preconditioner. However, the optimal
choice of ∆t exhibits strong dependence on the current problem and cannot be determined a
priori.

Jha and John [JJ19] observed that the use of the regularized limiter only for construction of
the preconditioner does not improve the rate of convergence when the residual is evaluated
without smoothing the limiter. In fact, the regularized Jacobian acting as a preconditioner
behaves as well as the matrix J̄ exploiting (16) for large values of ‖r‖2̃ (cf. Fig. 6). As the
norm of the residual decreases, the accuracy of the regularized Jacobian deteriorates and damps
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Table 7: Approximate L2-errors E2 for modifications of BJK limiter.

(a) Discontinuous translation.

Limiter q = 1 q = 2

h−1 = 48 h−1 = 96 h−1 = 48 h−1 = 96

ori. BJK 0.037 35 0.028 65 0.032 80 0.025 76
mult. BJK 0.037 40 0.028 65 0.032 82 0.025 76
mod. BJK (sym.) 0.037 79 0.028 80 0.032 82 0.025 77
mod. BJK (upw.) 0.036 38 0.027 93 0.031 96 0.025 02

(b) Smooth circular convection.

Limiter q = 1 q = 2

h−1 = 48 h−1 = 96 h−1 = 48 h−1 = 96

ori. BJK 0.022 15 0.006 16 0.013 49 0.003 69
mult. BJK 0.022 15 0.006 16 0.013 49 0.003 69
mod. BJK (sym.) 0.023 49 0.006 60 0.013 97 0.003 83
mod. BJK (upw.) 0.019 59 0.005 51 0.012 67 0.003 46

Table 9: Discontinuous translation: Time savings for modified BJK limiter using different
preconditioners J̃ .

q ∆t−1 J̃ = ∆t−1ML +A−D J̃ = J̄ time(J̄ )
time(∆t−1ML+A−D)

iter. time (s) iter. time (s)
1 100 1114 82.0 696 79.6 0.97
1 10 492 37.9 79 9.1 0.24
1 1 515 39.0 31 3.8 0.10
1 0.01 523 40.3 33 3.9 0.10
1 0 525 40.0 32 3.7 0.09
2 100 1459 110.5 861 96.4 0.87
2 10 676 52.1 117 11.2 0.21
2 1 684 43.0 82 9.4 0.22
2 0.01 694 54.1 64 7.6 0.14
2 0 701 53.3 95 11.3 0.21
3 100 1444 108.8 850 95.1 0.87
3 10 904 69.4 179 20.3 0.29
3 1 1330 100.9 363 42.2 0.42
3 0.01 1582 122.2 227 26.2 0.21
3 0 1580 120.9 154 18.1 0.15
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Figure 6: Discontinuous translation: Evolution of ‖r‖2̃ during nonlinear iterations for regular-
ized limiter with ε = 0, q = 2, and ∆t−1 = 0 when preconditioner J̃ = J̄ is defined
in terms of regularized limiter with ε̃.

the rate of convergence. Therefore, smoothing only the Jacobian with a fixed regularization
parameter ε seems to have no positive impact on the numerical performance.

9 Summary
In this work, we presented new results on the solvability of algebraic flux correction schemes
for the convection-reaction equation. We proved the existence of a unique solution assuming
just the validity of the coercivity condition (6) for limiters with sufficiently small Lipschitz
constants. Without further assumptions on the discrete problem, this analysis does not seem
to carry over to arbitrary limiters. Indeed, the counterexample of Section 4 illustrates that the
requirements of a positive definite system matrix and Lipschitz continuous limiter functions
do not suffice to guarantee the uniqueness of the solution.

The main part of this work was focused on the construction and validation of an efficient
solver for the nonlinear AFC problem. For a specific family of limiters, we presented an
efficient way to perform a matrix-vector multiplication with the Jacobian or determine its
entries. This representation provides new possibilities to develop fast solvers for nonlinear AFC
problems due to the efficient computation of accurate preconditioners. The solver presented in
Algorithm 1 employs a pseudo time stepping approach and a line search algorithm to make the
scheme more robust. The use of pseudo time steps may improve the convergence behavior of
the fixed-point iteration but the optimal choice of the time increment ∆t depends strongly on
the problem at hand. Therefore, an improved convergence behavior could be achieve using an
adaptively determined ∆t depending on the behavior of the residual or relaxation parameter
[Val+05]. The definition of the relaxation parameter ω as an approximate solution to an
optimization problem makes it possible to reduce the number of iterations. However, the
calculation of ω significantly contributes to the computational time of each iteration. Therefore,
more efficient calculations of the damping parameter as proposed in [JK07; EW94] or the
use of Anderson acceleration [WN11] might further reduce the total effort to solve the AFC
system.

As shown in our numerical studies, the limiter under consideration has a great impact
on the solution behavior of Algorithm 1: Even for ε = 0, the AFC system employing the
regularized limiter required less iterations to compute a more accurate solution than that using
the modified BJK limiter. Furthermore, slight regularizations of the correction factors may
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result in a significant reduction of the number of iterations without worsening the accuracy
of the solution. For limiters with twice continuously differentiable correction factors, second
order of convergence was observed for Algorithm 1 without the use of pseudo time steps.
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