

On the design of global-in-time Newton-Pressure Schur complement solvers for incompressible flow problems

Christoph Lohmann, Stefan Turek

TU Dortmund University, Germany

June 07, 2022

DFG Flow around a cylinder benchmark 2D-3 from 1995 as part of the research project "Flow simulation on high-performance computers" (Schäfer et al. 1996)

Problem: Sequential time-stepping of flow solvers

- Trend of supercomputers towards increased number of cores
- Stagnating performance of each core
- ► Global-in-time solution strategy on massively parallel computing facilities

Related works:

- Trindade and Pereira (2004)
- Lemoine and Münch (2021)
- Danieli, Southworth, and Wathen (2022)

Contents

1. Introduction

- 1.1 Motivation
- 1.2 Sequential Schur complement solver

2. Global-in-time Stokes solver

- 2.1 All-at-once Schur complement solver
- 2.2 Multigrid acceleration
- 2.3 Numerical examples
- 3. Global-in-time Navier-Stokes solver
- 3.1 Numerical examples

4. Conclusions

Definition of problem

Incompressible Navier-Stokes equations

$$\begin{split} \frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} - \mu \Delta \mathbf{v} + \operatorname{grad}(\rho) &= \rho \mathbf{g} & \text{ in } \Omega \times (0, T), \\ \operatorname{div}(\mathbf{v}) &= 0 & \text{ in } \Omega \times (0, T), \\ \mathbf{v}(\cdot, 0) &= \mathbf{v}_0 & \text{ on } \Omega, \\ \mathbf{v} &= \mathbf{v}_D & \text{ on } \Gamma_D \times (0, T), \\ -\rho \mathbf{n} + \mu (\mathbf{n} \cdot \nabla) \mathbf{v} &= \rho \mathbf{h} & \text{ on } \Gamma_N \times (0, T) \end{split}$$

Discretization:

- θ -scheme in time ($\theta = \frac{1}{2}$ for Crank-Nicolson; $\theta = 1$ for backward Euler)
- inf-sup-stable Q_2 - Q_1 Taylor-Hood FE in space
- Quadrature based mass lumping \rightarrow M_u is diagonal

Definition of problem

Incompressible Navier-Stokes equations

$$\begin{split} \frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} - \mu \Delta \mathbf{v} + \operatorname{grad}(p) &= \rho \mathbf{g} & \text{ in } \Omega \times (0, T), \\ \operatorname{div}(\mathbf{v}) &= 0 & \text{ in } \Omega \times (0, T), \\ \mathbf{v}(\cdot, 0) &= \mathbf{v}_0 & \text{ on } \Omega, \\ \mathbf{v} &= \mathbf{v}_D & \text{ on } \Gamma_D \times (0, T), \\ -\rho \mathbf{n} + \mu (\mathbf{n} \cdot \nabla) \mathbf{v} &= \rho \mathbf{h} & \text{ on } \Gamma_N \times (0, T) \end{split}$$

Discretization:

- θ -scheme in time ($\theta = \frac{1}{2}$ for Crank-Nicolson; $\theta = 1$ for backward Euler)
- inf-sup-stable Q₂-Q₁ Taylor-Hood FE in space
- Quadrature based mass lumping \rightarrow M_u is diagonal
- For simplicity: $\mu = 1$

$$M_{u} \frac{\mathbf{u}^{(n+1)} - \mathbf{u}^{(n)}}{\delta t} + \theta \mathbf{D}_{u} \mathbf{u}^{(n+1)} + (1-\theta) \mathbf{D}_{u} \mathbf{u}^{(n)} + \mathbf{B} \mathbf{p}^{(n+1)} = \theta \mathbf{g}^{(n+1)} + (1-\theta) \mathbf{g}^{(n)},$$
$$\mathbf{B}^{\top} \mathbf{u}^{(n+1)} = \mathbf{f}^{(n+1)}$$

$$\begin{split} \mathbf{M}_u &\sim \mathsf{id}, \quad \mathbf{D}_u \sim -\Delta, \quad \mathbf{B} \sim \mathsf{grad}, \quad \mathbf{B}^\top \sim \mathsf{div} \\ \mathbf{A}_i &\coloneqq \mathbf{M}_u + \theta \delta t \mathbf{D}_u, \quad \mathbf{A}_e \coloneqq -\mathbf{M}_u + (1 - \theta) \delta t \mathbf{D}_u, \quad \mathbf{\tilde{p}}^{(n+1)} \coloneqq \delta t \mathbf{p}^{(n+1)} \end{split}$$

Sequential time-stepping

$$\begin{pmatrix} \mathbf{A}_i & \mathbf{B} \\ \mathbf{B}^\top & \end{pmatrix} \begin{pmatrix} \mathbf{u}^{(n+1)} \\ \tilde{\mathbf{p}}^{(n+1)} \end{pmatrix} = \begin{pmatrix} \tilde{\mathbf{g}}^{(n+1)} - \mathbf{A}_e \mathbf{u}^{(n)} \\ \mathbf{f}^{(n+1)} \end{pmatrix}, \quad n = 0, \dots, K$$

$$\begin{pmatrix} \mathbf{A}_i & \mathbf{B} \\ \mathbf{B}^\top & \end{pmatrix} \begin{pmatrix} \mathbf{u}^{(n+1)} \\ \tilde{\mathbf{p}}^{(n+1)} \end{pmatrix} = \begin{pmatrix} \tilde{\mathbf{g}}^{(n+1)} - \mathbf{A}_e \mathbf{u}^{(n)} \\ \mathbf{f}^{(n+1)} \end{pmatrix}, \quad n = 0, \dots, K$$

Pressure Schur complement (PSC) equation:

$$\begin{split} \boxed{\mathbf{B}^{\top}\mathbf{A}_{i}^{-1}\mathbf{B}\tilde{\mathbf{p}}^{(n+1)} = \mathbf{B}^{\top}\mathbf{A}_{i}^{-1}(\tilde{\mathbf{g}}^{(n+1)} - \mathbf{A}_{e}\mathbf{u}^{(n)}) - \mathbf{f}^{(n+1)}} \\ \mathbf{u}^{(n+1)} = \mathbf{A}_{i}^{-1}(\tilde{\mathbf{g}}^{(n+1)} - \mathbf{A}_{e}\mathbf{u}^{(n)} - \mathbf{B}\tilde{\mathbf{p}}^{(n+1)}) \end{split}$$

Iterative solver

$$\begin{split} \tilde{\mathbf{p}}^{(n+1)} &\mapsto \quad \tilde{\mathbf{p}}^{(n+1)} + \mathbf{q}^{(n+1)}, \\ \mathbf{q}^{(n+1)} &= \mathbf{C}_i^{-1} (\mathbf{B}^\top \tilde{\mathbf{u}}^{(n+1)} - \mathbf{f}^{(n+1)}), \qquad \tilde{\mathbf{u}}^{(n+1)} = \mathbf{A}_i^{-1} (\tilde{\mathbf{g}}^{(n+1)} - \mathbf{A}_e \mathbf{u}^{(n)} - \mathbf{B} \tilde{\mathbf{p}}^{(n+1)}) \end{split}$$

using preconditioner $C_i \approx B^{\top} A_i^{-1} B$

How to define preconditioner $C_i \approx B^T A_i^{-1} B$?

1 PCD preconditioner (Kay, Loghin, and Wathen 2002): Assuming $A_i^{-1}BM_p^{-1} \approx M_u^{-1}BA_{i,p}^{-1}$

$$\begin{split} \mathbf{P}_{i}^{-1} &= (\mathbf{B}^{\top}\mathbf{A}_{i}^{-1}\mathbf{B})^{-1} \approx (\mathbf{B}^{\top}\mathbf{M}_{u}^{-1}\mathbf{B}\mathbf{A}_{i,p}^{-1}\mathbf{M}_{p})^{-1} = \mathbf{M}_{p}^{-1}\mathbf{A}_{i,p}(\underbrace{\mathbf{B}^{\top}\mathbf{M}_{u}^{-1}\mathbf{B}}_{=:\hat{\mathbf{D}}_{p}})^{-1} \rightleftharpoons \mathbf{C}_{i}^{-1} \\ \mathbf{A}_{i,p} &\coloneqq \mathbf{M}_{p} + \theta \delta t \mu \hat{\mathbf{D}}_{p} \implies \mathbf{C}_{i}^{-1} = \hat{\mathbf{D}}_{p}^{-1} + \theta \delta t \mu \mathbf{M}_{p}^{-1} \end{split}$$

2 Scaled BFBt preconditioner (Elman et al. 2006): Using Moore-Penrose inverse $(M_u^{-1/2}B)^+ = \hat{D}_p^{-1}M_u^{-1/2}B^\top$

$$\mathbf{C}_i^{-1} \coloneqq \hat{\mathbf{D}}_p^{-1} \mathbf{B}^\top \mathbf{M}_u^{-1} \mathbf{A}_i \mathbf{M}_u^{-1} \mathbf{B} \hat{\mathbf{D}}_p^{-1}$$

Properties of preconditioners:

-

	PCD preconditioner	Scaled BFBt preconditioner
${f C}^{-1} \ \delta t ightarrow 0 \ {f Effort}$	$ \begin{array}{c} \hat{\mathbf{D}}_{p}^{-1} + \theta \delta t \mathbf{M}_{p}^{-1} \\ \hat{\mathbf{D}}_{p}^{-1} \\ 1 \times \text{Poisson \& } 1 \times \text{mass} \end{array} $	$ \hat{\mathbf{D}}_{p}^{-1}\mathbf{B}^{\top}\mathbf{M}_{u}^{-1}\mathbf{A}_{i}\mathbf{M}_{u}^{-1}\mathbf{B}\hat{\mathbf{D}}_{p}^{-1} \hat{\mathbf{D}}_{p}^{-1}\mathbf{B}^{\top}\mathbf{M}_{u}^{-1}\mathbf{B}\hat{\mathbf{D}}_{p}^{-1} = \hat{\mathbf{D}}_{p}^{-1} 2\times \text{Poisson } \& 2\times \text{mass} $

Iterative solver

$$\begin{split} \tilde{\mathbf{p}}^{(n+1)} &\mapsto \tilde{\mathbf{p}}^{(n+1)} + \mathbf{q}^{(n+1)}, \\ \mathbf{q}^{(n+1)} = \mathbf{C}_{i}^{-1} (\mathbf{B}^{\top} \tilde{\mathbf{u}}^{(n+1)} - \mathbf{f}^{(n+1)}), \qquad \tilde{\mathbf{u}}^{(n+1)} = \mathbf{A}_{i}^{-1} (\tilde{\mathbf{g}}^{(n+1)} - \mathbf{A}_{e} \mathbf{u}^{(n)} - \mathbf{B} \tilde{\mathbf{p}}^{(n+1)}) \\ \text{using preconditioner } \mathbf{C}_{i} \approx \mathbf{B}^{\top} \mathbf{A}_{i}^{-1} \mathbf{B} \text{ and system matrix } \mathbf{A}_{i} = \mathbf{M}_{u} + \theta \delta t \mathbf{D}_{u} \end{split}$$

All-at-once problem

Sequential time-stepping:

$$\begin{pmatrix} \mathbf{A}_i & \mathbf{B} \\ \mathbf{B}^{\top} & \end{pmatrix} \begin{pmatrix} \mathbf{u}^{(n+1)} \\ \tilde{\mathbf{p}}^{(n+1)} \end{pmatrix} = \begin{pmatrix} \tilde{\mathbf{g}}^{(n+1)} - \mathbf{A}_e \mathbf{u}^{(n)} \\ \mathbf{f}^{(n+1)} \end{pmatrix}, \quad n = 0, \dots, K$$

Treating K time steps simultaneously:

$$\begin{pmatrix} \mathbf{A}_{K} & \mathbf{B}_{K} \\ \mathbf{B}_{K}^{\top} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ \tilde{\mathbf{p}} \end{pmatrix} = \begin{pmatrix} \tilde{\mathbf{g}} \\ \mathbf{f} \end{pmatrix}$$

Pressure Schur complement (PSC) equation:

$$\frac{\mathbf{B}_{K}^{\top}\mathbf{A}_{K}^{-1}\mathbf{B}_{K}\tilde{\mathbf{p}}=\mathbf{B}_{K}^{\top}\mathbf{A}_{K}^{-1}\tilde{\mathbf{g}}-\mathbf{f}}{\mathbf{u}=\mathbf{A}_{K}^{-1}(\tilde{\mathbf{g}}-\mathbf{B}_{K}\tilde{\mathbf{p}})}$$

Iterative solver

$$\begin{split} \tilde{p} & \mapsto & \tilde{p} + q, \\ q = C_{\mathcal{K}}^{-1}(B_{\mathcal{K}}^{\top}\tilde{u} - f), & \tilde{u} = A_{\mathcal{K}}^{-1}(\tilde{g} - B_{\mathcal{K}}\tilde{p}) \\ \text{using preconditioner } C_{\mathcal{K}} \approx B_{\mathcal{K}}^{\top}A_{\mathcal{K}}^{-1}B_{\mathcal{K}} \end{split}$$

How to define preconditioner $C_{\kappa} \approx B_{\kappa}^{\top} A_{\kappa}^{-1} B_{\kappa}$?

$$\mathbf{A}_{K} = \begin{pmatrix} A_{i} & & \\ A_{e} & A_{i} & \\ & \ddots & \ddots & \\ & & A_{e} & A_{i} \end{pmatrix} = \begin{pmatrix} M_{u} & M_{u} & \\ -M_{u} & M_{u} & \\ & \ddots & \ddots & \\ & & -M_{u} & M_{u} \end{pmatrix} + \delta t \begin{pmatrix} \theta D_{u} & \theta D_{u} & \\ (1-\theta)D_{u} & \theta D_{u} & \\ & \ddots & (1-\theta)D_{u} & \theta D_{u} \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 1 & \\ & \ddots & \ddots & \\ & & -1 & 1 \end{pmatrix} \otimes M_{u} + \delta t \begin{pmatrix} \theta & \theta & \\ & 0 & \theta & \\ & \ddots & 0 & 0 \end{pmatrix} \otimes D_{u}$$
$$= U_{K} \otimes M_{u} + \delta t V_{K} \otimes D_{u}$$
$$\mathbf{B}_{K} = \begin{pmatrix} 1 & 1 & \\ & \ddots & 1 \end{pmatrix} \otimes \mathbf{B} = \mathbf{I}_{K} \otimes \mathbf{B}, \quad \mathbf{B}_{K}^{\top} = \begin{pmatrix} 1 & 1 & \\ & \ddots & 1 \end{pmatrix} \otimes \mathbf{B}^{\top} = \mathbf{I}_{K} \otimes \mathbf{B}^{\top}$$

How to define preconditioner $C_{\kappa} \approx B_{\kappa}^{\top} A_{\kappa}^{-1} B_{\kappa}$?

1 PCD preconditioner (cf. Danieli, Southworth, and Wathen 2022): Assuming $\mathbf{A}_{\mathcal{K}}^{-1}\mathbf{B}_{\mathcal{K}}(I_{\mathcal{K}}\otimes M_{p}^{-1}) \approx (I_{\mathcal{K}}\otimes M_{u}^{-1})\mathbf{B}_{\mathcal{K}}\mathbf{A}_{\mathcal{K},p}^{-1}$

$$\begin{aligned} \mathbf{C}_{K}^{-1} &\coloneqq (\mathbf{I}_{K} \otimes \mathbf{M}_{p}^{-1}) \mathbf{A}_{K,p} \big(\mathbf{B}_{K}^{\top} (\mathbf{I}_{K} \otimes \mathbf{M}_{u}^{-1}) \mathbf{B}_{K} \big)^{-1} \\ &= (\mathbf{I}_{K} \otimes \mathbf{M}_{p}^{-1}) \mathbf{A}_{K,p} (\mathbf{I}_{K} \otimes \hat{\mathbf{D}}_{p}^{-1}) \\ &= (\mathbf{U}_{K} \otimes \hat{\mathbf{D}}_{p}^{-1}) + \delta t \mu (\mathbf{V}_{K} \otimes \mathbf{M}_{p}^{-1}) \end{aligned}$$

2 Scaled BFBt preconditioner:

Using Moore-Penrose inverse $(M_u^{-1/2}B)^+ = \hat{D}_p^{-1}M_u^{-1/2}B^\top$

$$\boldsymbol{\mathsf{C}}_{\boldsymbol{\mathsf{K}}}^{-1} \coloneqq \big(\mathrm{I}_{\boldsymbol{\mathsf{K}}} \otimes (\hat{\mathrm{D}}_{\boldsymbol{\mathsf{p}}}^{-1}\mathrm{B}^{\top}\mathrm{M}_{\boldsymbol{\mathsf{u}}}^{-1})\big) \boldsymbol{\mathsf{A}}_{\boldsymbol{\mathsf{K}}} \big(\mathrm{I}_{\boldsymbol{\mathsf{K}}} \otimes (\mathrm{M}_{\boldsymbol{\mathsf{u}}}^{-1}\mathrm{B}\hat{\mathrm{D}}_{\boldsymbol{\mathsf{p}}}^{-1})\big)$$

Application of PCD preconditioner

$$\mathbf{r} = \mathbf{B}_{K}^{\top} \tilde{\mathbf{u}} - \mathbf{f}, \qquad \mathbf{C}_{K}^{-1} = (\mathbf{U}_{K} \otimes \hat{\mathbf{D}}_{p}^{-1}) + \delta t \mu (\mathbf{V}_{K} \otimes \mathbf{M}_{p}^{-1}) = (\mathbf{I}_{K} \otimes \hat{\mathbf{D}}_{p}^{-1}) (\mathbf{U}_{K} \otimes \mathbf{I}) + \delta t \mu (\mathbf{I}_{K} \otimes \mathbf{M}_{p}^{-1}) (\mathbf{V}_{K} \otimes \mathbf{I})$$

Step 1:

$$\tilde{\mathbf{r}}_{1} = (\mathbf{U}_{\mathcal{K}} \otimes \mathbf{I})\mathbf{r} = \begin{pmatrix} \mathbf{r}^{(1)} \\ \mathbf{r}^{(2)} \\ \vdots \\ \mathbf{r}^{(\mathcal{K})} \end{pmatrix} - \begin{pmatrix} \mathbf{0} \\ \mathbf{r}^{(1)} \\ \vdots \\ \mathbf{r}^{(\mathcal{K}-1)} \end{pmatrix},$$
$$\tilde{\mathbf{r}}_{2} = (\mathbf{V}_{\mathcal{K}} \otimes \mathbf{I})\mathbf{r} = \theta \begin{pmatrix} \mathbf{r}^{(1)} \\ \mathbf{r}^{(2)} \\ \vdots \\ \mathbf{r}^{(\mathcal{K})} \end{pmatrix} + (1-\theta) \begin{pmatrix} \mathbf{0} \\ \mathbf{r}^{(1)} \\ \vdots \\ \mathbf{r}^{(\mathcal{K}-1)} \end{pmatrix},$$

Application of PCD preconditioner

$$\mathbf{r} = \mathbf{B}_{K}^{\top} \tilde{\mathbf{u}} - \mathbf{f}, \qquad \mathbf{C}_{K}^{-1} = (\mathbf{U}_{K} \otimes \hat{\mathbf{D}}_{p}^{-1}) + \delta t \mu (\mathbf{V}_{K} \otimes \mathbf{M}_{p}^{-1}) \\ = (\mathbf{I}_{K} \otimes \hat{\mathbf{D}}_{p}^{-1}) (\mathbf{U}_{K} \otimes \mathbf{I}) + \delta t \mu (\mathbf{I}_{K} \otimes \mathbf{M}_{p}^{-1}) (\mathbf{V}_{K} \otimes \mathbf{I})$$

Step 2:

C. Lohmann

$$\begin{pmatrix} \tilde{\mathbf{q}}_{1}^{(1)} \\ \vdots \\ \tilde{\mathbf{q}}_{1}^{(K)} \end{pmatrix} = \begin{pmatrix} \hat{\mathbf{D}}_{p}^{-1} & & \\ & \ddots & \\ & & \hat{\mathbf{D}}_{p}^{-1} \end{pmatrix} \begin{pmatrix} \tilde{\mathbf{r}}_{1}^{(1)} \\ \vdots \\ \tilde{\mathbf{r}}_{1}^{(K)} \end{pmatrix}$$

$$\Leftrightarrow \quad \begin{pmatrix} \tilde{\mathbf{q}}_{1}^{(1)} & \cdots & \tilde{\mathbf{q}}_{1}^{(K)} \end{pmatrix} = \hat{\mathbf{D}}_{p}^{-1} \begin{pmatrix} \tilde{\mathbf{r}}_{1}^{(1)} & \cdots & \tilde{\mathbf{r}}_{1}^{(K)} \end{pmatrix},$$

$$\begin{pmatrix} \tilde{\mathbf{q}}_{2}^{(1)} \\ \vdots \\ \tilde{\mathbf{q}}_{2}^{(K)} \end{pmatrix} = \begin{pmatrix} \mathbf{M}_{p}^{-1} & & \\ & \ddots & \\ & & \mathbf{M}_{p}^{-1} \end{pmatrix} \begin{pmatrix} \tilde{\mathbf{r}}_{2}^{(1)} \\ \vdots \\ \tilde{\mathbf{r}}_{2}^{(K)} \end{pmatrix}$$

$$\Leftrightarrow \quad \begin{pmatrix} \tilde{\mathbf{q}}_{2}^{(1)} & \cdots & \tilde{\mathbf{q}}_{2}^{(K)} \end{pmatrix} = \mathbf{M}_{p}^{-1} \begin{pmatrix} \tilde{\mathbf{r}}_{2}^{(1)} & \cdots & \tilde{\mathbf{r}}_{2}^{(K)} \end{pmatrix}$$

Properties of preconditioners:

	PCD preconditioner	Scaled BFBt preconditioner				
C ⁻¹	$(\mathbf{I}_{\mathcal{K}} \otimes \mathbf{M}_{p}^{-1}) \mathbf{A}_{\mathcal{K},p} (\mathbf{I}_{\mathcal{K}} \otimes \hat{\mathbf{D}}_{p}^{-1})$	$\left(\mathbf{I}_{\mathcal{K}}\otimes(\hat{\mathbf{D}}_{p}^{-1}\mathbf{B}^{\top}\mathbf{M}_{u}^{-1})\right)\mathbf{A}_{\mathcal{K}}\left(\mathbf{I}_{\mathcal{K}}\otimes(\mathbf{M}_{u}^{-1}\mathbf{B}\hat{\mathbf{D}}_{p}^{-1})\right)$				
$\delta t \rightarrow 0$	$\bigcup_{K} \otimes \bigcup_{p}^{\perp}$	$\bigcup_{K} \otimes \bigcup_{p}^{+}$				
Effort	1×Poisson & 1×mass	2×Poisson & 2×mass				

Iterative solver

$$\begin{split} \tilde{\mathbf{p}} & \mapsto & \tilde{\mathbf{p}} + \mathbf{q}, \\ \mathbf{q} = \mathbf{C}_{\mathcal{K}}^{-1} (\mathbf{B}_{\mathcal{K}}^{\top} \tilde{\mathbf{u}} - \mathbf{f}), \qquad \tilde{\mathbf{u}} = \mathbf{A}_{\mathcal{K}}^{-1} (\tilde{\mathbf{g}} - \mathbf{B}_{\mathcal{K}} \tilde{\mathbf{p}}) \\ \text{using preconditioner } \mathbf{C}_{\mathcal{K}} \approx \mathbf{B}_{\mathcal{K}}^{\top} \mathbf{A}_{\mathcal{K}}^{-1} \mathbf{B}_{\mathcal{K}} \text{ and } \mathbf{A}_{\mathcal{K}} = \mathbf{U}_{\mathcal{K}} \otimes \mathbf{M}_{u} + \delta t \mathbf{V}_{\mathcal{K}} \otimes \mathbf{D}_{u} \end{split}$$

Numerical examples — Domain and triangulation

level	nodes	edges	elements	$\# \mathrm{dofs}(\boldsymbol{v})$	$\# \mathrm{dofs}(\pmb{p})$	total
0	65	113	48	452 <i>K</i>	65 <i>K</i>	517 <i>K</i>
1	226	418	192	1672 <i>K</i>	226 <i>K</i>	1898 <i>K</i>
2	836	1604	768	6416 <i>K</i>	836 <i>K</i>	7252 <i>K</i>
3	3208	6280	3072	25120 <i>K</i>	3208 <i>K</i>	28328 <i>K</i>
4	12560	24848	12288	99392 <i>K</i>	12560 <i>K</i>	111952 <i>K</i>

Manufactured solution:

$$\mathbf{v}(\mathbf{x}, t) = \begin{pmatrix} \sin(\sigma x) \sin(\sigma y) q(2t) + y(y_{\max} - y) (1 - 2q(t)) \\ \cos(\sigma x) \cos(\sigma y) q(2t) + x(x_{\max} - x)^2 (1 + 3q(t)) \end{pmatrix},$$

$$p(\mathbf{x}, t) = \mu \sigma \cos(\sigma x) \sin(\sigma y) q(2t) + \mu(x_{\max} - x) q(t),$$

$$q(t) = \frac{1}{2} \sin(4\sin(3\pi t) + 6t), \qquad \sigma = 4\pi x_{\max}^{-1}, \qquad \mu = 10^{-2}$$

C. Lohmann

Multigrid acceleration

Iterative solver

$$\begin{split} \tilde{\mathbf{p}} & \mapsto \quad \tilde{\mathbf{p}} + \mathbf{q}, \\ \mathbf{q} = \mathbf{C}_{\mathcal{K}}^{-1} (\mathbf{B}_{\mathcal{K}}^{\top} \tilde{\mathbf{u}} - \mathbf{f}), \qquad \tilde{\mathbf{u}} = \mathbf{A}_{\mathcal{K}}^{-1} (\tilde{\mathbf{g}} - \mathbf{B}_{\mathcal{K}} \tilde{\mathbf{p}}) \end{split}$$

using preconditioner $\mathbf{C}_{\mathcal{K}} \approx \mathbf{B}_{\mathcal{K}}^{\top} \mathbf{A}_{\mathcal{K}}^{-1} \mathbf{B}_{\mathcal{K}}$

$$\hat{\mathbf{C}}_{K}^{-1} = \mathbf{P}_{\bar{K}}^{K} (\bar{\mathbf{B}}_{\bar{K}}^{\top} \bar{\mathbf{A}}_{\bar{K}}^{-1} \bar{\mathbf{B}}_{\bar{K}})^{-1} \mathbf{R}_{K}^{\bar{K}}$$

using space-time restriction and prolongation operators $\mathbf{R}_{K}^{ar{K}}$ and $\mathbf{P}_{ar{K}}^{K}$

Possibilities:

• $\frac{\delta t}{\Delta x}$ constant

- **2** space coarsening
 - 2^d times fewer dofs
 - $\frac{\delta t}{\Delta x}$ halved

- 3 time coarsening
 - 2 times fewer dofs
 - $\frac{\delta t}{\Delta x}$ doubled

$$M_{u} \frac{\mathbf{u}^{(n+1)} - \mathbf{u}^{(n)}}{\delta t} + \theta D_{u} \mathbf{u}^{(n+1)} + (1-\theta) D_{u} \mathbf{u}^{(n)} + B \mathbf{p}^{(n+1)} = \theta \mathbf{g}^{(n+1)} + (1-\theta) \mathbf{g}^{(n)},$$
$$B^{\top} \mathbf{u}^{(n+1)} = \mathbf{f}^{(n+1)}$$

Problem:

• pressure treated fully implicitly • but second order accurate when $p^{(n+1)} \approx p(t^{n+1/2})$

Extension to Oseen equations

$$\begin{split} \frac{\partial \mathbf{v}}{\partial t} + (\tilde{\mathbf{v}} \cdot \nabla) \mathbf{v} - \mu \Delta \mathbf{v} + \operatorname{grad}(p) &= \rho \mathbf{g} & \text{ in } \Omega \times (0, T), \\ \operatorname{div}(\mathbf{v}) &= 0 & \text{ in } \Omega \times (0, T), \\ \mathbf{v}(\cdot, 0) &= \mathbf{v}_0 & \text{ on } \Omega, \\ \mathbf{v} &= \mathbf{v}_D & \text{ on } \Gamma_D \times (0, T), \\ -\rho \mathbf{n} + \mu (\mathbf{n} \cdot \nabla) \mathbf{v} &= \rho \mathbf{h} & \text{ on } \Gamma_N \times (0, T) \end{split}$$

PCD preconditioner:

$$\begin{split} \mathbf{C}_{\mathcal{K}}^{-1} &= (\mathbf{I}_{\mathcal{K}} \otimes \mathbf{M}_{p}^{-1}) \mathbf{A}_{\mathcal{K},p} (\mathbf{I}_{\mathcal{K}} \otimes \hat{\mathbf{D}}_{p}^{-1}) \\ &= (\mathbf{U}_{\mathcal{K}} \otimes \hat{\mathbf{D}}_{p}^{-1}) + (\mathbf{I}_{\mathcal{K}} \otimes \mathbf{M}_{p}^{-1}) \mathbf{K}_{p,\mathcal{K}} (\mathbf{I}_{\mathcal{K}} \otimes \hat{\mathbf{D}}_{p}^{-1}) + \delta t \mu (\mathbf{V}_{\mathcal{K}} \otimes \mathbf{M}_{p}^{-1}) \end{split}$$

Scaled BFBt preconditioner:

$$\boldsymbol{\mathsf{C}}_{\boldsymbol{\mathsf{K}}}^{-1} = \big(\mathrm{I}_{\boldsymbol{\mathsf{K}}}\otimes(\hat{\mathrm{D}}_{\boldsymbol{\mathsf{p}}}^{-1}\mathrm{B}^{\top}\mathrm{M}_{\boldsymbol{\mathsf{u}}}^{-1})\big)\boldsymbol{\mathsf{A}}_{\boldsymbol{\mathsf{K}}}\big(\mathrm{I}_{\boldsymbol{\mathsf{K}}}\otimes(\mathrm{M}_{\boldsymbol{\mathsf{u}}}^{-1}\mathrm{B}\hat{\mathrm{D}}_{\boldsymbol{\mathsf{p}}}^{-1})\big)$$

Numerical examples — Oseen equations

Numerical examples — Oseen equations

Treating nonlinearities

Incompressible Navier-Stokes equations

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla)\mathbf{v} - \mu \Delta \mathbf{v} + \operatorname{grad}(p) = \rho \mathbf{g}, \qquad \operatorname{div}(\mathbf{v}) = 0$$

Residual of momentum equation

$$\mathbf{r}(\mathbf{v},p) \coloneqq \frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla)\mathbf{v} - \mu \Delta \mathbf{v} + \operatorname{grad}(p) - \rho \mathbf{g}.$$

Solution update:

$$(\mathbf{v}, p) \mapsto (\mathbf{v} - \overline{\mathbf{v}}, p - \overline{p})$$

Picard iteration

$$\frac{\partial \bar{\mathbf{v}}}{\partial t} + (\mathbf{v} \cdot \nabla) \bar{\mathbf{v}} \qquad -\mu \Delta \bar{\mathbf{v}} + \operatorname{grad}(\bar{p}) = \mathbf{r}(\mathbf{v}, p), \qquad \operatorname{div}(\bar{\mathbf{v}}) = \operatorname{div}(\mathbf{v})$$

Newton's method

$$\frac{\partial \bar{\mathbf{v}}}{\partial t} + (\mathbf{v} \cdot \nabla) \bar{\mathbf{v}} + (\bar{\mathbf{v}} \cdot \nabla) \mathbf{v} - \mu \Delta \bar{\mathbf{v}} + \operatorname{grad}(\bar{p}) = \mathbf{r}(\mathbf{v}, p), \qquad \operatorname{div}(\bar{\mathbf{v}}) = \operatorname{div}(\mathbf{v})$$

$$\nu=10^{-3},~{\rm Re}=20$$
 Inflow boundary condition

$$\mathbf{v}_{\rm D} = 0.3 rac{4y(0.41-y)}{0.41^2} \begin{pmatrix} 1\\ 0 \end{pmatrix}$$

Numerical examples — FAC Bench 2D-1, laminar case

Picard iteration vs. Newton's method for $\delta t = \frac{1}{100}$, |v| = 2, and different T

Numerical examples — FAC Bench 2D-1, laminar case

Newton's method, zero initial guess, TG, $tol_{rel} = 10^{-4}$, 4 smooth. steps, PCD precon.

$\delta t = 1/400. \text{ TG}$		$K = 2^{8}$			$K = 2^{10}$			$K=2^{12}$		
, ., .	nonlinear	r linear	smother	nonlinear	r linear	smother	nonlinea	r linear	smother	
lvl = 1	5	5 10	33	6	5 11	. 43	e	5 16	46	
lvl = 2	5	5 10	28	6	i 12	39	e	5 14	47	
lvl = 3	5	6 8	27	6	6 10) 39	6	5 13	49	
w = 2 TC		$K = 2^{8}$			$K = 2^{10}$			$K = 2^{12}$		
101 – 2, 10	nonlinear	linear	smother	nonlinear	linear	smother	nonlinear	linear	smother	
$\delta t = 1/25$	7	28	99	6	28	105	6	28	95	
$\delta t = 1/100$	6	13	46	6	18	57	6	17	56	
$\delta t = 1/400$	5	10	28	6	12	39	6	14	47	
$K = 2^{10}$	$\delta t = 1$	$\delta t = 1/100, \ \mathrm{lvl} = 2$			$\delta t = 1/400$, $ v = 2$			$\delta t = 1/400, \mathrm{lvl} = 3$		
	nonlinear	linear	smother	nonlinear	linear	smother	nonlinear	linear	smother	
TG	6	18	57	6	12	39	6	10	39	
F-cycle(5)	6	20	63	6	12	39	6	11	39	
V-cycle(5)	6	39	150	6	13	47	6	10	39	

 $\nu=10^{-3},\,{\rm Re}=100$ Inflow boundary condition

$$\mathbf{v}_{\mathrm{D}} = 1.5 rac{4y(0.41-y)}{0.41^2} \begin{pmatrix} 1\\ 0 \end{pmatrix}$$

Using different hierarchical starting procedures

C. Lohmann

Numerical examples — FAC Bench 2D-2, time-periodic case

Newton's method, TG, $tol_{rel} = 10^{-4}$, 4 smoothing steps, PCD preconditioner

hier. in time,	$K = 2^{8}$			$K = 2^{9}$			$K = 2^{10}$		
lvl = 2	nonlinear	linear	smother	nonlinear	linear	smother	nonlinear	linear	smother
$\delta t = 1/200$	5	85	338	6	109	443	_	_	_
$\delta t = 1/400$	4	26	98	4	27	101	5	34	130
$\delta t = 1/800$	4	15	48	4	15	54	4	16	57
hier in time	$K = 2^{7}$			$K = 2^8$			$K = 2^9$		
	nonlinea	ar linea	r smother	nonlinea	ar linea	ar smothe	r nonlinea	r linea	r smother
$\delta t = \frac{1}{200}$, $ v = 2$	2	4 5	7 221		5 8	35 33	8	6 109	9 443
$\delta t = \frac{1}{400}$, $ v = 2$	2	4 2	4 87	,	4 2	26 93	8 .	4 2	7 101
$\delta t = \frac{1}{400}$, $ v = 3$	3	4 4	5 172	2	4 5	52 20	4	4 52	2 203
$\delta t = \frac{1}{400},$	$K = 2^7$		$\mathcal{K}=2^8$			$K = 2^9$			
IVI = 3	nonlinear	linear	smother	nonlinear	linear	smother	nonlinear	linear	smother
hier. in time	4	45	172	4	52	204	4	52	203
hier. in space	4	48	186	6	56	218	7	59	232
hier. in st.	6	49	191	6	58	226	7	61	241

 $\nu = 10^{-3}$, Re = 100, $t \in [0, 8]$ Inflow boundary condition

$$\mathbf{v}_{
m D} = 1.5\sin(0.125\pi t)rac{4y(0.41-y)}{0.41^2} egin{pmatrix} 1 \ 0 \end{pmatrix}$$

Using Stokes solution as initial guess

Numerical examples — FAC Bench 2D-3, fixed time interval

Newton's method using adaptive damping strategy exact (top) vs. TG, $\rm tol_{rel}=10^{-4},$ 4 smoothing steps, PCD preconditioner (bottom)

C. Lohmann

On the design of global-in-time Newton-Pressure Schur complement solvers for incompressible flow problems

Summary

- Candidate for global-in-time and K-independent flow solver
 - 1 Preconditioner
 - 2 Multigrid in time
 - 3 Newton's method for linearization

Outlook/challenges

- Coarse grid solver
- Efficient damping strategy for Newton's method
- Improved preconditioner for convection-dominated flows
- Hardware-oriented implementation

Bibliography

- Danieli, F., B. S. Southworth, and A. J. Wathen (2022). "Space-Time Block Preconditioning for Incompressible Flow". In: SIAM Journal on Scientific Computing 44.1, A337–A363.
- Elman, H., V. E. Howle, J. Shadid, R. Shuttleworth, and R. Tuminaro (2006). "Block Preconditioners Based on Approximate Commutators". In: SIAM Journal on Scientific Computing 27.5, pp. 1651–1668.
- Kay, D., D. Loghin, and A. Wathen (2002). "A Preconditioner for the Steady-State Navier-Stokes Equations". In: SIAM Journal on Scientific Computing 24.1, pp. 237–256.
- Lemoine, J. and A. Münch (2021). "A Fully Space-Time Least-Squares Method for the Unsteady Navier-Stokes System". In: *Journal of Mathematical Fluid Mechanics* 23 (4).
- Schäfer, M., S. Turek, F. Durst, E. Krause, and R. Rannacher (1996). "Benchmark Computations of Laminar Flow Around a Cylinder". In: Flow Simulation with High-Performance Computers II: DFG Priority Research Programme Results 1993–1995. Ed. by E. H. Hirschel. Wiesbaden: Vieweg+Teubner Verlag, pp. 547–566.
- Trindade, J. M. F. and J. C. F. Pereira (2004). "Parallel-in-time simulation of the unsteady Navier–Stokes equations for incompressible flow". In: International Journal for Numerical Methods in Fluids 45.10, pp. 1123–1136.