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PART I: EXISTENCE AND UNIQUENESS
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Abstract. The paper deals with a viscous damage model including two damage variables, a
local and a non-local one, which are coupled through a penalty term in the free energy functional.
Under certain regularity conditions for linear elasticity equations, existence and uniqueness of the
solution is proven, provided that the penalization parameter is chosen sufficiently large. Moreover,
the regularity of the unique solution is investigated, in particular the differentiability w.r.t. time.
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1. Introduction. This paper is concerned with the mathematical analysis of a
particular gradient enhanced damage model. The special feature of the model under
consideration is that it contains two damage variables, which are connected through a
penalty term in the free energy functional. For this reason we call our model ’two-field
damage model’. It is inspired by the one presented in [5], which is a popular model
that is widely used in computational mechanics. While one damage variable provides
a local character and carries the non-smooth time evolution, the other one accounts
for nonlocal effects. The goal of this work and the companion paper [20] is to show
that this model is well posed from a mathematical point of view. To be more precise,
we first prove existence and uniqueness for fixed penalty parameter. Afterwards we
turn our attention to the limit analysis for penalty parameter tending to infinity.

From a mathematical perspective the damage model in [5] provides two main draw-
backs. Firstly, it is rate-independent and the corresponding dissipation functional is
unbounded. Secondly, the coupling between damage evolution and balance of mo-
mentum is realized via the less regular one of the two damage variables. To make the
problem amenable to a rigorous mathematical analysis, we therefore slightly modify
the model. In order to guarantee existence and uniqueness of a solution, we add a
viscosity term to the damage evolution, which turns the rate-independent model in [5]
into a rate-dependent one. Moreover, we couple the damage evolution and the balance
of momentum through the more regular damage variable in order to enable the use of
compact embeddings which are essential for the proof of existence. The overall model
arising in this way consists of an elliptic system for nonlocal damage and displacement
field and a non-smooth evolution equation for the local damage variable.

In the present paper, we focus on proving existence and uniqueness for our modified
model for a fixed penalization parameter. The essential tool in this context is the
W 1,p–theory with p > 2 for nonlinear elasticity equations from [14]. In combination
with a classical contraction argument, this allows to derive the existence of a unique
solution for the damage model under consideration. Furthermore, we investigate
the regularity of the solution, in particular regarding its differentiability w.r.t. time.
The results of this paper constitute the basis for the limit analysis for penalization
parameter tending to infinity, which is addressed in the companion paper [20]. The
passage to the limit is performed by means of an equivalent reformulation of the
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model in terms of an energy identity in the spirit of [16]. In the limit both damage
variables coincide, and the limit model is in accordance with the class of classical
partial damage models introduced in [9].
Let us put our work into perspective. Numerous damage models have been addressed
by many authors under different aspects. In [1–3, 8] various viscous damage mod-
els have been analyzed with regard to existence and regularity of solutions. The
concept of viscosity also plays an important role in the mathematical treatment of
rate-independent damage models, as the vanishing viscosity approach is a promi-
nent method to establish solutions for rate-independent problems. We only refer
to [6,15–18,22–24], and the references therein. Various notions of solutions are known
for rate-independent models, such as e.g. global energetic solutions and balanced vis-
cosity (BV) solutions. An overview thereof is given in [21], in the framework of
generalized gradient systems. Under suitable assumptions BV solutions are obtained
via a vanishing viscosity analysis, which has been demonstrated in [16] for a gradient
damage model in the spirit of [9]. However, to the best of our knowledge, a damage
model containing two damage variables has never been investigated so far with regard
to a rigorous mathematical analysis, although these models are frequently used for
numerical simulations, cf. e.g. [19,25,26,28,29]. This concerns the existence and regu-
larity of solutions, let alone the behavior of the damage variables and the displacement
field, as the penalty vanishes.
The paper is organized as follows. In Section 2.1 we introduce the two-field damage
model from [5], which serves as a basis for our damage model. Section 2.2 is devoted
to the modifications of the model from [5], which were already indicated above. We
describe their mathematical motivation in detail and compare our model to the one
from [5]. It turns out that the modified coupling between damage evolution and bal-
ance of momentum is expected to have only little influence in practice, cf. Remark
2.3, whereas the viscous regularization is a standard procedure in computational me-
chanics. Section 2.3 then gives an overview of the variables, operators and function
spaces and collects the notations and standing assumptions. In Section 3.1 we address
the existence and uniqueness for the elliptic system as part of the complete damage
model. Based on these results, Section 3.2 deals with the complete model including the
evolutionary equation for the local damage variable. This turns out to be equivalent
to an operator differential equation, which allows us to apply standard contraction
arguments for the proof of existence and uniqueness. For convenience of the reader,
some results on Nemyczkii operators, which are used in Section 3 are stated in Ap-
pendix A. Sections 4 and 5 are devoted to improve the regularity of the solution. We
first address the higher spatial regularity of the nonlocal damage and prove Lipschitz
continuity of the nonlocal damage as a function of local damage. In Section 5 we
show that the operators mapping the local damage variable to nonlocal damage and
displacement are continuously Fréchet-differentiable. This finally allows to prove that
the overall solution is continuously differentiable w.r.t. time in appropriate spaces.

2. Formulation of the Model and Standing Assumptions. In this section
we first motivate our damage model, by formally presenting the inspiration thereof. In
the second part, we introduce the precise model, while in the third one, the function
spaces and the variables are defined. At the end of the section we state the general
assumptions on the data.

2.1. A Two-Field Gradient Enhanced Damage Model. The model anal-
ysed throughout this paper was inspired by a damage model presented in [5]. Therein,
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two damage variables are introduced, which the authors call ‘local’ and ‘nonlocal’ dam-
age. In the free energy a gradient term and a term, which penalizes the difference
between local and nonlocal damage, are included. To be precise, the energy functional
E : [0, T ]× V ×H1(Ω)× L2(Ω)→ R according to [5] is given by

E(t,u, ϕ, d) :=
1

2

∫
Ω

g(d)Cε(u) : ε(u) dx− 〈`(t),u〉V +
α

2
‖∇ϕ‖22 +

β

2
‖ϕ− d‖22,

where V is an appropriate Sobolev space and ε(u) = 1
2 (∇u+∇u>) is the linearized

strain tensor. We refer to Section 2.3 for more details. The parameters α, β > 0
are weighting parameters for the gradient regularization and for the penalization,
respectively, see [5] for more details.

The model introduced in [5] describes the evolution of damage in an elastic body.
During the process, a time dependent volume and boundary load, denoted by `, is
applied upon the body, which has a part of its boundary clamped. The body is
described by the domain Ω ⊂ RN , on which we impose mild smoothness assumptions,
see Section 2.3. The load induces a certain displacement u : [0, T ] × Ω → RN , as
well as local and nonlocal damage. The latter one is denoted by ϕ : [0, T ] × Ω → R,
while the local damage is called d : [0, T ]× Ω → R. Its values measure the degree of
the material rigidity loss. Therefore, d(t, x) = 0 means that the body is completely
sound, while d(t, x) → ∞ means that the body is so damaged that there is no more
opponence from its side. The function g is supposed to be smooth and it measures
the influence of the damage on the elastic behaviour of the body. For the precise
assumptions on the function g, see Assumption 2.7. Finally, C is the elasticity tensor,
which is assumed to be coercive and bounded, see Assumption 2.8.

At each time point the displacement and the nonlocal damage are supposed to mini-
mize the stored energy, i.e.,

(u(t), ϕ(t)) ∈ arg min
(u,ϕ)∈V×H1(Ω)

E(t,u, ϕ, d(t)). (2.1)

The evolution of local damage in the rate independent case is modeled by the differ-
ential inclusion

− ∂dE(t,u(t), ϕ(t), d(t)) ∈ ∂R1(ḋ(t)) f.a.a. t ∈ (0, T ), (2.2)

where the function R1 denotes the dissipated energy.

Definition 2.1 (Dissipation Functional). The dissipation R1 : L2(Ω) → [0,∞] is
defined as

R1(η) :=

{
r
∫

Ω
η dx, if η ≥ 0 a.e. in Ω,

∞, otherwise,

where r > 0 stands for the fracture toughness of the material.

Thanks to the positive homogeneity of R1, the considered process is rate independent,
which means that the values of the damage do not depend on the rate with which `
changes in time. As a consequence, one ignores inertial effects.

The system (2.1)–(2.2) is equivalent to the damage model [5, (6), (7) and (18)]. Note
that [5, (18)] corresponds to the dual formulation of the evolutionary equation (2.2).
In order to see this, we refer to Section 3.2, where a similar result is proven.
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2.2. Modification of the Model. Because of theoretical reasons, we modify
the energy functional E such that the function g depends on the nonlocal damage
instead of the local damage. This modification is motivated by the fact that the
local damage possesses less regularity. Therefore, we insert ϕ instead of d into the
coefficient function g such that the coupling between the balance of momentum and
the damage evolution is realized with the more regular function ϕ.

Definition 2.2 (Energy Functional). The stored energy E : [0, T ] × V × H1(Ω) ×
L2(Ω)→ R is given by

E(t,u, ϕ, d) :=
1

2

∫
Ω

g(ϕ)Cε(u) : ε(u) dx− 〈`(t),u〉V +
α

2
‖∇ϕ‖22 +

β

2
‖ϕ− d‖22.

Remark 2.3. As the penalty approach aims to minimize the deviation between ϕ and
d, we expect the two models to yield similar results, at least for large values of β. This
is also confirmed by the limit analysis for β →∞ in the companion paper [20], which
shows that both damage variables equal in the limit.

We will also work with a different dissipation functional, namely a viscous regular-
ization of the dissipation functional from Definition 2.1. Although (weak) solvability
results for rate-independent damage processes with non-convex energy functional as in
our case may be proven, one can neither expect the solutions to be unique nor smooth
in time, see [16,21]. To overcome this issue, we apply a viscous regularization, which
is frequently used in the context of damage modelling. This consists of adding an L2-
viscosity term in the dissipation functional, which leads to a rate-dependent process,
since the dissipation loses its positive homogeneity.

Definition 2.4 (Viscous Dissipation Functional). We define Rδ : L2(Ω)→ [0,∞] as

Rδ(η) :=

{
r
∫

Ω
η dx+ δ

2‖η‖
2
2, if η ≥ 0 a.e. in Ω,

∞, otherwise,

where δ > 0 is the viscosity parameter.

To summarize, the viscous ‘two-field damage model’ arising from the above consider-
ations reads:

(u(t), ϕ(t)) ∈ arg min
(u,ϕ)∈V×H1(Ω)

E(t,u, ϕ, d(t)),

0 ∈ ∂Rδ(ḋ(t)) + ∂dE(t,u(t), ϕ(t), d(t))

 (P)

for almost all t ∈ (0, T ) with the initial condition d(0) = d0 a.e. in Ω.

2.3. Notation and Standing Assumptions. Throughout the paper, C de-
notes a generic positive constant. If X and Y are two linear normed spaces, the space
of linear and bounded operators from X to Y is denoted by L(X,Y ). The dual of a
linear normed space X will be denoted by X∗. For the dual pairing between X and
X∗ we write 〈., .〉X and, if it is clear from the context, which dual pairing is meant,
we just write 〈., .〉. By ‖ · ‖p we denote the Lp(Ω)−norm for p ∈ [1,∞] and by (·, ·)2

the L2(Ω)−scalar product. If X is compactly embedded in Y , we write X ↪→↪→ Y ,

and X
d
↪→ Y means that X is dense in Y . In the rest of the paper N ∈ {2, 3} denotes

the spatial dimension. By bold-face case letters we denote vector valued variables
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and vector valued spaces. (Partial) derivatives w.r.t. time are frequently denoted by
a dot.
Definition 2.5. For p ∈ [1,∞] we define the following subspace of W 1,p(Ω):

W 1,p
D (Ω) := {v ∈W 1,p(Ω) : v|ΓD = 0},

where ΓD is a part of the boundary of the domain Ω, see Assumption 2.6 below. The
dual space of W 1,p′

D (Ω) is denoted by W−1,p
D (Ω), where p′ is the conjugate exponent

of p. If p = 2, we abbreviate V := W 1,2
D (Ω).

For convenience of the reader we summarize the often used notations in Table 2.1.

Table 2.1
Functionals, operators and variables

Symbol Meaning Definition
E Stored energy functional Definition 2.2
R1 Dissipation functional Definition 2.1
Rδ Viscous dissipation functional Definition 2.4
Aϕ Linear elliptic operator in (3.10) Definition 3.1
U Solution operator of (3.10) Definition 3.5
B Linear part in (3.21b) Definition 3.11(3.18)
F Nonlinear part in (3.21b) Definition 3.11(3.19)
Φ Solution operator of (3.21b) Definition 3.18
u Displacement
ϕ Nonlocal damage
d Local damage

Assumption 2.6. The domain Ω ⊂ RN , N ∈ {2, 3}, is bounded Lipschitz domain in
the sense of [11, Chap. 1.2]. Its boundary is denoted by Γ and consists of two disjoint
measurable parts ΓN and ΓD such that Γ = ΓN ∪ ΓD. While ΓN is a relatively open
subset, ΓD is a relatively closed subset of Γ with positive measure.
In addition, the set Ω ∪ ΓN is regular in the sense of Gröger, cf. [12]. That is, for
every point x ∈ Γ, there exists an open neighborhood Ux ⊂ RN of x and a bi-Lipschitz
map (a Lipschitz continuous and bijective map with Lipschitz continuous inverse)
Ψx : Ux → RN such that Ψx(x) = 0 ∈ RN and Ψx

(
Ux ∩ (Ω ∪ ΓN )

)
equals one of the

following sets:

E1 :=
{
y ∈ RN : |y| < 1, yN < 0

}
,

E2 :=
{
y ∈ RN : |y| < 1, yN ≤ 0

}
,

E3 := {y ∈ E2 : yN < 0 or y1 > 0} .

A detailed characterization of Gröger-regular sets in two and three spatial dimensions
is given in [13].
Assumption 2.7. The function g : R→ [ε, 1] satisfies

g ∈ C1,1(R) (2.3)

with ε > 0. With a little abuse of notation the Nemystkii-operators associated with
g and g′, considered with different domains and ranges, will be denoted by the same
symbol.
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The coefficient function g measures how the elastic properties of the body are pre-
served depending on the value of the damage. Therefore, from a mechanical point of
view, it would make sense to impose g to be monotonically decreasing. This property
of g is needed, if one aims to show that the nonlocal damage variable admits just
positive values, as the local damage variable does. (In fact, it suffices that g is mono-
tonically decreasing on R− to prove this result.) However, since we do not need this
result in our analysis, we do not require that g is monotonically decreasing.

We emphasize that, due to the condition g ≥ ε, our model constitutes a partial
damage model. By contrast, limϕ→∞ g(ϕ) = 0 is assumed in [5, (2)], which assures
that complete material rigidity loss occures in the case of complete damage. However,
in order to guarantee coercivity of the bilinear form associated with the balance of
momentum in (3.10), we have to impose a positive lower bound on g.

Assumption 2.8. The fourth-order tensor C ∈ L∞(Ω;L(RN×Nsym )) is symmetric and
uniformly coercive, i.e., there is a constant γC > 0 such that

C(x)σ : σ ≥ γC|σ|2 ∀σ ∈ RN×Nsym and f.a.a. x ∈ Ω, (2.4)

where | · | denotes the Frobenius norm on RN×N and (· : ·) the scalar product inducing
this norm.

Assumption 2.9. For the applied volume and boundary load we require

` ∈ C0,1([0, T ];W−1,p
D (Ω)),

where p > 2 is specified below, see Lemma 3.2, Assumption 3.10, and Assumption
3.13.

Moreover, the initial damage is supposed to satisfy d0 ∈ L2(Ω).

3. Existence and Uniqueness. In this section we mainly focus on finding
unique solutions u, ϕ, d to the problem (P) for a given load `. For this purpose, we
first show that the optimization problem in (P) admits solutions for fixed t and d.
However, the existence cannot be demonstrated by the classical direct method of the
calculus of variations, since in the first place the displacement u does not provide
sufficient regularity. Therefore we proceed as follows. Starting from

min
(u,ϕ)∈V×H1(Ω)

E(t,u, ϕ, d) = min
ϕ∈H1(Ω)

min
u∈V
E(t,u, ϕ, d), (3.1)

we first show that, for every ϕ ∈ H1(Ω), the problem minu∈V E(t,u, ϕ, d) admits
a unique solution, denoted by U(t, ϕ), which possesses improved regularity. In the
second part of Section 3.1 this allows us to show existence of solutions for the outer
optimization problem on the right hand side in (3.1). Such solutions will turn out
to satisfy the elliptic system in (3.21) below as necessary optimality system. As this
system is uniquely solvable, if the penalization parameter β is sufficiently large, we
therefore obtain unique solvability for the optimization problem in (P) with solu-
tions characterized by (3.21). After concluding uniqueness, Lipschitz-continuity of
the resulting solution maps is proven. Finally, based on these results, existence and
uniqueness for the evolution equation in (P) is shown in Section 3.2.
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3.1. The Elliptic System. Throughout this section we work with a fixed (t, d) ∈
[0, T ]× L2(Ω) and deal with the optimization problem

min
(u,ϕ)∈V×H1(Ω)

J (u, ϕ), (3.2)

where J : V ×H1(Ω)→ R is defined as

J (u, ϕ) := E(t,u, ϕ, d). (3.3)

Balance of Momentum. As indicated above, we first fix ϕ and investigate the
problem

min
u∈V
J (u, ϕ). (3.4)

For this purpose we need the following

Definition 3.1. For given ϕ ∈ L1(Ω) we define the linear form Aϕ : V → V ∗ as

〈Aϕu, v〉V :=

∫
Ω

g(ϕ)Cε(u) : ε(v) dx.

The operator Aϕ considered with different domains and ranges will be denoted by the
same symbol for the sake of convenience.

Note that the operator Aϕ is well defined in view of Hölder’s inequality and Lemma
A.1.

Lemma 3.2. There exists p > 2 such that, for all p ∈ [2, p] and all ϕ ∈ L1(Ω),
the operator Aϕ : W 1,p

D (Ω) → W−1,p
D (Ω) is continuously invertible. Moreover, there

exists a constant c > 0, independent of ϕ and p, such that

‖A−1
ϕ h‖W 1,p

D (Ω) ≤ c ‖h‖W−1,p
D (Ω) ∀h ∈W−1,p

D (Ω), ∀ϕ ∈ L1(Ω) (3.5)

holds for all p ∈ [2, p].

Proof. The result follows by applying [14, Proposition 1.2]. To this end, we have to
verify [14, Assumption 1.5]. First Assumption 2.6 guarantees the conditions on the
domain from [14, Assumption 1.5(1)]. Moreover, the family of functions {bϕ}ϕ∈L1(Ω),
bϕ : Ω× RN×Nsym → RN×Nsym , defined by

bϕ(x, ε) := g(ϕ(x))C(x)ε. (3.6)

is uniformly bounded and coercive by Assumptions 2.8 and 2.7, which in turn implies
[14, Assumption 1.5(2)]. Thus, [14, Proposition 1.2] gives that Aϕ is continuously
invertible for every ϕ ∈ L1(Ω) and moreover tells us that the norm of the inverse can
be estimated independently of ϕ and p.

Lemma 3.3 (Partial Fréchet-differentiability of E). The functional E is partially
Fréchet differentiable w.r.t. u and d on [0, T ] × V × H1(Ω) × L2(Ω), and its partial
derivatives are given by

∂uE(t,u, ϕ, d)(δu) = 〈Aϕu, δu〉V − 〈`(t), δu〉V , (3.7)
∂dE(t,u, ϕ, d) = β(d− ϕ). (3.8)
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Furthermore, if considered as a mapping in [0, T ] ×W 1,r
D (Ω) ×H1(Ω) × L2(Ω) with

r > 2 for N = 2 and r > 12/5 in case of N = 3, then E is also partially Fréchet-
differentiable w.r.t. ϕ. Its partial derivative reads

∂ϕE(t,u, ϕ, d)(δϕ) =
1

2

∫
Ω

g′(ϕ)Cε(u) : ε(u)δϕ dx

+

∫
Ω

α∇ϕ · ∇δϕ+ β(ϕ− d)δϕ dx.

(3.9)

Proof. The results regarding the partial Fréchet differentiability w.r.t. d and u are
obvious to see. For the latter one, keep in mind that g maps H1(Ω) into L∞(Ω), see
Lemma A.1. Concerning the partial Fréchet differentiability w.r.t. ϕ we first observe
that, for every u ∈W 1,r

D (Ω), the linear functional

L
r
r−2 (Ω) 3 w 7→ 1

2

∫
Ω

wCε(u) : ε(u) dx ∈ R

is bounded on account of Hölder’s inequality with (r − 2)/r + 2/r = 1 and thus
an element of Lr/(r−2)(Ω)∗. Moreover, the conditions on r and Sobolev embeddings
imply H1(Ω) ↪→ Ls(Ω) with some s > r/(r − 2) so that, in view of Lemma A.3, g is
Fréchet-differentiable from H1(Ω) to Lr/(r−2)(Ω). The result then follows from chain
rule.

Proposition 3.4 (Existence and uniqueness of the optimal displacement). For every
ϕ ∈ H1(Ω), the optimization problem (3.4) is convex and admits a unique solution
ū ∈W 1,p

D (Ω), which is characterized by

〈Aϕū,v〉W 1,p′
D (Ω)

= 〈`(t),v〉
W 1,p′

D (Ω)
∀v ∈W 1,p′

D (Ω). (3.10)

Proof. Let ϕ ∈ H1(Ω) be fixed, but arbitrary and define the functional

fϕ : V 3 u 7→ J (u, ϕ) ∈ R,

which is just the objective in (3.4). Thanks to g ≥ ε and the coercivity of C by
Assumption 2.7 and 2.8, Korn’s inequality implies that fϕ is radially unbounded and
strictly convex. Thus the standard direct method of calculus of variations implies that
(3.4) admits a unique solution u ∈ V . Since fϕ is Fréchet-differentiable by Lemma
3.3, we obtain (3.10) as necessary and sufficient optimality condition. Lemma 3.2
finally gives the improved regularity of u.

Definition 3.5 (Solution operator of (3.10)). We define the operator U : [0, T ] ×
H1(Ω)→W 1,p

D (Ω) by

U(t, ϕ) := A−1
ϕ `(t).

As an immediate consequence of Lemma 3.2 and the regularity of ` in Assumption
2.9 one obtains the following

Corollary 3.6. There exists a constant c > 0, independent on t and ϕ such that

‖U(t, ϕ)‖W 1,p
D (Ω) ≤ c ∀ (t, ϕ) ∈ [0, T ]×H1(Ω).
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Proposition 3.7 (Lipschitz continuity of U). Let r ∈
[
2p/(p−2),∞

]
be given, where

p > 2 is the integrability exponent from Lemma 3.2. Then there exists L > 0 such
that for all ϕ1, ϕ2 ∈ H1(Ω) ∩ Lr(Ω) and all t1, t2 ∈ [0, T ] it holds

‖U(t1, ϕ1)− U(t2, ϕ2)‖W 1,π
D (Ω) ≤ L(|t1 − t2|+ ‖ϕ1 − ϕ2‖r), (3.11)

where 1/π = 1/p+ 1/r.
Proof. We abbreviate ui := U(ti, ϕi), i = 1, 2. Subtracting the equations associated
with ui, i = 1, 2, yields

Aϕ1(u1 − u2) = (Aϕ2 −Aϕ1)u2 + `(t1)− `(t2) in W−1,p
D (Ω). (3.12)

For given µ, ρ, τ ≥ 1 such that 1/µ = 1/ρ+ 1/τ , Hölder’s inequality and Assumption
2.8 imply

‖Cε(u) : ε(w)‖µ ≤ C‖u‖W 1,ρ
D (Ω)‖w‖W 1,τ

D (Ω) ∀u ∈W 1,ρ
D (Ω),w ∈W 1,τ

D (Ω), (3.13)

We further apply Hölder’s inequality with 1/π′+1/r+1/p = 1 to the first term on the
right hand side in (3.12). This gives together with Lemma A.1, (3.13), and Corollary
3.6 the following estimate

‖(Aϕ2
−Aϕ1

)u2‖W−1,π
D (Ω) ≤ C ‖g(ϕ1)− g(ϕ2)‖r ‖u2‖W 1,p

D (Ω)

≤ C ‖ϕ1 − ϕ2‖r.
(3.14)

Now, since 1/r ≤ (p − 2)/(2p), it holds π ∈ [2, p]. Thus, we are allowed to apply
estimate (3.5) to Aϕ1 , when considered as an operator from W 1,π

D (Ω) to W−1,π
D (Ω).

Therewith we deduce from (3.12) and (3.14)

‖u1 − u2‖W 1,π
D (Ω) ≤ C ‖ϕ1 − ϕ2‖r + ‖`(t1)− `(t2)‖W−1,π

D (Ω)

≤ L (‖ϕ1 − ϕ2‖r + |t1 − t2|),

where we used ` ∈ C0,1([0, T ];W−1,π
D (Ω)) for the last inequality. Note that the

constant L > 0 is independent of (ti, ϕi).
We finish the discussion concerning the optimal displacement with a result, which is
essential for proving the existence of minimizers for (3.1).
Lemma 3.8. Let {tn, ϕn} ⊂ [0, T ]×H1(Ω) and (t, ϕ) ∈ [0, T ]×H1(Ω) be given such
that (tn, ϕn) → (t, ϕ) in R × L1(Ω). Then it holds U(tn, ϕn) → U(t, ϕ) in W 1,s

D (Ω)
as n→∞ for every s ∈ [2, p).
Proof. We again abbreviate un := U(tn, ϕn) and u := U(t, ϕ). By subtracting the
equations associated with un and u we obtain for all n ∈ N

Aϕ(u− un) = (Aϕn −Aϕ)un + `(t)− `(tn) in W−1,p
D (Ω). (3.15)

Completely analogously to (3.14), one derives the estimate

‖(Aϕn −Aϕ)un‖W−1,s
D (Ω) ≤ C ‖g(ϕn)− g(ϕ)‖%‖un‖W 1,p

D (Ω), (3.16)

with % ∈ [1,∞) such that 1/%+ 1/p+ 1/s′ = 1. Notice that the existence of % is due
to 1/s′ ∈ [1/2, 1/p′). Lemma A.2, Corollary 3.6, Assumption 2.9 and (3.16) now lead
to

‖(Aϕn −Aϕ)un + `(t)− `(tn)‖W−1,s
D (Ω) → 0 as n→∞.

In view of (3.15) applying (3.5) toAϕ : W 1,s
D (Ω)→W−1,s

D (Ω) then gives the assertion.
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Nonlocal Damage. Next we turn to the outer optimization problem on the
right hand side of (3.1). For convenience of the reader let us recall the definition of
J : V ×H1(Ω)→ R for fixed d and t:

J (u, ϕ) =
1

2

∫
Ω

g(ϕ)Cε(u) : ε(u) dx− 〈`(t),u〉V +
α

2
‖∇ϕ‖22 +

β

2
‖ϕ− d‖22.

Proposition 3.9 (Existence of the optimal nonlocal damage). The optimization
problem

min
ϕ∈H1(Ω)

J (U(t, ϕ), ϕ) (3.17)

admits at least one solution, and therefore (3.2) possesses a solution as well.
Proof. By means of Definitions 3.1 and 3.5, the objective in (3.17) can be rewritten
as

f : H1(Ω)→ R, f(ϕ) := J (U(t, ϕ), ϕ) = −1

2
〈`(t),U(t, ϕ)〉+ α

2
‖∇ϕ‖22 +

β

2
‖ϕ− d‖22.

The existence of solutions for (3.17) now follows by classical arguments of the direct
method of variational calculus. To this end, notice that f is radially unbounded
because of Corollary 3.6. Moreover, it is weakly lower semicontinuous. To see this,
consider a sequence {ϕn} ⊂ H1(Ω) with ϕn ⇀ ϕ in H1(Ω). The compact embedding
H1(Ω) ↪→↪→ L1(Ω) and Lemma 3.8 then imply

U(t, ϕn)→ U(t, ϕ) in V.

This together with the weak lower semicontinuity of norm squares gives that f is
indeed weakly lower semicontinuous. Now a standard argument yields that (3.17)
admits solutions and as immediate consequence so does (3.2), cf. (3.1).
Next we concentrate on deriving necessary optimality conditions for the optimal non-
local damage. For this purpose one has to differentiate the function J w.r.t. ϕ. This
means that one has to apply Lemma 3.3, which can be done only under the following
additional
Assumption 3.10. From now on we assume that, in case of N = 3, the assertion
of Lemma 3.2 holds for all ϕ ∈ H1(Ω) with p > 12/5, i.e., for every ϕ ∈ H1(Ω), the
operator Aϕ : W 1,p

D (Ω) → W−1,p
D (Ω) is continuously invertible for some p > 12/5

and an estimate analogous to (3.5) holds.
We emphasize that one can go without this additional assumption, if one replaces
the H1-seminorm in the energy functional in Definition 2.2 by a H3/2-seminorm, see
Remark 3.21 below for more details. The following definition will be useful in the
sequel:
Definition 3.11 (The linear and nonlinear part of (3.21b)). Suppose that As-
sumption 3.10 is fulfilled. Then we define the mappings B : H1(Ω) → H1(Ω)∗ and
F : [0, T ]×H1(Ω)→ H1(Ω)∗ by

〈Bϕ,ψ〉H1(Ω) :=

∫
Ω

α∇ϕ · ∇ψ + βϕψ dx, φ, ψ ∈ H1(Ω), (3.18)

〈F (t, ϕ), ψ〉H1(Ω) :=
1

2

∫
Ω

g′(ϕ)Cε(U(t, ϕ)) : ε(U(t, ϕ))ψ dx,

t ∈ [0, T ], ϕ, ψ ∈ H1(Ω).

(3.19)
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We emphasize that F is well defined. To see this first note that C ∈ L∞(Ω;L(RN×Nsym ))
and g′ ∈ L∞(R) by Assumptions 2.8 and 2.7. Moreover, Sobolev embeddings imply
H1(Ω) ↪→ Ls(Ω) with s = 6 in case of N = 3 and s < ∞ for N = 2. Therefore,
the assertion directly follows from Lemma 3.2 in case of N = 2, whereas one needs
Assumption 3.10 for N = 3.

With a little abuse of notation, the operators B and F considered with different do-
mains and ranges will be denoted by the same symbol.

Proposition 3.12. Under Assumption 3.10 every local minimizer (ū, ϕ̄) of (3.2)
fulfills ū = U(t, ϕ̄) ∈W 1,p

D (Ω) and

Bϕ̄+ F (t, ϕ̄) = βd in H1(Ω)∗, (3.20)

which is equivalent to the following optimality system:

−div g(ϕ̄)Cε(ū) = `(t) in W−1,p
D (Ω) (3.21a)

−α∆ϕ̄+ β ϕ̄+
1

2
g′(ϕ̄)C ε(ū) : ε(ū) = βd in H1(Ω)∗, (3.21b)

where div : Lp(Ω;RN×Nsym )→W−1,p
D (Ω) denotes the distributional vector-valued diver-

gence, i.e.,

〈divσ,v〉 := −
∫

Ω

σ : ε(v) dx, σ ∈ Lp(Ω;RN×Nsym ), v ∈W 1,p′

D (Ω), (3.22)

and ∆ : H1(Ω)→ H1(Ω)∗ is the distributional Laplace operator, respectively.

Proof. The local optimality of (ū, ϕ̄) in particular implies that ū is a local minimizer
of

min
u∈V
J (u, ϕ̄),

which is a convex problems according to Proposition 3.4. Therefore ū is a global
minimizer of this problem, and Proposition 3.4 yields ū = U(t, ϕ̄).
Similarly, the local optimality of (ū, ϕ̄) also implies that ϕ̄ is a local minimizer of

min
ϕ∈H1(Ω)

f̄(ϕ) := J (ū, ϕ). (3.23)

Thanks to the improved regularity of ū by Proposition 3.4 in case of N = 2 and
Assumption 3.10 for N = 3, respectively, one can differentiate f̄ on H1(Ω) by means
of Lemma 3.3. This gives in turn f̄ ′(ϕ̄) = ∂ϕJ (ū, ϕ̄) = 0 as necessary optimality
condition for a local minimizer of (3.23). In view of (3.9), Definition 3.11, and ū =
U(t, ϕ̄), this is equivalent to (3.20). The equivalence to (3.21) directly follows from
the definitions of Aϕ̄, B, and F .
From Propositions 3.9 and 3.12 we know that (3.21b) has at least one solution. In the
following we aim for showing that this solution is unique, which will give in turn the
unique solvability of (3.2). Unfortunately, Assumption 3.10 does not suffice to prove
the uniqueness of solutions to (3.21). In order to show strong monotonicity of the
operator on the left hand side of (3.21b), we additionally need that H1(Ω) ↪→ Lr(Ω)
with r > 2p/(p− 2), see proof of Lemma 3.15 below for more details. This motivates
the first part of the following
Assumption 3.13. From now on we require the following:
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1. For every ϕ ∈ H1(Ω), the assertion of Lemma 3.2, including the a priori
estimate (3.5), holds for some p > N .

2. The penalization parameter β is sufficiently large, depending only on the given
data, see (3.35) below.

Note that Assumption 3.13.1 is automatically fulfilled if N = 2, see Lemma 3.2. In
case of N = 3 this assumption is guaranteed by imposing additional conditions on the
data, see Remark 3.20 below for more details. Moreover, as in case of Assumption
3.10 before, Assumption 3.13.1 is not needed, if one replaces the H1-seminorm in
the energy functional by a H3/2-seminorm, see Remark 3.21 for details. Assumption
3.13.2 is not restrictive at all, since β is a penalization parameter, which is supposed
to be large anyway and will be send to ∞ in the companion paper [20]. We point out
that the dependency of β on the given data does not affect the rest of the analysis.

We start the discussion of uniqueness with a Lipschitz-continuity result concerning
the mapping F . For later purpose, we prove a slightly more general result.

Lemma 3.14. Let r ≥ 2p/(p − 2) and 1/s + 2/p + 1/r = 1. Under Assumption
3.13.1 the following estimate holds for all t1, t2 ∈ [0, T ], ϕ1, ϕ2 ∈ H1(Ω) ∩ Lr(Ω) and
ψ ∈ Ls(Ω):

|〈F (t1, ϕ1)− F (t2, ϕ2), ψ〉| ≤ C
(
‖ϕ1 − ϕ2‖r + |t1 − t2|

)
‖ψ‖s,

with a constant C > 0 independent of (ti, ϕi)i=1,2 and ψ.

Proof. We again denote ui := U(ti, ϕi) for i = 1, 2. The definition of F in (3.19)
implies

|〈F (t1, ϕ1)− F (t2, ϕ2), ψ〉|

≤
∫

Ω

∣∣(g′(ϕ1)− g′(ϕ2))Cε(u1) : ε(u1)ψ
∣∣ dx

+

∫
Ω

∣∣g′(ϕ2)[Cε(u1) : ε(u1)− Cε(u2) : ε(u2)]ψ
∣∣ dx.

(3.24)

We discuss the two terms on the right hand side of (3.24) separately:

(i) In view of (3.13) and Corollary 3.6 we have

‖Cε(u1) : ε(u1)‖ p
2
≤ c, (3.25)

where c > 0 is a constant independent on (t1, ϕ1). In addition, the function g′ :
Lr(Ω) → Lr(Ω) is Lipschitz continuous according to Lemma A.1. Thus applying
Hölder’s inequality with 1/r+ 1/s+ 2/p = 1 for the first term on the right hand side
in (3.24) gives∫

Ω

∣∣(g′(ϕ1)− g′(ϕ2))Cε(u1) : ε(u1)ψ
∣∣ dx ≤ C1‖ϕ1 − ϕ2‖r ‖ψ‖s. (3.26)

(ii) Define π and ω through 1/π = 1/p + 1/r and 1/ω = 1/p + 1/π. Then (3.13),
Corollary 3.6, and Proposition 3.7 result in

‖Cε(u1) : ε(u1)− Cε(u2) : ε(u2)‖ω = ‖C[ε(u1) + ε(u2)] : [ε(u1)− ε(u2)]‖ω
≤ C‖u1 + u2‖W 1,p

D (Ω)‖u1 − u2‖W 1,π
D (Ω)

≤ C(‖ϕ1 − ϕ2‖r + |t1 − t2|).
(3.27)
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Then Hölder’s inequality with 1/ω + 1/s = 1, together with Assumption 2.7, yields∫
Ω

∣∣g′(ϕ2)[Cε(u1) : ε(u1)− Cε(u2) : ε(u2)]ψ
∣∣ dx

≤ C(‖ϕ1 − ϕ2‖r + |t1 − t2|)‖ψ‖s.
(3.28)

Inserting (3.26) and (3.28) in (3.24) finally gives the assertion.

From p > N it follows that

r :=
2p

p− 2
∈
(

2,
2N

N − 2

)
, (3.29)

and therefore Sobolev embeddings give H1(Ω) ↪→ Lr(Ω). Moreover, by construction,
this r satisfies 2/r + 2/p = 1. Thus Lemma 3.14 is applicable with r = s yielding the
estimate

|〈F (t1, ϕ1)− F (t2, ϕ2), ψ〉| ≤ C
(
‖ϕ1 − ϕ2‖ 2p

p−2
+ |t1 − t2|

)
‖ψ‖ 2p

p−2

∀ϕ1, ϕ2, ψ ∈ H1(Ω).
(3.30)

Lemma 3.15. Under Assumption 3.13.1 it holds

‖ϕ‖22p
p−2

≤ k ‖ϕ‖22 + c̃(k) ‖ϕ‖2H1(Ω) ∀ϕ ∈ H1(Ω) and ∀ k > 0,

where c̃ : R+ → R+ is a monotonically decreasing function, which tends to 0 as
k →∞.

Proof. For convenience we again set r := 2p/(p − 2). First note that, because of
Assumption 3.13, there is an index % such that r ∈ (2, %) and H1(Ω) ↪→ L%(Ω). For
instance take % = (2p + 1)/(p − 2) for N = 2 and % = 6 in case of N = 3, cf. (3.29).
Therefore there exists θ ∈ (0, 1) such that 1/r = θ/2 + (1− θ)/% so that Lyapunov’s
inequality leads to

‖ϕ‖2r ≤ ‖ϕ‖2θ2 ‖ϕ‖2−2θ
% ≤ C‖ϕ‖2θ2 ‖ϕ‖2−2θ

H1(Ω). (3.31)

Thanks to the generalized Young inequality, (3.31) can be continued as

‖ϕ‖2r ≤ k ‖ϕ‖22 +
(vk)1−w

w
‖ϕ‖2H1(Ω) ∀ k > 0, (3.32)

where v = 1/θ and w = 1/(1− θ). Since 1 < v,w <∞,

c̃(k) :=
(vk)1−w

w

is monotonically decreasing and c̃(k)↘ 0 as k ↗∞.

Lemma 3.16 (Strong monotonicity of B +F ). Under Assumption 3.13 the following
estimate holds for all t1, t2 ∈ [0, T ] and all ϕ1, ϕ2 ∈ H1(Ω), ϕ1 6= ϕ2,

〈B(ϕ1 − ϕ2) + F (t1, ϕ1)− F (t2, ϕ2), ϕ1 − ϕ2〉H1(Ω)

‖ϕ1 − ϕ2‖H1(Ω)
≥ C1‖ϕ1−ϕ2‖H1(Ω)−C2|t1−t2|,

where C1, C2 > 0 are constants independent of (ti, ϕi)i=1,2.
13



Proof. Let (ti, ϕi)i=1,2 ∈ [0, T ] ×H1(Ω) be arbitrary, but fixed with ϕ1 6= ϕ2. Then
(3.30) and Lemma 3.15 yield that, for all k > 0,

|〈F (t1, ϕ1)− F (t2, ϕ2), ϕ1 − ϕ2〉H1(Ω)|
≤ C

(
k‖ϕ1 − ϕ2‖22 + c̃(k)‖ϕ1 − ϕ2‖2H1(Ω) + |t1 − t2| ‖ϕ1 − ϕ2‖H1(Ω)

)
.

(3.33)

Using the definition of B in (3.18) we infer from (3.33)

〈B(ϕ1 − ϕ2) + F (t1, ϕ1)− F (t2, ϕ2), ϕ1 − ϕ2〉
‖ϕ1 − ϕ2‖H1(Ω)

≥ (α− C c̃(k))‖ϕ1 − ϕ2‖H1(Ω) − C|t1 − t2|+ (β − α− Ck)
‖ϕ1 − ϕ2‖22
‖ϕ1 − ϕ2‖H1(Ω)

.

(3.34)

Keeping in mind the characteristics of c̃, we can choose k > 0 large enough such that
C1 := α− C c̃(k) > 0. Furthermore, if

β > α+ C k, (3.35)

cf. Assumption 3.13.2, then (3.34) gives the assertion with C1 = α − C c̃(k) and
C2 = C. Note that value of k, and thus the constant C1 and the threshold for β, only
depends on the given data, see the proof of Lemma 3.15.

Theorem 3.17 (Unique solvability of (3.2)). Under Assumption 3.13 the optimiza-
tion problem (3.2) admits a unique solution, which is uniquely characterized by (3.20)
and (3.21), respectively.

Proof. Let (ti, di) ∈ [0, T ] × L2(Ω), i = 1, 2, be given and let ϕi denote solutions of
(3.20) associated with (ti, di), i = 1, 2. Note that the existence thereof is ensured by
Propositions 3.9 and 3.12. By assuming ϕ1 6= ϕ2, we obtain from Lemma 3.16 and
Cauchy Schwarz inequality the estimate

‖ϕ1 − ϕ2‖H1(Ω)

≤ C
( 〈B(ϕ1 − ϕ2) + F (t1, ϕ1)− F (t2, ϕ2), ϕ1 − ϕ2〉H1(Ω)

‖ϕ1 − ϕ2‖H1(Ω)
+ |t1 − t2|

)
= C

(
β

(d1 − d2, ϕ1 − ϕ2)2

‖ϕ1 − ϕ2‖H1(Ω)
+ |t1 − t2|

)
≤ C

(
‖d1 − d2‖2 + |t1 − t2|

)
.

(3.36)

Note that the estimate (3.36) holds trivially also for ϕ1 = ϕ2. If we set t1 = t2 and
d1 = d2, then (3.36) implies uniqueness for (3.20). As this equation constitutes the
necessary optimality condition for (3.2) by Proposition 3.12, we deduce that (3.2) is
uniquely solvable, too, and that every local minimizer must be a global minimizer.
As already seen in Proposition 3.12, (3.20) is equivalent to (3.21), which finally gives
the assertion.

The unique solvability of (3.20) leads to the following

Definition 3.18 (Solution operator of (3.20)). Let Assumption 3.13 be fulfilled. We
define the operator Φ : [0, T ]× L2(Ω)→ H1(Ω) as

Φ(t, d) :=
(
B + F (t, ·)

)−1
(βd).
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As a result of (3.36) we have that, under Assumption 3.13, there exists a constant
K > 0 such that

‖Φ(t1, d1)− Φ(t2, d2)‖H1(Ω) ≤ K(‖d1 − d2‖2 + |t1 − t2|), (3.37)

holds true for all t1, t2 ∈ [0, T ] and d1, d2 ∈ L2(Ω), i.e., the operator Φ is globally
Lipschitz continuous.

We conclude this section with some remarks concerning the way we proceeded to solve
the optimization problem in (P) and regarding the assumptions we made on p.

Remark 3.19. Note that the improved regularity of the displacement is necessary
to prove the existence of solutions for the optimization problem in (P). Otherwise,
one cannot demonstrate the continuity of the operator U(t, ·), which is crucial for
proving the existence of solutions for (3.17). Moreover, in view of Lemma 3.3, J is
differentiable with respect to ϕ only on [0, T ]×W 1,p

D (Ω)×H1(Ω)×L2(Ω). Therefore,
the improved regularity of the displacement is also essential for deriving necessary
optimality conditions for the nonlocal damage.

Remark 3.20. The existence of a p fulfilling Assumption 3.13.1 is guaranteed by the
results of [14], provided that the domain is smooth enough and the difference between
the boundedness and monotonicity constants of the stress strain relation is sufficiently
small. In our case the stress strain relation is given by (3.6) and thus the assertion
is ensured, if the values ε γC and ‖C‖∞ are close enough to each other, see the proof
of Lemma 3.2 and [14, Assumption 1.5.(2)] for more details. Recall that, in the
two-dimensional case, Assumption 3.13.1 is automatically fulfilled.

Remark 3.21. Alternatively to Assumption 3.13.1 one can proceed as in [16] and use
the Sobolev–Slobodeckij space H3/2(Ω) for the nonlocal damage in three dimensions.
To this end one replaces the gradient term in the energy functional by a seminorm on
H3/2(Ω), cf. [16, (2.4b)]. The advantage thereof is that H3/2(Ω) ↪→ Lr(Ω) for every
r ∈ [1,∞) for both, the two- and three-dimensional case. A close inspection of the
preceding analysis shows that the embedding H1(Ω) ↪→ Lr(Ω) for all r <∞ in case of
N = 2 is the key ingredient to prove the existence and uniqueness result for (3.2) with-
out any additional assumptions on the integrability exponent p in the two-dimensional
case. Thus, working with H3/2(Ω) instead of H1(Ω) in three dimensions allows to do
the same in case of N = 3 so that there would be no need for making extra assumptions
on p. However, we chose not to work with H3/2(Ω), as the bilinear form associated
with the H3/2(Ω)-seminorm is difficult to realize in numerical computations.

3.2. Evolutionary Problem as Operator Differential Equation. This sec-
tion is devoted to prove existence and uniqueness for our complete damage model (P).
Throughout the section Assumption 3.13 is supposed to hold. Then, in view of the
results of Section 3.1, problem (P) can be reformulated as

− ∂dE(t,u(t), ϕ(t), d)
∣∣∣
d=d(t)

∈ ∂Rδ(ḋ(t)) f.a.a. t ∈ (0, T ), d(0) = d0, (3.38)

where u(t) = U(t, ϕ(t)) and ϕ(t) = Φ(t, d(t)). Due to (3.8), the evolutionary equation
(3.38) reads

− β(d(t)− ϕ(t)) ∈ ∂Rδ(ḋ(t)) f.a.a. t ∈ (0, T ), d(0) = d0. (3.39)
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We approach (3.39) by showing that it is equivalent to the following operator differ-
ential equation, which can be solved by standard arguments.
Lemma 3.22 (Operator differential equation). The evolutionary equation (3.39) is
equivalent to

ḋ(t) =
1

δ
max{−β(d(t)− ϕ(t))− r, 0} f.a.a. t ∈ (0, T ), d(0) = d0. (3.40)

Proof. Since L2(Ω) 3 v 7→ ‖v‖22 is smooth, the sum rule for convex subdifferentials
yields ∂Rδ(η) = ∂R1(η) + δη for all η ∈ L2(Ω). As R1 is positively homogeneous,
there holds

ξ ∈ ∂R1(η) ⇐⇒

{
(ξ, η)2 = R1(η),

(ξ, v)2 ≤ R1(v) ∀ v ∈ L2(Ω).
(3.41)

Thus, we can rewrite (3.39) as(
− β(d(t)− ϕ(t))− δḋ(t), ḋ(t)

)
2

= R1(ḋ(t)), (3.42a)(
− β(d(t)− ϕ(t))− δḋ(t), v

)
2
≤ R1(v) ∀ v ∈ L2(Ω), (3.42b)

for almost all t ∈ (0, T ). In view of Definition 2.1 and fundamental lemma of the
calculus of variations we have

(3.42b) ⇐⇒ −β(d(t)−ϕ(t))− δḋ(t)− r ≤ 0 a.e. in Ω, f.a.a. t ∈ (0, T ). (3.43)

From the evolution equation (3.39) we know that ḋ(t) ∈ dom(R1), i.e., ḋ(t) ≥ 0 a.e.
in Ω and f.a.a. t ∈ (0, T ). Note that again by means of Definition 2.1 the equality
(3.42a) is equivalent to(

−β(d(t)− ϕ(t))− δḋ(t)− r︸ ︷︷ ︸
≤0

, ḋ(t)︸︷︷︸
≥0

)
2

= 0,

for almost all t ∈ (0, T ). Therefore, the system (3.42) is equivalent to the following
complementarity system

0 ≤ δḋ(t) ⊥ −β(d(t)− ϕ(t))− r − δḋ(t) ≤ 0 a.e. in Ω, f.a.a. t ∈ (0, T ), (3.44)

where we used δ > 0 for the left inequality. Since the max-function is a well known
complementarity function, (3.44) gives the assertion.
Remark that from the proof of Theorem 3.22 one can deduce that (3.38) is equivalent
to the complementarity system (3.44). In a complete analogous way one can show that
the evolution equation (2.2) is equivalent to the complementarity system in [5, (18)],
as already mentioned at the end of Section 2.1. For this purpose we refer to [5, (13),
(19) and (20)].
Theorem 3.23 (Existence and uniqueness for the evolutionary equation). Under As-
sumption 3.13 there exists a unique function d ∈ C1([0, T ];L2(Ω)) satisfying (3.38).
Proof. Lemma 3.22 tells us that (3.38) is equivalent to the operator differential equa-
tion given by (3.40). We intend to solve the latter one by means of the Picard-Lindelöf
theorem. For this purpose, we define the function f : [0, T ]× L2(Ω)→ L2(Ω) as

f(t, d) :=
1

δ
max{−β(d− Φ(t, d))− r, 0}. (3.45)
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Due to the Lipschitz continuity of max : L2(Ω)→ L2(Ω) with constant 1 and (3.37),
it holds for all (t1, d1), (t2, d2) ∈ [0, T ]× L2(Ω) that

‖f(t1, d1)− f(t2, d2)‖2 ≤
β

δ

(
‖Φ(t1, d1)− Φ(t2, d2)‖H1(Ω) + ‖d1 − d2‖2

)
≤ β

δ
(K + 1) ‖d1 − d2‖2 +

β

δ
K |t1 − t2|,

where K is the Lipschitz constant of Φ. Therefore, f is globally Lipschitz con-
tinuous, and we can conclude with [7, Theorem 7.2.6] that there exists a unique
d ∈ C1([0, T ];L2(Ω)) satisfying

ḋ(t) = f(t, d(t)) ∀ t ∈ [0, T ], d(0) = d0,

which in view of (3.45) gives the assertion.

Note that the continuity of ḋ w.r.t. time implies Lipschitz continuity of d w.r.t. time.
The latter one readily transfers to ϕ and u, as explained in the sequel. First of all,
(3.37) and the Lipschitz continuity of d imply the Lipschitz continuity of ϕ. Due to
H1(Ω) ↪→ Lr(Ω) with r <∞ and r = 6 for N = 2, respectively N = 3, the Lipschitz
continuity of u then follows from Proposition 3.7 with π ∈ (2, p) for N = 2 and
π = 6p/(p+ 6) > 2 for N = 3 so that u ∈ C0,1([0, T ];W 1,π

D (Ω)). The time-regularity
of ϕ and u can be further improved, as we will see in Section 5.

To summarize our results so far, we have proven that, under Assumption 3.13, there
exists a unique solution (u, ϕ, d) of our viscous two-field gradient damage model in (P)
satisfying d ∈ C1([0, T ];L2(Ω)), ϕ ∈ C0,1([0, T ];H1(Ω)), u ∈ C0,1([0, T ];W 1,π

D (Ω)),
u(t) ∈W 1,p

D (Ω) f.a.a. t ∈ [0, T ], and the following system of differential equations:

−div g(ϕ(t))Cε(u(t)) = `(t) in W−1,p
D (Ω) (3.46a)

−α∆ϕ(t) + β ϕ(t) +
1

2
g′(ϕ(t))C ε(u(t)) : ε(u(t)) = βd(t) in H1(Ω)∗ (3.46b)

ḋ(t)− 1

δ
max{−β(d(t)− ϕ(t))− r, 0} = 0, d(0) = d0. (3.46c)

4. Improved Regularity and Lipschitz Continuity of the Nonlocal Dam-
age. In this section we show that the nonlocal damage possesses higher regularity and
satisfies a corresponding Lipschitz condition. We start with the following result on
the regularity of ϕ.

4.1. Improved Regularity. Throughout this section we work with an arbitrary,
but fixed (t, d) ∈ [0, T ]× L2(Ω) and use for simplicity the notations ϕ := Φ(t, d) and

f := β(d− ϕ) + αϕ− F (t, ϕ) ∈ H1(Ω)∗. (4.1)

Definition 4.1. We define the operator −∆ + I : H1(Ω)→ H1(Ω)∗ by

〈(−∆ + I)v, w〉H1(Ω) :=

∫
Ω

(∇v · ∇w + v w)dx, v, w ∈ H1(Ω).

The operator −∆ + I considered with different domains and ranges will be denoted by
the same symbol for the sake of simplicity.
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We employ a classical boot strapping argument to verify the improved regularity. For
this purpose consider the equation

(−∆ + I)v =
1

α
f in H1(Ω)∗. (4.2)

By construction of f and Theorem 3.17, ϕ is the unique solution of this equation.
Then, taking advantage of the fact that the linear form f possesses higher regularity
than H1(Ω)∗, we show by means of [12, Theorem 3] that ϕ ∈ W 1,q(Ω) with some
q > 2.
Lemma 4.2. Under Assumption 3.13 it holds f ∈W 1,%′(Ω)∗, where

1

%
:= max

{2

p
− 1

N
,

1

2
− 1

N

}
<

1

N
. (4.3)

Proof. By means of Sobolev embeddings we have W 1,%′(Ω) ↪→ L
N%′
N−%′ (Ω). In view of

(4.1), (3.19), and (3.25), one obtains

|〈f, ψ〉| ≤
(
‖β(d− ϕ) + αϕ‖2 + ‖g′(ϕ)Cε(U(t, ϕ)) : ε(U(t, ϕ))‖ p

2

)
‖ψ‖ N%′

N−%′

≤ C‖ψ‖W 1,%′ ∀ψ ∈W 1,%′(Ω),

which implies f ∈ W 1,%′(Ω)∗, provided that Hölder’s inequality is applicable. The
latter is ensured, if

2

p
+
N − %′

N%′
≤ 1⇐⇒ 2

p
− 1

N
≤ 1

%
and

1

2
+
N − %′

N%′
≤ 1⇐⇒ 1

2
− 1

N
≤ 1

%
,

which is guaranteed by (4.3). From Assumption 3.13.1 and N < 4 we finally deduce
% > N .
Theorem 4.3 (Improved regularity of Φ(t, d)). Suppose that Assumption 3.13 holds
true. Then, there exists a q > 2 such that Φ(t, d) ∈ W 1,q(Ω) for every (t, d) ∈
[0, T ]× L2(Ω).
Proof. Thanks to Assumption 2.6 the domain Ω is a Lipschitz domain in the sense
of [11, Chap. 1.2]. From [13, Theorem 5.2, 5.4] we thus deduce that Ω̄ is regular in the
sense of Gröger. Thus, by virtue of [12, Theorem 3], there exists qΩ̄ > 2 such that for
all ν ∈ [2, qΩ̄] the operator −∆ + I : W 1,ν(Ω)→W 1,ν′(Ω)∗ is continuously invertible.
Let us set q := min{qΩ̄, %}. Then, as ϕ solves (4.2), we deduce from Lemma 4.2 that

‖ϕ‖W 1,q(Ω) ≤
1

α
‖(−∆ + I)−1‖L(W 1,q′ (Ω)∗,W 1,q(Ω)) ‖f‖W 1,q′ (Ω)∗ <∞,

which is just the assertion.

4.2. Improved Lipschitz Continuity. As a consequence of the higher regu-
larity of the solution of (3.20) one expects that Φ satisfies a corresponding Lipschitz
condition. For this reason, we now focus in the following on provingW 1,q(Ω)-Lipschitz
continuity for the solution map of (3.20). For the rest of this section, we suppose that
Assumption 3.13 holds and we let (ti, di) ∈ [0, T ] × L2(Ω) be arbitrary, but fixed
and ϕi := Φ(ti, di) ∈ W 1,q(Ω), where i = 1, 2. Similarly to (4.1), we introduce the
following abbreviation

ι :=
1

α

(
β(d1 − d2)− (β − α)(ϕ1 − ϕ2)− (F (t1, ϕ1)− F (t2, ϕ2))

)
. (4.4)
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Note that ι ∈ W 1,%′(Ω)∗ on account of Lemma 4.2. By construction the difference
ϕ1 − ϕ2 solves

(−∆ + I)v = ι in H1(Ω)∗

and analogously to the preceding section, it follows

‖ϕ1 − ϕ2‖W 1,ω(Ω) ≤ ‖(−∆ + I)−1‖L(W 1,ω′ (Ω)∗,W 1,ω(Ω))‖ι‖W 1,ω′ (Ω)∗

∀ 2 ≤ ω ≤ q = min{qΩ̄, %},
(4.5)

where qΩ̄ is the number given by [12, Theorem 3], see the proof of Theorem 4.3, and
% is given by (4.3).

However, the desired Lipschitz continuity condition cannot be directly proven by set-
ting ω = q in (4.5), as one cannot directly derive an estimate of the form ‖ι‖W 1,q′ (Ω)∗ ≤
C(‖d1−d2‖2 + |t1− t2|). Instead we will apply a finite number of boot strapping steps
to prove the result. Let us shortly outline the rather technical proof. The main idea
in each of these steps is as follows: Given the Lipschitz continuity of Φ in W 1,µ(Ω)
with some µ ∈ [2, q], we search for ν as large as possible such that

‖ι‖W 1,ν′ (Ω)∗ ≤ L(‖ϕ1 − ϕ2‖W 1,µ(Ω) + ‖d1 − d2‖2 + |t1 − t2|),

where ν > µ. Then we employ (4.5) with ω = ν and use the Lipschitz continuity in
W 1,µ(Ω) to verify the result for ν. This procedure is repeated until q is reached. The
precise relation between ν and µ is characterized by the following

Lemma 4.4. Let µ ∈ [2, %] be given. Then there exists a constant C > 0 such that

‖ι‖W 1,ν′ (Ω)∗ ≤ C(‖ϕ1−ϕ2‖W 1,µ(Ω)+‖d1−d2‖2+|t1−t2|) ∀ϕ1, ϕ2 ∈W 1,µ(Ω), (4.6)

where ν > 0 satisfies

1

ν
=

{
max

{
1
µ + 2

p −
2
N ,

1
2 −

1
N

}
, if µ < N,

1
% , if µ > N,

(4.7)

and

ν > N, if µ = N. (4.8)

Proof. We first apply Lemma 3.14 in combination with Sobolev embeddings, which
yields

W 1,µ(Ω) ↪→ Lr(Ω) with r =


Nµ
N−µ , if µ < N,

<∞, if µ = N,

∞, if µ > N.

(4.9)

Due to µ ≥ 2, there holds r ≥ 2p/(p−2), see (3.29), so that Lemma 3.14 is applicable.
For this purpose define ν via

1

ν
:= max

{1

r
+

2

p
− 1

N
,

1

2
− 1

N

}
. (4.10)
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Since r ≥ 2p/(p− 2) and N < p, there holds 1
r + 2

p −
1
N < 1

2 such that ν > 2, giving
in turn that the corresponding conjugate exponent satisfies ν′ < 2 ≤ N , which will
be important in the sequel. From (4.10) it follows

1

r
+

2

p
+
N − ν′

Nν′
≤ 1 and

1

2
+
N − ν′

Nν′
≤ 1, (4.11)

and consequently, Lemma 3.14 is applicable with s = (Nν′)/(N − ν′) > 0. Together
with Hölder’s inequality with 1/s+ 1/s′ = 1 for the first two addends in ι, this gives

|〈ι, ψ〉| ≤ C
(
‖d1 − d2‖s′ + ‖ϕ1 − ϕ2‖s′ + |t1 − t2|+ ‖ϕ1 − ϕ2‖r

)
‖ψ‖s.

By virtue of (4.11), it follows that s ≥ 2 and thus s′ ≤ 2 ≤ r. Hence, we arrive at

|〈ι, ψ〉| ≤ C
(
‖d1 − d2‖2 + |t1 − t2|+ ‖ϕ1 − ϕ2‖r

)
‖ψ‖ Nν′

N−ν′
. (4.12)

Since ν′ < N as seen above, Sobolev embeddings give W 1,ν′(Ω) ↪→ L
Nν′
N−ν′ (Ω) and

thus, (4.12) and (4.9) imply

‖ι‖W 1,ν′ (Ω)∗ ≤ C(‖ϕ1 − ϕ2‖W 1,µ(Ω) + ‖d1 − d2‖2 + |t1 − t2|), (4.13)

which is already (4.6). It remains to verify (4.7) and (4.8). If µ < N , then (4.9) and
(4.10) yield

1

ν
= max

{ 1

µ
+

2

p
− 2

N
,

1

2
− 1

N

}
, (4.14)

which gives the first case in (4.7). On the other hand, if µ > N , then (4.9) implies

1

ν
= max

{2

p
− 1

N
,

1

2
− 1

N

}
=

1

%
, (4.15)

i.e. the second equation in (4.7). In case of µ = N , the situation is more delicate. If
1
r + 2

p −
1
N ≤

1
2 −

1
N , then 1

ν = 1
2 −

1
N and, since N = 2, 3, this gives ν > N as claimed.

In the second case, we have

1

ν
=

1

r
+

2

p
− 1

N
, (4.16)

where r > 0 can be chosen arbitrarily large, cf. (4.9). If we choose r = Np/(p−N) > 0,
then (4.16) results in

1

ν
=

1

p
=⇒ ν = p > N,

which finishes the proof.
Lemma 4.5. The explicit representation of the recursively defined sequence

ν0 = 2, νn =
1

1
νn−1

+ 2
p −

2
N

, n ≥ 1, (4.17)

is given by

νn =
2N p

4(N − p)n+N p
, n ∈ N0. (4.18)
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Proof. For n = 0 the assertion is obviously true. For n ≥ 1 the claim follows by
induction and straight forward computation. Note that the assertion is also correct
for νn =∞, which might happen, since p > N .

Theorem 4.6 (Improved Lipschitz continuity of Φ). Under Assumption 3.13 there
exists L > 0 such that for all (ti, di)i=1,2 ∈ [0, T ]×L2(Ω) the following estimate holds

‖Φ(t1, d1)− Φ(t2, d2)‖W 1,q(Ω) ≤ L(‖d1 − d2‖2 + |t1 − t2|)

with q > 2 given by Theorem 4.3.

Proof. As before we abbreviate ϕi = Φ(ti, di), i = 1, 2. We apply an iterated boot
strapping procedure as indicated above. As already seen in (3.37), the assertion is
correct with q = 2. Let us set ν0 = 2. We distinguish between the cases N = 2 and
N = 3.

(i) N = 2
Setting µ := ν0 = 2 = N in Lemma 4.4 yields an estimate of the form (4.6) with
ν = ν1 > N because of (4.8). If ν1 ≥ q, then just apply (4.5) with ω = q, which gives
the assertion. Otherwise we employ (4.5) with ω = ν1 to obtain

‖ϕ1 − ϕ2‖W 1,ν1 (Ω) ≤ C ‖ι‖W 1,ν′1 (Ω)∗

≤ C(‖ϕ1 − ϕ2‖H1(Ω) + ‖d1 − d2‖2 + |t1 − t2|) by (4.6)
≤ C(‖d1 − d2‖2 + |t1 − t2|) by (3.37).

Now, we repeat this procedure. Since ν1 > N , a second application of Lemma 4.4,
this time with µ = ν1, gives (4.6) with ν = ν2 := % ≥ q. Then we again apply (4.5)
with ω = q, giving the claim for N = 2.

(ii) N = 3
In the three-dimensional case the situation is slighty more involved. In the first boot
strapping step, we have µ = ν0 = 2 so that the first case in (4.7) applies. If the
maximum is attained by 1

2 −
1
N , then (4.6) holds with ν1 = 2N

N−2 = 6 > 3 = N . Now
we can argue in exactly the same way as in the second step of the two-dimensional
case to show the assertion.

If the maximum in (4.7) is attained by the first argument, then (4.6) is valid with

ν = ν1 :=
1

1
ν0

+ 2
p −

2
N

Now, if ν1 ≥ N , then we argue as in case of N = 2 to verify the claim. If not, then, in
the second boot strapping iteration with µ = ν1, again the first case in (4.7) applies.
If the maximum is attained by 1

2 −
1
N , we argue as before to prove the assertion. If

this is not the case, we obtain (4.6) with

ν = ν2 :=
1

1
ν1

+ 2
p −

2
N

.

In this way, we either obtain an index n ∈ N, where νn ≥ N or the maximum in (4.7)
is attained by the second argument, so that we can terminate the boot strapping
iteration with the previous arguments, or we create sequence of the form (4.17). For
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such a sequence however, Lemma 4.5 gives the explicit representation in (4.18). Since
N < p, the denominator in this representation is decreasing for growing n. Therefore,
for some finite n ∈ N, νn will either satisfy νn ≥ N or even be negative, which means
that the maximum in (4.7) will be attained by the second argument. In both cases,
the previous arguments apply, which finally gives the assertion.

5. Differentiability of the Elliptic System. This section is dedicated to the
derivatives of the solution operators U and Φ, as introduced in Definitions 3.5 and
3.18. These results will also be essential for the limit analysis for β → ∞ in the
companion paper [20].

Differentiability of U . In light of (3.21) the time dependency of U and Φ is
only due to the time dependency of `. Therefore, to show that the displacement and
nonlocal damage are continuously differentiable, we require the following additional

Assumption 5.1. From now on we assume that the applied volume and boundary
load satisfies ` ∈ C1([0, T ];W−1,p

D (Ω)).

Lemma 5.2 (Partial differentiability of U w.r.t. time). Under Assumption 5.1, the
operator U is partially differentiable w.r.t. time. Its partial derivative ∂tU belongs to
C([0, T ]×H1(Ω), V ) and satisfies the elliptic equation

Aϕ
(
∂tU(t, ϕ)

)
= ˙̀(t) for all (t, ϕ) ∈ [0, T ]×H1(Ω). (5.1)

Proof. Let ϕ ∈ H1(Ω) be arbitrary, but fixed. From Lemma 3.2 we know that
A−1
ϕ ∈ L(W−1,p

D (Ω),W 1,p
D (Ω)) and therefore continuously Fréchet-differentiable. By

employing Definition 3.5, Assumption 5.1, and chain rule, we thus obtain that U(·, ϕ)
is differentiable and the derivative fulfills (5.1). Completely analougously to the proof
of Lemma 3.8 one deduces in view of Assumption 5.1 that

∂tU(tn, ϕn)→ ∂tU(t, ϕ) in V

as (tn, ϕn)→ (t, ϕ) in R×H1(Ω).

Note that as a consequence of (3.5) and (5.1), one obtains on account of Assumption
5.1 the following estimate

‖∂tU(t, ϕ)‖W 1,p
D (Ω) ≤ c ∀ (t, ϕ) ∈ [0, T ]×H1(Ω), (5.2)

where c > 0 is independent of t and ϕ.

Lemma 5.3 (Partial differentiability of U w.r.t. ϕ). Let Assumption 3.13.1 be fulfilled.
Then there exists an index ν > 2 such that, for every t ∈ [0, T ], the map U(t, ·) :
H1(Ω) → W 1,ν

D (Ω) is Fréchet differentiable and, for all ϕ, δϕ ∈ H1(Ω), the partial
derivative fulfills

Aϕ
(
∂ϕU(t, ϕ)(δϕ)

)
= div

(
g′(ϕ)(δϕ)Cε(U(t, ϕ)

)
in W−1,ν

D (Ω), (5.3)

where div again denotes the distributional vector valued divergence, cf. (3.22).

Proof. Let t ∈ [0, T ] and ϕ, δϕ ∈ H1(Ω) be arbitrary, but fixed, and set r := 2p/(p−2).
As shown at the beginning of the proof of Lemma 3.15, Assumption 3.13.1 guarantees
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the existence of an index % such that r ∈ (2, %) and H1(Ω) ↪→ L%(Ω). For % > r, there
is another index κ with r < κ < %, say κ = (r + %)/2. Then we define ν through

1

ν′
= 1− 1

κ
− 1

p
. (5.4)

Since κ > r, this implies ν′ < 2, whence ν > 2. Moreover, (5.4) yields 1/ν′ < 1−1/p =
1/p′ so that ν′ > p′ and thus

ν ∈ (2, p). (5.5)

For the right hand side in (5.3), Hölder’s inequality with 1/ν′ + 1/κ + 1/p = 1 and
Corollary 3.6 imply

‖ div
(
g′(ϕ)(δϕ)Cε(U(t, ϕ)

)
‖W−1,ν

D (Ω) ≤ ‖g
′(ϕ)‖∞‖δϕ‖κ‖Cε(U(t, ϕ))‖p

≤ C‖δϕ‖κ.
(5.6)

Due to (5.5), Lemma 3.2 is applicable with the exponent ν such that (5.6) implies
that the linear operator, defined by

W(δϕ) := A−1
ϕ div

(
g′(ϕ)(δϕ)Cε(U(t, ϕ),

is bounded and hence, continuous from Lκ(Ω) to W 1,ν
D (Ω) so that, by virtue of

H1(Ω) ↪→ Lκ(Ω),

W ∈ L(H1(Ω),W 1,ν
D (Ω)) (5.7)

follows. As this operator is the candidate for the derivative, consider now the remain-
der term

Rϕ(δϕ) := U(t, ϕ+ δϕ)− U(t, ϕ)−W(δϕ). (5.8)

By employing Definition 3.1 and 3.5, the above definition of W, a straight forward
computation yields

Aϕ(Rϕ(δϕ)) = div
(
g′(ϕ)(δϕ)Cε

(
U(t, ϕ+ δϕ)− U(t, ϕ)

))
+ div

((
g(ϕ+ δϕ)− g(ϕ)− g′(ϕ)(δϕ)︸ ︷︷ ︸

=: rϕ(δϕ)

)
Cε(U(t, ϕ+ δϕ))

)
. (5.9)

Next define s via 1/s = 1− 1/%− 1/ν′. Since ν′ < 2 as seen above, we obtain s > 2.
Moreover, because of κ < %, (5.4) yields

1

s
= 1− 1

%
− 1

ν′
> 1− 1

κ
− 1

ν′
=

1

p
=⇒ 2 < s < p.

Applying Hölder’s inequality with these exponents in combination with Corollary 3.6
and H1(Ω) ↪→ L%(Ω) then gives

‖Aϕ(Rϕ(δϕ))‖W−1,ν
D (Ω) ≤ C‖rϕ(δϕ)‖κ‖U(t, ϕ+ δϕ)‖W 1,p

D (Ω)

+ C‖g′(ϕ)‖∞‖δϕ‖%‖U(t, ϕ+ δϕ)− U(t, ϕ)‖W 1,s
D (Ω)

≤ C
(
‖rϕ(δϕ)‖κ + ‖δϕ‖H1(Ω)‖U(t, ϕ+ δϕ)− U(t, ϕ)‖W 1,s

D (Ω)

)
,
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which together with (3.5) implies

‖Rϕ(δϕ)‖W 1,ν
D (Ω) ≤ C

(
‖rϕ(δϕ)‖κ+‖δϕ‖H1(Ω)‖U(t, ϕ+δϕ)−U(t, ϕ)‖W 1,s

D (Ω)

)
. (5.10)

We recall that H1(Ω) ↪→ L%(Ω) with % > κ, which allows us to deduce from Lemma
A.3 that g : H1(Ω)→ Lκ(Ω) is Fréchet differentiable. Together with Lemma 3.8 and
(5.10), this leads to

‖Rϕ(δϕ)‖W 1,ν
D (Ω)

‖δϕ‖H1(Ω)
→ 0, as ‖δϕ‖H1(Ω) → 0,

i.e., the Fréchet differentiability of U(t, ·) : H1(Ω)→W 1,ν
D (Ω). The derivative is given

by the operator W, whence equation (5.3).

Clearly, Lemma 5.3 implies that U(t, ·) is also Fréchet-differentiable from H1(Ω) to
V = W 1,2

D (Ω), and the corresponding derivative satisfies (5.3) as an equation in V ∗.
Furthermore, analogously to (5.6), Hölder’s inequality with 1/2+1/p+1/r = 1, where
again r = 2p/(p− 2), leads to

‖div
(
g′(ϕ)(δϕ)Cε(U(t, ϕ)

)
‖V ∗ ≤ C‖δϕ‖r.

Therefore, we deduce from (5.3) and (3.5) the following estimate, which turns out to
be useful in the next section, see the proof of Lemma 5.11 below:

Lemma 5.4. Let Assumption 3.13.1 hold. Then, for all ϕ, δϕ ∈ H1(Ω), there holds

‖∂ϕU(t, ϕ)(δϕ)‖V ≤ C ‖δϕ‖r

with r = 2p/(p− 2).

Lemma 5.5 (Continuity of ∂ϕU). Under Assumption 3.13.1 the operator ∂ϕU : [0, T ]×
H1(Ω)→ L(H1(Ω), V ) is continuous.

Proof. Let (ti, ϕi)i=1,2 ∈ [0, T ]×H1(Ω) and δϕ ∈ H1(Ω) be arbitrary, but fixed with
δϕ 6= 0. Further, let us abbreviate u′i := ∂ϕU(ti, ϕi)δϕ and ui := U(ti, ϕi) for i = 1, 2.
Moreover, define f1 := Aϕ2

u′2 − Aϕ1
u′2 ∈ V ∗ and f2 := Aϕ1

u′1 − Aϕ2
u′2 ∈ V ∗ such

that

Aϕ1
(u′1 − u′2) = f1 + f2. (5.11)

Thanks to Lemma 5.3 there is an index ν > 2 such that U(t2, ·) : H1(Ω)→W 1,ν
D (Ω) is

Fréchet differentiable. We set κ = 2ν/(ν − 2) ∈ [1,∞) such that 1/κ+ 1/ν + 1/2 = 1.
Then Hölder’s inequality yields

‖f1‖V ∗ ≤ C1‖g(ϕ2)− g(ϕ1)‖κ‖u′2‖W 1,ν
D (Ω) ≤ C1‖g(ϕ2)− g(ϕ1)‖κ ‖δϕ‖H1(Ω),

where we used (5.6), (5.3), and Lemma 3.2 with ν < p for the last inequality. Thanks
to Lemma A.2 this gives

sup
δϕ∈H1(Ω)
δϕ 6=0

‖f1‖V ∗
‖δϕ‖H1(Ω)

→ 0, as ϕ1 → ϕ2 in H1(Ω). (5.12)

From the definition of ui and u′i and equation (5.3) if follows that

Aϕiu
′
i = div

(
g′(ϕi)(δϕ)Cε(ui)

)
for i = 1, 2.
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This allows us to rewrite f2 as

f2 = div
(
g′(ϕ1)(δϕ)Cε(u1)

)
− div

(
g′(ϕ1)(δϕ)Cε(u2)

)
+ div

(
g′(ϕ1)(δϕ)Cε(u2)

)
− div

(
g′(ϕ2)(δϕ)Cε(u2)

)
We again abbreviate r := 2p/(p − 2), which implies in view of Assumption 3.13.1
that there is an index % such that r ∈ (2, %) and H1(Ω) ↪→ L%(Ω), as shown at the
beginning of the proof of Lemma 3.15. By construction we have 1/r + 1/p+ 1/2 = 1
and, in view of r ∈ (2, %), there exists s ∈ (2, p) such that 1/% + 1/s + 1/2 = 1. By
applying Hölder’s inequality with these exponents and Corollary 3.6 we arrive at

‖f2‖V ∗ ≤ C2‖g′(ϕ1)(δϕ)‖%‖u1 − u2‖W 1,s
D (Ω)

+ ‖(g′(ϕ2)− g′(ϕ1))(δϕ)‖r‖u2‖W 1,p
D (Ω)

≤ C2‖δϕ‖H1(Ω)

(
‖u1 − u2‖W 1,s

D (Ω) + ‖g′(ϕ2)− g′(ϕ1)‖L(H1(Ω),Lr(Ω))

)
.

Note that for the second inequality we used again that g : H1(Ω)→ Lr(Ω) is Fréchet
differentiable due to Lemma A.3 and H1(Ω) ↪→ L%(Ω) with % > r. Lemmas 3.8 and
A.3 now ensure that

sup
δϕ∈H1(Ω)
δϕ 6=0

‖f2‖V ∗
‖δϕ‖H1(Ω)

→ 0, as (t1, ϕ1)→ (t2, ϕ2) in R×H1(Ω). (5.13)

Altogether, it follows from (5.11), (5.12), (5.13) and (3.5) that

sup
δϕ∈H1(Ω)
δϕ 6=0

‖u′1 − u′2‖V
‖δϕ‖H1(Ω)

≤ C sup
δϕ∈H1(Ω)
δϕ 6=0

‖f1 + f2‖V ∗
‖δϕ‖H1(Ω)

→ 0

for (t1, ϕ1)→ (t2, ϕ2) in R×H1(Ω). This completes the proof.

We are now in the position to state the main result of this section.

Proposition 5.6 (Fréchet differentiability of the operator U). Under Assumptions
3.13.1 and 5.1 it holds U ∈ C1([0, T ]×H1(Ω);V ).

Proof. From Lemma 3.8 we know that U ∈ C([0, T ]×H1(Ω);V ), while Lemmas 5.2, 5.3
and 5.5 state that U possesses partial derivatives with ∂tU ∈ C([0, T ]×H1(Ω);V ) and
∂ϕU ∈ C([0, T ]×H1(Ω);L(H1(Ω), V )), respectively. Hence, we can apply [4, Theorem
3.7.1.], which gives the assertion.

Differentiability of Φ. To differentiate the operator Φ from Definition 3.18, we
employ the implicit function theorem. For this purpose, let us define the following:

Definition 5.7. Let Assumption 3.10 be fulfilled. We define the mapping Ψ : [0, T ]×
L2(Ω)×H1(Ω)→ H1(Ω)∗ by Ψ(t, d, ϕ) := Bϕ+ F (t, ϕ)− βd.
Note that ϕ = Φ(t, d) implies Ψ(t, d, ϕ) = 0. First we show that Ψ is continuously
Fréchet differentiable. To this end we need the following

Assumption 5.8. From now on we assume that g ∈ C2(R) and g′′ ∈ L∞(R).

Lemma 5.9. Let Assumptions 3.13.1, 5.1 and 5.8 hold. Then the function F :
[0, T ]×H1(Ω)→ H1(Ω)∗ from Definition 3.11 is continuously Fréchet differentiable.
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Its derivative at (t, ϕ) ∈ [0, T ]×H1(Ω) in direction (δt, δϕ) ∈ R×H1(Ω) is given by

〈F ′(t, ϕ)(δt, δϕ), z〉H1(Ω) =
1

2

∫
Ω

g′′(ϕ)(δϕ)Cε(U(t, ϕ)) : ε(U(t, ϕ))z dx

+

∫
Ω

g′(ϕ)Cε(U(t, ϕ)) : ε
(
U ′(t, ϕ)(δt, δϕ)

)
z dx, z ∈ H1(Ω),

(5.14)

where U ′ is the Fréchet-derivative of U according to Proposition 5.6.
Proof. We prove the result in two steps, by splitting F into two products and applying
Lemma B.1 for these. To do so, let us introduce the following mappings:

H : (0, T )×H1(Ω)→ Lp/2(Ω), H(t, ϕ) := Cε(U(t, ϕ)) : ε(U(t, ϕ)) (5.15)

and

P1 : L∞(Ω)× Lp/2(Ω)→ H1(Ω)∗,

〈P1(y1, y2), z〉H1(Ω) :=
1

2

∫
Ω

y1 · y2 · z dx, z ∈ H1(Ω)
(5.16)

such that

F : (t, ϕ) 7→ P1

(
g′(ϕ),H(t, ϕ)

)
. (5.17)

Notice that these mappings are indeed well defined because of H1(Ω) ↪→ L2p/(p−2)(Ω)
by Assumption 3.13.1 and due to the mapping properties of U . We now prove the
assertion by applying the product rule from Lemma B.1 to H and F in form (5.17).
To this end, let s ∈ (N, p) be arbitrary, but fixed. Note that such an index exists
thanks to Assumption 3.13.1. Moreover, define ω and r through

1

ω
=

1

p
+

1

s
and

1

r
=

1

2
+

1

s
. (5.18)

Due to p > s > 2, there holds r < ω < p/2 so that H is well defined, if considered
with Lω(Ω) and Lr(Ω), respectively, as range.
(i) We first show that H is continuous as an operator with range in Lω(Ω) and
continuously Fréchet differentiable, if considered as an operator with range in Lr(Ω).
Concerning the continuity, we estimate similarly to (3.27) by using (5.18):

‖H(t1, ϕ1)−H(t2, ϕ2)‖ω ≤ C ‖U(t1, ϕ1)+U(t2, ϕ2)‖W 1,p
D (Ω)‖U(t1, ϕ1)−U(t2, ϕ2)‖W 1,s

D (Ω)

for all (ti, ϕi)i=1,2 ∈ [0, T ] × H1(Ω). The continuity of U in W 1,s
D (Ω), s < p, by

Lemma 3.8 in combination with Corollary 3.6 then gives the desired continuity of H.
To prove the differentiability, consider the mapping

P2 : W 1,s
D (Ω)× V 3 (u,v) 7→ Cε(u) : ε(v) ∈ Lr(Ω) (5.19)

such that

H(t, ϕ) = P2

(
U(t, ϕ),U(t, ϕ)

)
. (5.20)

In view of (5.18), P2 is bilinear and continuous. To apply Lemma B.1, we set

U := (0, T )×H1(Ω), X := R×H1(Ω), W := Lr(Ω),

P = P2, fi := U , Yi := W 1,s
D (Ω), Zi := V, i = 1, 2.
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From Lemma 3.8 and Proposition 5.6 we know that U : (0, T ) ×H1(Ω) → W 1,s
D (Ω)

is continuous and U : (0, T ) × H1(Ω) → V is continuously Fréchet differentiable,
respectively. Hence, we can apply Lemma B.1 to (5.20) giving in turn that H :
(0, T )×H1(Ω)→ Lr(Ω) is continuously Fréchet differentiable with

H′(t, ϕ)(δt, δϕ) := 2Cε(U(t, ϕ)) : ε
(
U ′(t, ϕ)(δt, δϕ)

)
(5.21)

for all (t, ϕ) ∈ (0, T )×H1(Ω) and all (δt, δϕ) ∈ R×H1(Ω).

(ii) The result from the previous step allows us now to prove the continuously Fréchet
differentiability of F . We again apply the product rule from Lemma B.1, this time to
(5.17). To fix the setting, let κ > 0 satisfy

1

κ
< 1− 1

r
=

1

2
− 1

s
and

1

κ
<

1

2
− 1

2ω
=

1

2
− 1

2p
− 1

2s
. (5.22)

Since s > N and p > N , the right hand sides in the above inequalities are strictly
larger than (N − 2)/(2N) and consequently, κ can be chosen such that

H1(Ω) ↪→ Lκ(Ω), (5.23)

which is assumed in the following. Given κ we define τ and ρ via

1

τ
+

1

ω
+

1

κ
= 1 and

1

ρ
+

1

r
+

1

κ
= 1. (5.24)

Because of (5.22), these indices satisfy

0 < ρ <∞ and 0 < τ < κ. (5.25)

To apply Lemma B.1, we then choose

U := (0, T )×H1(Ω), X := R×H1(Ω), W := H1(Ω)∗,

P = P1, f1 := g′, Y1 := Lρ(Ω), Z1 := Lτ (Ω),

f2 := H, Y2 := Lω(Ω), Z2 := Lr(Ω),

where we considered g′ as a mapping on U with a little abuse of notation. From the
previous step, we already know that f2 = H fulfills the required continuity and differ-
entiability conditions. Moreover, due to (5.25) and (5.23), Assumption 5.8 together
with Lemmas A.2 and A.3 yields that f1 = g′ is continuous from H1(Ω) to Lρ(Ω) and
continuously Fréchet-differentiable from H1(Ω) to Lτ (Ω). Finally, thanks to (5.24)
and (5.23), the bilinear form P1 from (B.3) satisfies

‖P (y1, y2)‖H1(Ω)∗ ≤ C‖y1‖τ‖y2‖ω ∀ (y1, y2) ∈ Lτ (Ω)× Lω(Ω),

‖P (y1, y2)‖H1(Ω)∗ ≤ C‖y1‖ρ‖y2‖r ∀ (y1, y2) ∈ Lρ(Ω)× Lr(Ω),

and is therefore continuous in the required spaces. Hence Lemma B.1 yields the
continuous Fréchet differentiability of F : (0, T )×H1(Ω)→ H1(Ω)∗ and (5.14), as a
result of (5.16), (5.15) and (5.21). Note that the derivative of F can be continued at
(0, ϕ) and (T, ϕ) for every ϕ ∈ H1(Ω) due to Lemma 3.8 and Proposition 5.6.

As an immediate consequence of Lemma 5.9 we obtain

Corollary 5.10 (Fréchet differentiability of Ψ). Under Assumptions 3.13.1, 5.1
and 5.8 it holds Ψ ∈ C1([0, T ]× L2(Ω)×H1(Ω), H1(Ω)∗).
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Proof. The result directly follows from Definition 5.7 combined with Lemma 5.9 and
the fact that B ∈ L(H1(Ω), H1(Ω)∗).

The last result required for the application of the implicit function theorem is the
following

Lemma 5.11. Under Assumptions 3.13 and 5.8 the operator ∂ϕΨ(t, d, ϕ) : H1(Ω)→
H1(Ω)∗ is bijective for all (t, d, ϕ) ∈ [0, T ]× L2(Ω)×H1(Ω).

Proof. Throughout this proof let (t, d, ϕ) ∈ [0, T ]× L2(Ω)×H1(Ω) be arbitrary, but
fixed. On account of Definition 5.7, we have to show that, for every h ∈ H1(Ω)∗, the
equation

Bδϕ+ ∂ϕF (t, ϕ)δϕ = h (5.26)

admits a unique solution δϕ ∈ H1(Ω). We prove the result by means of the Lax-
Milgram lemma. Thanks to B, ∂ϕF (t, ϕ) ∈ L(H1(Ω), H1(Ω)∗) one obtains

|〈Bδϕ+ ∂ϕF (t, ϕ)(δϕ), z〉H1(Ω)| ≤ C‖δϕ‖H1(Ω)‖z‖H1(Ω) ∀ δϕ, z ∈ H1(Ω),

whence the boundedness of B+∂ϕF (t, ϕ). In order to prove the coercivity thereof, we
follow the ideas of the proof of Lemma 3.16. As frequently used before, Assumption
3.13.1 guarantees that H1(Ω) ↪→ Lr(Ω) with r := 2p/(p − 2). In view of (5.14),
Hölder’s inequality with 2/r+ 2/p = 1 and 1/p+ 1/2 + 1/r = 1, respectively, leads to

|〈∂ϕF (t, ϕ)z, z〉H1(Ω)| ≤ C
(
‖g′′(ϕ)‖∞‖z‖r‖Cε(U(t, ϕ)) : ε(U(t, ϕ))‖ p

2
‖z‖r

+ ‖g′(ϕ)‖∞‖ε(U(t, ϕ))‖p‖ε(∂ϕU(t, ϕ)(z))‖2‖z‖r
)

≤ C ‖z‖2r for all z ∈ H1(Ω).

(5.27)

where the second estimate follows from the hypotheses on g in Assumption 2.7 and 5.8,
Corollary 3.6, and Lemma 5.4. On account of Lemma 3.15, (5.27) can be continued
as follows

|〈∂ϕF (t, ϕ)z, z〉H1(Ω)| ≤ k‖z‖22 + c̃(k)‖z‖2H1(Ω) ∀ z ∈ H1(Ω) and ∀ k > 0, (5.28)

where c̃ : R+ → R+ is a monotonically decreasing function, which tends to 0 as
k →∞. Thus,the definition of B in (3.18) implies for all k > 0 that

〈Bz + ∂ϕF (t, ϕ)z, z〉H1(Ω) ≥ (α− c̃(k))‖z‖2H1(Ω) + (β − α− k)‖z‖22 ∀ z ∈ H1(Ω).

Taking into account the characteristics of c̃, we can choose k > 0 sufficiently large
such that α > c̃(k). If we moreover require β > α + k, cf. Assumption 3.13.2, we
finally arrive at

〈Bz + ∂ϕF (t, ϕ)z, z〉H1(Ω) ≥ c‖z‖2H1(Ω) ∀ z ∈ H1(Ω),

i.e., the coercivity of B + ∂ϕF (t, ϕ). Lax-Milgram’s Lemma thus gives the unique
solvability of (5.26) as claimed.

Proposition 5.12 (Fréchet differentiability of the operator Φ). Let Assumptions
3.13, 5.1 and 5.8 hold. Then Φ ∈ C1([0, T ] × L2(Ω), H1(Ω)), and its derivative at
(t, d) ∈ [0, T ]× L2(Ω) in direction (δt, δd) ∈ R× L2(Ω) is given by

BΦ′(t, d)(δt, δd) + F ′(t, ϕ)
(
δt,Φ′(t, d)(δt, δd)

)
= βδd, (5.29)
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with the abbreviation ϕ := Φ(t, d).

Proof. Let (t, d) ∈ (0, T ) × L2(Ω) be arbitrary, but fixed. We apply the implicit
function theorem to Ψ as given in Definition 5.7, cf. e.g. [30, Theorem 4.B(d)]. Due to
Corollary 5.10 and Lemma 5.11, Ψ is continuously Fréchet-differentiable and ∂ϕΨ(t, d)
is continuously invertible by Banach’s inverse theorem. Thus the implicit function
theorem is applicable and implies that Φ is as smooth as Ψ, i.e. continuously Fréchet-
differentiable from (0, T )× L2(Ω) to H1(Ω), and its derivative is given by

Φ′(t, d)(δt, δd) = −[∂ϕΨ(t, d, ϕ)]−1∂(t,d)Ψ(t, d, ϕ)(δt, δd),

which is equivalent to (5.29) in view of Definition 5.7.

It remains to prove that the derivative can be continuously extended to t = 0 and
t = T . From Corollary 5.10 we know that ∂(t,d)Ψ and ∂ϕΨ can be continuously
extended to (0, d, ϕ) with ϕ = Φ(0, d). Furthermore, in light of Lemma 5.11, we are
allowed to define

Φ′(0, d)(δt, δd) := −[∂ϕΨ(0, d, ϕ)]−1∂(t,d)Ψ(0, d, ϕ)(δt, δd).

The continuity of the inversion L(H1(Ω), H1(Ω)∗) 3 A 7→ A−1 ∈ L(H1(Ω)∗, H1(Ω))
on the set of linear isomorphisms, see e.g. [27, Ch. III.8], then yields the continuity of
Φ′ at (0, d). In the exactly same way one shows the continuity Φ′ at (T, d).

We collect the above findings in final theorem on the regularity of the solution to our
viscous two-field gradient damage model:

Theorem 5.13. Let Assumptions 3.13, 5.1 and 5.8 be fulfilled. Then there exists
a unique solution (u, ϕ, d) of the problem (P), satisfying d ∈ C1([0, T ];L2(Ω)), ϕ ∈
C0,1([0, T ];W 1,q(Ω)) ∩ C1([0, T ];H1(Ω)), u ∈ C([0, T ];W 1,s

D (Ω)) ∩ C1([0, T ];V ) with
q > 2 and s ∈ (2, p), and the system of differential equations in (3.46).

Proof. At the end of Section 3 we already established that the unique solution of (P)
satisfies (3.46), as well as the regularity of the local damage, see Theorem 3.23. As
this solution satisfies u(t) = U(t, ϕ(t)) and ϕ(t) = Φ(t, d(t)), the additional regularity
results follow from Theorem 4.6, Proposition 5.12, Lemma 3.8, and Proposition 5.6
in combination with the chain rule.

Remark 5.14. We point out that in the two-dimensional case one can show, by pro-
ceeding as above and by assuming g′′ ∈ C0,1(R), that U ∈ C1([0, T ]×W 1,q(Ω);W 1,p

D (Ω))
and Φ ∈ C1([0, T ] × L2(Ω);W 1,q(Ω)), with q > 2 given by Theorem 4.3. This is
mainly due to the Sobolev embedding W 1,q(Ω) ↪→ L∞(Ω), combined with the fact
that g, g′ : W 1,q(Ω) → L∞(Ω) are continuously Fréchet differentiable. Therefore, in
the two-dimensional case, the unique solution (u, ϕ, d) of the problem (P), satisfies
d ∈ C1([0, T ];L2(Ω)), ϕ ∈ C1([0, T ];W 1,q(Ω)) and u ∈ C1([0, T ];W 1,p

D (Ω)).

Appendix A. Nemytskii Operators.

Lemma A.1. For all ρ ∈ [1,∞], the Nemytskii-operators g : Lρ(Ω) → L∞(Ω) and
g′ : Lρ(Ω)→ L∞(Ω) are well defined and Lipschitz continuous from Lρ(Ω) to Lρ(Ω).

Proof. We prove the result just for the function g′. The result for g follows completely
analogously. According to [10, Remark 1], g′ transforms measurable functions into
measurable functions, since g′ is continuous in view of (2.3). Moreover, g′ ∈ L∞(R)
and hence, [10, Theorem 1 (iii),(iv)] yields that g′ : Lρ(Ω)→ L∞(Ω) is well defined for
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all ρ ∈ [1,∞]. The Lipschitz continuity from Lρ(Ω) to Lρ(Ω) is a direct consequence
of the Lipschitz continuity of g′ : R→ R.
Lemma A.2. The Nemytskii-operators g, g′ : L1(Ω) → L%(Ω) are continuous for all
% ∈ [1,∞).

Proof. The functions g and g′ are continuous on account of (2.3) and the associated
Nemytskii-operators g, g′ : L1(Ω)→ L%(Ω) are well defined by means of Lemma A.1.
Thus, the assumptions in [10, Theorem 4] are fulfilled, which gives the assertion.

Lemma A.3. The operator g : Lρ(Ω) → Lτ (Ω) is continuously Fréchet differentiable
for 1 ≤ τ < ρ <∞. If we assume that the map g satisfies g ∈ C2(R) with g′′ ∈ L∞(R),
then the operator g′ : Lρ(Ω)→ Lτ (Ω) is continuously Fréchet differentiable as well.

Proof. We prove the continuously Fréchet differentiability by means of [10, Theorem
7]. We adress just the second part of the statement, since the first one follows with the
exactly same arguments. From [10, Theorem 4] we deduce in view of g′′ ∈ L∞(R) that
g′′ is continuous from Lρ(Ω) to L

ρτ
ρ−τ (Ω) for 1 ≤ τ < ρ < ∞. Since g′ ∈ C1(R), [10,

Theorem 7] gives the assertion.

Appendix B. Product Rule.

This appendix is dedicated to a generalization of the well known product rule in
the sense that the spaces, where the inner functions are continuous and continuously
differentiable, respectively, may differ.

Lemma B.1. Let X, W and Yi, Zi, i = 1, 2, be Banach spaces with Yi ⊂ Zi.
Moreover, let U ⊂ X be an open set and fi : U → Yi, i = 1, 2, be continuous
mappings, which are continuously Fréchet differentiable, when considered as mappings
from U to Zi. Additionally, let P : Z1 × Y2 → W be a product, i.e., a continuous
bilinear mapping, and assume that P possesses the same properties, when considered
as a mapping from Y1×Z2 to W . Then the map h : x ∈ U → P (f1(x), f2(x)) ∈W is
continuously Fréchet differentiable with

h′(x)(δx) = P (f ′1(x)(δx), f2(x)) + P (f1(x), f ′2(x)(δx)) ∀x ∈ U, ∀ δx ∈ X. (B.1)

Proof. Let x ∈ U be arbitrary, but fixed and δx ∈ X with ‖δx‖X 6= 0 small enough
such that x+ δx ∈ U . Straight forward computation yields

‖R(δx)‖W :=

:= ‖h(x+ δx)− h(x)− P (f ′1(x)(δx), f2(x))− P (f1(x), f ′2(x)(δx))‖W
≤ ‖P (f1(x+ δx), f2(x))− P (f1(x), f2(x))− P (f ′1(x)(δx), f2(x))‖W

+ ‖P (f1(x+ δx), f2(x+ δx))− P (f1(x+ δx), f2(x))− P (f1(x+ δx), f ′2(x)(δx))‖W
+ ‖P (f1(x+ δx), f ′2(x)(δx))− P (f1(x), f ′2(x)(δx))‖W .

Since P : Z1×Y2 →W , P : Y1×Z2 →W are continuous bilinear mappings, we obtain
in view of the Fréchet differentiability of fi : U → Zi for every i ∈ {1, 2}, combined
with the continuity of f1 : U → Y1 that

‖R(δx)‖W
‖δx‖X

≤ C
(‖Rf1(δx)‖Z1

‖δx‖X
‖f2(x)‖Y2

+
‖Rf2(δx)‖Z2

‖δx‖X
‖f1(x+ δx)‖Y1

+ ‖f1(x+ δx)− f1(x)‖Y1

‖f ′2(x)(δx)‖Z2

‖δx‖X

)
→ 0, as ‖δx‖X → 0,
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where we denote Rfi(δx) := fi(x + δx) − fi(x) − f ′i(x)(δx) for every i ∈ {1, 2}.
Therefore, h is Fréchet differentiable at x ∈ U , with derivative given by (B.1). In
order to show the continuity thereof, let {xn} ⊂ U with xn → x in X be given. By
employing the properties of P we obtain for all δx ∈ X

‖P (f ′1(xn)(δx), f2(xn))− P (f ′1(x)(δx), f2(x))‖W
≤ ‖P (f ′1(xn)(δx)− f ′1(x)(δx), f2(xn))‖W + ‖P (f ′1(x)(δx), f2(xn)− f2(x))‖W
≤ C

(
‖f ′1(xn)(δx)− f ′1(x)(δx)‖Z1

‖f2(xn)‖Y2
+ ‖f ′1(x)(δx)‖Z1

‖f2(xn)− f2(x)‖Y2

)
≤ C

(
‖f ′1(xn)− f ′1(x)‖L(X,Z1)‖δx‖X‖f2(xn)‖Y2

+ ‖f ′1(x)‖L(X,Z1)‖δx‖X‖f2(xn)− f2(x)‖Y2

)
.

The continuity of f ′1 : U → L(X,Z1) and f2 : U → Y2 thus implies

sup
‖δx‖X=1

‖P (f ′1(xn)(δx), f2(xn))− P (f ′1(x)(δx), f2(x))‖W

≤ C
(
‖f ′1(xn)− f ′1(x)‖L(X,Z1)‖f2(xn)‖Y2

+ ‖f ′1(x)‖L(X,Z1)‖f2(xn)− f2(x)‖Y2

)
→ 0, as xn → x.

(B.2)

Completely analogously we obtain

sup
‖δx‖X=1

‖P (f1(xn), f ′2(xn)(δx))− P (f1(x), f ′2(x)(δx))‖W → 0, as xn → x. (B.3)

Finally, (B.1), (B.2), and (B.3) result in

sup
‖δx‖X=1

‖h′(xn)(δx)− h′(x)(δx)‖W → 0 as xn → x in X,

which completes the proof.
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