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Abstract

In this paper a novel computational strategy consisting of a special combina-
tion of numerical techniques is presented, which allows to perform flow simulations
in the framework of co-rotating twin-screw extruders involving complex geometrical
descriptions of rotating intermeshing internal boundaries. The individual techniques
combined together are a a) higher order Finite Element Method (FEM) augmented
with the b) Fictitious Boundary Method (FBM) and a novel c) PDE-free Mesh
Deformation (MD) technique, guaranteeing a high resolution/high order numerical
scheme without the necessity of a case-specific time-consuming preprocessing step
foregoing each simulation. The designed numerical scheme has the clear advantage
to be used in a fully automated environment suitable to perform detailed case stud-
ies playing a key role in the design of specific twin-screw machines for particular
material processing applications.
keywords: extruder simulation, CFD, Fictitious Boundary Method, Mesh Deforma-
tion, FEM

1 Introduction

Material substitution, which is taking place due to the numerous advantages offered by
plastics has led to an above average growth rate of polymer processing and manufac-
turing in the last few years. The driving force of this phenomenon is mainly related to
the replacement of traditional materials such as metal, glass and paper with relatively
cheaper and lighter plastics. Furthermore, the properties determined by the requirements
put on the products can be fine-tuned by additional compounding processes, which is
an other considerable benefit. Co-rotating twin-screw extruders (CRTSE) are currently
used in compounding processes due to their modular structure, and due to their ability
to provide intensive mixing associated to relatively short residence times. In order to op-
timize the compounding process and to further improve the quality of the products, the
exact understanding of the underlying processes is essential. From the point of view of
experimental observations, especially in light of the high complexity of the interdependent
operations, one has to cope with time-consuming experimental investigations. To this end,
in future (if not already now) simulations may offer themselves as an alternative way of
investigation assuming that their feasibility - following current trends in computer science
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and computational fluid dynamics (CFD) - will further improve. The most promising
role of CFD lies in the prediction capabilities of safe (w.r.t the processed material) and
efficient operation of twin-screw extruders (TSE), which can be achieved via simultaneous
simulations of different setups associated with different screw geometries and gap sizes,
being mostly responsible for the pressure built-up and extent of friction resulting in corre-
sponding temperature increase. Furthermore, simulation results can be postprocessed in
many different ways so to recover important quantities, like pressure drops, axial temper-
ature profiles, specific energy input, residence time distribution or fractional distribution
of shear rates, which otherwise in terms of experimental observation can not be simulta-
neously (if at all) measured. Originally, the process and flow simulation of a CRTSE was
based on one-dimensional models [15], which were in charge to predict important process
parameters (such as temperature or pressure build up along the axial length of the screw)
without considerable computational time. On the other hand, essential problems of these
simplified computational models are related to the assumption of homogeneous cross-
sectional distributions of quantities, which directly exclude the possibility of prediction
of anisotropic shear rate distributions, and therefore are unable to quantify the appear-
ance of hot-spots which may have a dramatic influence on the inhomogeneously processed
material (i.e. initiation of unwanted vulcanization while processing natural/synthetic rub-
ber). As an improvement, two-dimensional models are used to take into account of the
gradients. These (still) simplified models have an important advantage compared to the
three-dimensional simulations due to the significantly lower computational requirements.
Currently used industrial one- or two-dimensional simulation programs of CRTSE are
Akro-Co-Twin-Screw (University of Akron), Ludovic (CEMEF, France), TXS (Polytech,
USA) and SIGMA developed at the University of Paderborn. As a result of recent devel-
opment, the simulation program SIGMA presents the option to perform additional fully
three dimensional studies based on the corresponding CFD extension Extrud3D, which
covers the simulation of fully-filled TSE segments consisting of conveying/kneading ele-
ments as well as their mutual combinations. The newly developed Extrud3D module is
an extension of the open source Finite Element (FEM) based CFD package FeatFlow

[13, 14], which was originally developed by S. Turek and his group at TU Dortmund
and has proven to exhibit outstanding numerical properties while taking part in various
CFD benchmark initiatives [2, 5, 6, 10] covering a wide range of applications. Thanks to
the incorporated Fictitious Boundary Method (FBM) [10] the resulting fully-automated
parallel 3D simulation tool enables the simulation of fully-filled CRTSEs without rely-
ing on in-depth expertise in CFD of the user, since all kinds of preprocessing operations
(mainly related to mesh generation) are intrinsically embedded into the simulation tool.
From the available software packages used for full-three dimensional simulations (up to
the knowledge of the authors) are ANSYS-PolyFlow, an XFEM-based code development
from the group of Anderson (Eindhoven University of Technology) [11, 12], OpenFOAM
(commercial release of Wikki Ltd.) and a specific in-house code of Bayer Technology
Services [9], which on the one hand are successfully used for industrial purposes, but on
the other hand partially suffer from the shortcomings stemming from:

• cumbersome geometrical preprocessing - in terms of meshing

• simplified models - neglecting the non-Newtonian rheological effects

• total computational performance - computational performance vs. accuracy
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Besides the discretization and the individual shortcomings, the main difference between
the CFD tools mentioned above lies in the treatment of internal moving boundaries.
Their treatment can be in practise performed on the basis of a remeshing (A) [11, 12],
mesh deformation (B) or fictitious boundary method (C). Without doubts, each of these
techniques has its pros and cons, which depending on the given application may prevail in
favour of one against the others. Clear advantages of (A) and (B) are related to the arising
aligned computational meshes, which on the other hand, especially in case of complex
time-dependent geometries (i.e. CRTSEs) may become inefficient, if not impossible (i.e.
in case of a hexahedral meshes). Improvements of (A) in the framework of TSE simulations
have been presented on the basis of

• sliding meshes, so that the two individual barrels of the TSE are meshed indepen-
dently, and the coupling between them is performed in terms of interpolation (used
by OpenFOAM-Wikki Ltd, and ANSYS-PolyFlow). There are, however, two main
disadvantages related to this approach: 1) a computational one according to which a
dominant ”block-Jacobi” effect is introduced into the solution of the linear systems
influencing negatively the global convergence behavior of the computations, 2) a
practical one which excludes realistic twin-screw simulations of intermeshing screws
(i.e. the screw barrels are overlapping each other).

• local adaptivity (XFEM based simulation tools), which on the one hand guarantees
a high resolution of the boundaries (especially in the gap regions), on the other hand
introduces difficulties in terms of load balancing in a parallel solver framework and
inhibits the use of highly efficient multigrid techniques due to the arising complexity
of the generated fine structured elements.

From the point of view of TSE simulations (presence of dramatic topological changes of
the computational domain), the technique (B) is unusable, unless only partial alignment
of the mesh is requested, which implies the additional use of technique (C). Summarising
the advantages of the technique (C) one should mainly emphasize the constant matrix
structures, relatively easy meshing, since the computational mesh does not need to be
aligned. This property in addition guarantees the existence of a relatively coarse mesh
being appropriate for multigrid-based solvers, which exhibit superior performance prop-
erties during the solution of the arising linear systems even in a parallel (on the basis
of domain decomposition) framework. As it has been indirectly already mentioned, the
ultimate technique offers itself as the combination of techniques (B) and (C) which will
be presented in this article and is demonstrated on the chosen numerical examples.

2 Governing equations, discretization and mathemat-

ical modeling

As usual [8, 11, 16], we neglect the inertial terms due to the dominant viscous forces, and
therefore the flow of molten polymers is described by the unsteady incompressible Stokes
equations, as follows:

{

̺∂t~υ +∇p = ∇ · S

∇ · ~υ = 0
(1)
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Here, S is the viscous stress tensor S = η(∇~υ + ∇~υT ), ̺ is the constant density, η
represents the shear-dependent viscosity, and the pair (~υ, p) are the unknown velocity and
pressure.

The discretization of the governing equations is performed on the basis of the Finite
Element Method (FEM), and in particular the corresponding extensions are implemented
into the open-source CFD package FeatFlow. For the time discretization the basic
one-step Θ−scheme is used, which allows in general the selection of the fully implicit
Crank-Nicolson (Θ = 0.5) or Backward Euler-Scheme (Θ = 1). Corresponding to the
individual temporal discretization scheme the following system is obtained:

For given ~υn−1, pn−1 and ∆t = tn − tn−1, solve the following system















̺
(

~υn − ~υn−1
)
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= ∆t(Θ− 1)
(

∇ ·
(

η(∇~υn−1 + (∇~υn−1)T )
)

)
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(2)

which is then discretized further in space in the framework of FEM on the basis of a high
order Q2/P1 pair of elements [2, 10]. According to Galerkin FEM, the Stokes equations are
formulated as a variational problem, which in this particular case results in the following
system of equations:
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(3)

where M̺l stands for the lumped mass matrix, Sij corresponds to the given component of
the viscous stress tensor matrix, and the pair Bi/(Bi)T represents the discrete gradient
and divergence operator, respectively. The right hand side term stemming from the time
level tn is as follows:

rhsn := M̺l
~̂υn−1
h +∆t(Θ− 1)Sη

~̂υn−1
h . (4)

As usual for FEM, the global matrices are to be assembled from the local elementwise
contributions. It means the restriction of the finite element mesh during the elementwise
assembly to single elements, where the set {φi} specifies the basis functions spanning the
Q2 finite element space and {ϕk} spanning the (discontinuous) P1 space, respectively.

Concerning the physical properties, the density ̺ is assumed to be constant, whereas
the viscosity η is calculated at each cubature point according to the given shear dependent
rheological model.

From this point on, an additional adjustment of the system to be solved is related to
the presence of internal moving boundaries. Their treatment in this particular case will
be performed on the basis of the so-called Fictitious Boundary Method (FBM) which is a
simple filtering-related technique decomposing the computational domain into a fluid and
a solid subdomain [10]. The fluid domain is then treated as if no FBM was applied, and
the solid subdomain interacts with the fluid subdomain in terms of the imposed internal
Dirichlet boundary conditions (i.e. the rotational velocity components of the ’immersed’
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screws). According to the given method, the only difficulty is to perform a distance com-
putation for all dof’s at every timestep, so to recover the updated filter vector coding
the solid and the fluid subdomain. In general, the method allows to encounter arbitrary
(defined on the basis of surface triangulated descriptions) geometrical configurations of
the elements, provided appropriate signed distance computation libraries are available.
For the moment we restrict ourselves to the so-called Erdmenger screw-profiles [7], which
has the advantage that their description consists of arcs, which allows for straightforward
signed distance computations. Finally, the solution of system (3) with the constraints im-
posed by the FBM methodology is realized within a standard operator splitting approach
in the context of a Discrete Projection Method (DPM) [13, 14]. Before going into details
let us write the system to be solved in a more compact form:

{

1
∆t
A~̂υn

h −Bp̂nh = 1
∆t
rhsn

BT ~̂υn
h = 0,

(5)

where A represents the nonlinear system matrix of the form:

A := M̺l +∆tΘSη. (6)

The main idea of the DPM approach is to decouple the velocity and the pressure compu-
tation and to use a special Pressure-Poisson method. The arising algorithm consists of a
prediction (satisfying momentum balance) and of a correction (satisfying mass conserva-
tion) step, as follows:

• prediction step I: solution of the nonlinear Burgers equation within a defect correc-
tion loop using the pressure field from the previous time step

A~̃υn = rhsn +∆tBpn−1, (7)

with ~̃υn denoting the intermediate velocity field.

• prediction step II: enforcing incompressibility of ~̃υn by solution of a corresponding
discrete Pressure-Poisson-like equation

P̺q =
1

∆t
BT ~̃υn with P̺ :=

[

BTM−1
̺l B

]

(8)

for the pressure update q.

• correction step III:
pn = pn−1 − q, (9)

~υn = ~̃υn −∆tM−1
̺l Bq. (10)

According to the fully consistent realization of the above described algorithm one
should apply an outermost iterative loop, so that the solution pair (~υn, pn) satisfies both
conservation of mass and momentum. Unfortunately, for practical reasons (due to dra-
matic increase of computational time) such a realization does not always pay off, and there-
fore the simplified realization (only one outermost iteration/timestep) enforcing explicitly
only mass conservation is being used, which under the assumption of small timesteps
provides a sufficient compromise between accuracy and computational cost [13, 14].
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3 Mesh Deformation (MD) technique

From the engineering point of view the use of CFD software packages in industrial envi-
ronment for simulation purposes is (mainly if not only) justified if the given simulation
software fulfills the requirements put on its productivity measure, which is directly related
to the absolute and relative time required for preprocessing and the simulation itself under
the guarantee of a reasonable computational accuracy while sustaining a wide geometrical
variability (i.e. arbitrary screw shapes in case of CRTSE simulations). The fulfillment of
such a criterion helps to perform very efficient case studies not only with respect to opera-
tion conditions but also with respect to geometrical investigations, so that the results can
directly be transferred onto the production level. The key to satisfy such a requirement
in the framework of a twin-screw simulation software is addressed in this work on the ba-
sis of an easy-to-implement Mesh Deformation Technique embedded in case of unsteady
flow simulations into an Arbitrary Lagrangian-Eulerian (ALE) framework. Aside from
the underlying high order FEM-FBM discretization supported with parallel multigrid-
based linear solvers, the above mentioned mesh deformation components guarantee the
required flexibility of the developed simulation tool without deteriorating the convergence
and accuracy properties of the basic solver [2, 10].

Before going deeper with the description of the Mesh Deformation (MD) technique
developed for the simulation of TSEs we would like to point out that up to our knowledge
such a realization was not reported before and its ability is not constrained only for TSE
simulations, but by means of further adjustments (such as its blockwise realization) it is
completely general and computationally reasonably cheap. The first important attribute
making our approach different from others described in the literature is that the realiza-
tion is only algebraic and not PDE based. However, as it is also realized in typical PDE
based MD techniques, the core of our technique is related to a construction of the so-called
monitor function M(x), being responsible for addressing the required size distribution of
the resulting mesh elements while sustaining their original and this way constant con-
nectivity. The carefully constructed monitor function is then transformed into a weight
distribution w(x) within an iterative (repetitive) algebraic mesh smoothening procedure,
also known as ”Laplacian” smoothening with the difference that these procedures have
been so far preferred only to correct or smooth the deformed mesh predicted by classical
PDE based techniques, which corresponds to an isotropic setting of the weight distribu-
tion w(x) = 1.0. According to our realization, the time-expensive PDE prediction step
can be completely skipped and equivalently substituted with an anisotropic counterpart of
the Laplacian mesh smoother operating by means of a corresponding weight distribution
wj as follows:

xnew
i = (1− ω) · xold

i + ω ·

if ∃eij
∑

j=1,n

wjx
old
j

if ∃eij
∑

j=1,n

wj

for i = 1, n (11)

where xi are the mesh vertice coordinates, eij are the edges connecting the element ver-
tices, ω is the underrelaxation parameter (usually set to 0.25), and n is the total number
of mesh nodes. The only drawback, stemming from a strictly mathematical point of view
is that we cannot guarantee or prove (yet) the properties of the generated deformed mesh,
but as experienced on the number of processed examples we observe the robustness of the
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proposed numerical technique. The construction of the monitor function M(x) is in fact
arbitrary, it may reflect or combine different aims expected from the deformation since it
can react on field data such as the shear-rate ||γ̇|| distribution, temperature gradients or
a signed distance function d(x) representing the distance distribution to the closest solid
interface. Our choice is based on the latter, since this may help to adapt the mesh espe-
cially in the gap regions appearing on different locations during the rotation of the screws
in the barrel of extruders. Due to the underlying FBM methodology the construction of
a corresponding signed distance function is required anyway, since it makes it possible to
separate the fluid domain from its counterpart - the solid (screw) domain. Accordingly,
we propose to construct distance fields being evaluated with respect to the individual
screws and the barrel itself (dLeftScrew, dRightScrew, dBarrel). These distance distributions are
then used to be converted into a Monitor function M(x) addressed by only one single
field. According to the most important guidelines for the construction of such a conversion
mechanism a) the number of cells covering the screw domain should be minimal - even for
the price of poor aspect ratios - since they do not actively contribute to the resolution of
the fluid domain, and b) the smallest elements should be located in the screw/fluid inter-
face regions enhancing a maximal resolution of the underlying interface region. Assuming
that the constructed distance field is negative inside of the solid domain and positive in
the fluid domain we propose a conversion mechanism (di ⇒ wi) as indicated in Fig. 1,
where di=[LeftScrew,RightScrew,Barrel] serves as input in millimeter units and provides the cor-
responding weights wi as output. These individual weights are then casted into a unique
single field weight distribution w as follows:
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Figure 1: Left: construction of the weight distribution wi = f(di). Right: graphical
representation of wi = f(di).

w = MIN(wLeftScrew · wRightScrew · wBarrel, 25)
2.5

It is obvious from the formula above that the final weight distribution w is amplified
exactly there where the two or even three input weight distributions have their maxima,
i.e. the gap regions between the screws or between the screws and the barrel.

The only remaining step in the design of our weight distribution step is a normalization
procedure that extends the usability of the method to general unstructured meshes as well,
which is achieved by means of multiplying the previous weight distribution w with the
element volume distribution function which one can obtain by means of an L2 projection
from the Q0 (piecewise constant) space to the Q1 (trilinear) space.
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In order to gain a better insight into the mesh adaptation capability of the proposed
MD method it is demonstrated in Fig.2 and Fig.3, which show the isotropically smoothed
(w = 1) initial coarse mesh and its deformation after 3 successive refinements and three
different cross-sections of the corresponding mesh used for a typical simulation of TSEs. It
should also be pointed out that the generation of coarse meshes (according to the incorpo-
rated multigrid technique) for simulations is straightforward and can be fully automated
by means of a block structured mesh generation function, as follows:

Computational Mesh := f(nr, nα, nβ, nz, Rin, Rout, A, L, h)

where the parameters nr, nα, nβ, nz are the number of required cells in the radial, outer
circumferential, shared circumferential, and longitudinal direction and the geometrical
parameters Rin, Rout, A, L represent the inner/outer radius of the barrel, axis distance
between the rotation axis, length of the barrel and the parameter h represents the height
of the cut flattening the connection regions of the barrels. Aside from the advantage
of reducing the preprocessing time spent on mesh generation (definition of boundary
conditions) to a negligible amount such a function based mesh generation plays a key role
in performing mesh convergence studies and CRTSE performance case studies, as well.

Figure 2: Block structured coarse mesh (Level 1) (left) postprocessed by means of the
proposed MD technique with respect to the implicitly given screw geometry (middle)
leading to the fine level (Level 3) computational mesh (right).

Figure 3: Result of the proposed MD technique. Views of different cutplanes perpendic-
ular to the cartesian axis. Regions colored with orange/green represent the fluid/solid
domains.
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Concerning the ALE framework we follow its computationally cheapest, simplest but
best understood Backward Euler realization [18] which under the assumption of small
timesteps is still a reasonable candidate especially in light of the highly non-linear shear
dependent rheological fluid properties, which already pose certain restrictions on the
timestep size due to stability reasons. The mesh velocity is also evaluated in a simple
way, as the change of location of the mesh nodes divided by the timestep size, however, it
is very important to remark that the input mesh into the corresponding MD step at the
given timestep is identical to the already deformed mesh used in the previous timestep.
This way, one can achieve a more or less continuous motion of the mesh, which is a pre-
requisite to a proper realization of the ALE framework [18]. According to our realization
the regulation of the mesh velocity is achieved by the number of anisotropic Laplacian
smoothening steps which is on the order of 64 during the initialization but only on the
order of 4-8 during the unsteady simulations depending on the timestep size.

4 Summary of practical simplifications

Having in mind the computational efforts required for accurate simulations of non-Newtonian
flows in TSEs especially in a framework of extensive parameter studies one should exploit
as much of justified simplifications as possible so to optimize the overall computational
costs. From this point of view there are three recommended simplifications which under
certain circumstances may dramatically accelerate the individual computations. These
are the following ones:

• periodic boundary conditions

• moving reference frame

• ’false’ time-stepping

In the following we will discuss the advantages which these simplifications offer and the
conditions under which their usage is justified.

The use of periodic boundary conditions possesses a great potential especially in case
studies involving different mixing elements because it may provide valuable information
on the characteristics of given segments under the assumption that the segment repeats
itself at least several times in the surrounding of the analyzed extrusion segment. An
other benefit of this simplification lies in the reduction of the computational domain,
which otherwise should contain an artificial inflow/outflow region being responsible only
for providing a relaxation region before entering and after leaving the mixing region
contributing with an unwanted computational overhead. The only disadvantage that this
simplification suffers of is the fact that flowrates can be only indirectly imposed by means
of variation of the corresponding pressure drop values implicitly addressing the requested
volumetric throughput. The use of a moving reference frame in the context of TSEs is
restricted only to computational analysis of infinitely long smooth (without secondary
structures) conveying elements since it can be exploited that if the computational frame
moves exactly with the velocity vFrame = LPitchfRot (LPitch stands for the pitch length
and fRot for the rotation speed of the mixers) the mixers resemble a steady geometry
possessing the rotational (inner) Dirichlet boundary conditions and the reference frame
velocity at the same time. Due to relying on the infinitely long TSE assumption it is
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straightforward to combine this simplification with periodic boundary conditions gaining
a special insight into the problem in question being described with only one ”pseudo
steady” solution representing the full nonstationary process.
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Figure 4: Schematical realization of the ’false’ time-stepping method covering the full 2π
rotation space with 20◦ spacing.

Another challenge of the numerical simulation of CRTSEs is arising due to the various
physical time scales present in the underlying flow problem. In order to give a deeper
physical insight it is worthwhile to mention the time scales of the momentum diffusion
τd ≈ 10−5 − 10−4s (assuming representative molecular viscosities are on the order of
< 105 Pa · s) and the time scale of the process itself τr ≈ 100s (assuming rotational
frequencies ≈ 60 min−1) according to which the viscous forces are clearly dominating the
inertial forces (Stokes flow). As a result the flow is somewhat without a memory or in other
words: it is expected that any kind of perturbations such as changing inflow conditions or
flow structures past internal obstacles or screws neither arise nor sustain for a long time
(t− t0 ≫ τd). From a practical point of view this means that even in case of a transient
simulation corresponding to the same geometrical configuration of the screws a pseudo-
steady state is reached already after a simulation time on the order of ≈ 10−5 s regardless
of the imposed initial conditions (i.e. velocity and pressure distributions over the fluid
domain). Consequently, this enables the extension of the transient simulation of the
process into a ’false’ time-stepping framework whereas a series of (independent) transient
(or even steady [3, 8]) simulations are to be performed covering the available range of screw
superposition angles (which can be often less than 360◦ depending on the particular screw
geometry). A schematical realization of the technique is demonstrated in Fig. 4, which
addresses the time evolution of a pseudo quantify (referring to overall pressure drop,
specific power consumption, distribution of shear rates or even local velocity, pressure,
etc.) in time computed for a series of 20◦ superposition angles and for different initial
conditions (subpictures). This simplification offers itself to be useful for screw geometries
being different than the classical conveying screws (i.e. conveying screws with secondary
structures - SME [11] - or kneading elements). In these cases we follow a strategy to cover
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the range of screw superposition angles by 3◦ spacing so to get a comprehensive picture
into the full transient flow dictated by the geometrical changes.

5 Convergence Analysis of the Developed Numerical

Scheme in Applications to CRTSEs

This section is devoted to a mesh convergence study with respect to a typical performance
analysis of CRTSEs. Such performance analysis are well established procedures from the
available literature [16, 17] and are carried out in order to characterize or to compare the
operation of one mixing screw element against another. Concerning the reconstruction
of the screws we follow the strategy proposed by Booy [4] (see Fig. 5) which has been
due to its excellent geometrical properties (the clearance between the screws is during the
whole rotation constant) successfully established in practice (i.e. [1]). The required set of
parameters uniquely defining the geometrical description of the computationally analyzed
screw and barrel is addressed in Tab. 1, where all the parameters have been defined in the
previous section except for the two clearances ∆S/B and ∆S/S defining the Screw/Barrel
and the Screw/Screw gap sizes (in fact, ∆S/S is redundant since its value is identical to
A−ROut −RIn).

Table 1: Complete set of the used geometric parameters.

ROut = 20 mm RIn = 10 mm A = 30.4 mm L = 30 mm
h = 1 mm ∆S/B = 0.4 mm ∆S/S = 0.4 mm LPitch = 60 mm
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Figure 5: Geometrical construction of the screws according to Booy [4].

According to industrial experience related to synthetic rubber processing we have
chosen a model material experiencing shear thinning rheological properties described by
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the Ellis model of the following form

µ = µ0 ·
1

1 +
(

||
.
γ||

||
.
γ0||

)α (12)

closed by the values of parameters given in Tab. 2 covering the behavior of typical synthetic
rubbers often processed in industrial scales.

Table 2: Parameters defining the Ellis rheological model.

µ0 = 105 Pa · s ||
.
γ0|| = 10−0.1 · s−1 α = 0.8
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Figure 6: Flowrate characteristics of the computationally analyzed screw segment for
different pressure drops evaluated for two mesh resolutions.

The only remaining parameters required for a unique definition of our test case are
related to the operation conditions out of which only the rotational frequency is free (set
to fRot = 120 min−1) while the pairs of volumetric flow rates - V̇ - and pressure drops
-
(

dp
dz

)

- are to be determined to cover the industrially interesting region of operation

conditions constrained by
[

(

dp
dz

)

= 0, V̇ = max
]

and
[

(

dp
dz

)

= max, V̇ = 0
]

. In the follow-

ing, we demonstrate the computationally obtained results for such a parameter study in
the framework of a mesh convergence study so to reveal the accuracy of the developed
simulation tool. For this purpose there were generated two block structured hexahe-
dral coarse meshes (Level 1) which have been 3 times successively refined (2x2x2) and
deformed according to our proposed MD mechanisms described in the previous section.
The parameters of the two coarse meshes were the following:

• Mesh 1: nr = 3, nα = 14, nβ = 6, nz = 8 resulting in 1,008 x 8 x 8 = 64,512 elements
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Figure 7: Power consumption characteristics of the computationally analyzed screw seg-
ment for different pressure drops evaluated for two mesh resolutions.

• Mesh 2: nr = 5, nα = 22, nβ = 10, nz = 12 resulting in 3,960 x 8 x 8 = 253,440
elements

As an additional remark concerning the generated meshes, it is worth to be mentioned
that the meshes have been extruded to only a half a pitch length in the axial direction due
to the underlying periodicity which is this way fully exploited. Since in this section we
aim mainly to demonstrate the major advantages of the proposed numerical techniques
(high order FBM-FEM with MD) in the framework of a convergence study we employed
the simplifications of periodic BCs and moving reference frame (introduced in the pre-
vious section) so to contribute with a benchmark configuration to the CFD community
specialized to CRTSEs. The mesh convergence of the proposed numerical scheme on the
introduced CRTSE benchmark is demonstrated in terms of integral extrusion character-
istics V̇ = f

(

dp
dz

)

and dP
dz

= f
(

dp
dz

)

in the corresponding Fig. 6 and 7 such as in terms of
volumetric shear rate distributions (Fig. 8) and cross-sectional field distributions (Fig. 9).
As it can be seen from the mentioned figures a satisfactory convergence – fulfilling less
than 5% tolerances required by engineers – is achieved.

6 Numerical Simulation of CRTSEs - full case study

In this section we will give an insight into a typical case study of CRTSEs demonstrating
the capabilities of our developed computational method. Since one of the main benefits of
our proposed methodology is related to its favorable productivity measure (i.e. negligible
preprocessing time for nearly arbitrary geometrical complexity guaranteeing a reasonable
computational accuracy), it is more than natural to investigate its performance in a typical
case study, which is intended to provide the necessary information to a process engineer
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Figure 8: Mesh convergence of shear stress distribution in histogram representation for
different pressure drops.

during the design of a particular TSE machine for a process under consideration. For this
purpose six very similar cases will be analyzed, with the only difference of given geomet-
rical details and their respective influence onto the main process parameters. Operational
conditions, fluid parameters and the main geometrical parameters (Pitch length LPitch,
axial distance A and inner/outer barrel radii ROut, RIn) are considered to be the same
and equal to the values introduced in the previous section. The first three cases (Case 1a,
1b, 1c) are corresponding to the previously introduced continuous two-flighted elements,
but with varying Screw/Barrel and Screw/Screw gap sizes (∆S/B,∆S/S - see Tab.3).

The second set of cases (Case 2a, 2b, 2c) corresponds to screw segments characterized
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Figure 9: Convergence of the axial velocity distribution in three different orthogonal
cutplanes.

Table 3: Considered gap size parameters for Cases 1a, 1b, 1c.

Case 1a Case 1b Case 1c
∆S/B = ∆S/S = 0.4 mm ∆S/B = ∆S/S = 0.2 mm ∆S/B = ∆S/S = 0.5 mm

with secondary structures. The construction of such screw elements is achieved by the
intersection of the continuous screw elements with a circular cut-off function periodically
rotated within a certain cut-off pitch length for a certain number of evenly distributed
(same offset angle) cut-off circles. The rotation radius of the cut-off circles coincides with
the outer radius of the screws (ROut−∆S/B) and they are rotated around the identical axis
as the screws’ rotation axis. The two-dimensional construction of the screws is addressed
in Fig. 10 and the three-dimensional realization of the underlying cases is displayed in
Fig. 11. In order to have a comparison on the same basis we considered for the Cases 2a,
2b, 2c the same radii of the cut-off circles RCutOff = 5 mm and also the same resulting
number of secondary structures per screw pitch length (NCutOff

L
= 6), which is achieved by

adjusting the number of cut-off circles NCutOffCircle (or cut-off offset angle) and the cut-off
pitch length (LCutOff). The complete set of parameters uniquely defining the shape of the
considered screws is shown in Tab. 4.

Concerning the simplifications used for the simulations, for Cases 1a,1b, 1c we used
the periodic boundary conditions with the reference frame velocity transformation, while
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Table 4: Considered gap size parameters for Cases 2a, 2b, 2c.

parameter Case 2a Case 2b Case 3c
LCutOff ∞ 60 mm 15 mm

NCutOffCircle 6 4 2
∆S/B, ∆S/S 0.4 mm 0.4 mm 0.4 mm

for Cases 2a, 2b and 2c we used the periodic boundary conditions with the ’false’ time-
stepping technique, since the solution becomes periodically (in time) transient due to
the different superposition of the secondary structures on the screws. According to the
underlying ’false’ time-stepping technique, a sequence of simulations for 3◦ offset angles
has been performed and averaged for postprocessing reasons. The obtained flowrate
and power consumption characteristics on basis of the time averaged mean values and
deviations have been compared with the other three cases (1a, 1b, 1c) in Fig. 12 and
Fig. 13. As it can be seen from the comparisons the responses on the introduced deviations
are clearly distinguishable, moreover, in hand of a process engineer they may play a
significant role in the design of the extruder to achieve the goals expected from the overall
extrusion process. It is obvious that more detailed representations of the resulting field
data would further contribute to the understanding of the process, such as histograms of
shear rate distributions (as shown in the previous section), estimation of the integral or
even local heat release (due to internal friction) intensity.
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Figure 10: Geometrical construction of the screws with secondary structures.

7 Conclusions

In this paper we have presented a novel computational strategy, which exploits the fea-
tures of its individual components and offers the advantage to be casted to a black-box
simulation tool conditioned only with minimum preprocessing requirements. As shown
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Figure 11: Geometrical construction of the considered secondary screw profiles for Case
2a, Case 2b and Case 2c.
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Figure 12: Flowrate characteristics for the computationally analyzed screw segments.

in the numerical example in the framework of a mesh convergence study the prototype of
such an engineering tool guarantees a reasonably high accuracy and is flexible to predict
the responses of the material processing operations aside of changes of operation con-
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Figure 13: Power consumption characteristics for the computationally analyzed screw
segments.

ditions, physical parameters and geometrical changes involving secondary structures, as
well. The extension of the capabilities of such a simulation tool to single-, triple- or even
arbitrary number screw extruders, such as the extension of the screw descriptions from
implicit (in terms of functions) to fully general surface triangulations (i.e. STL descrip-
tion) is straightforward.

Acknowledgments
Financial support of DFG (SFB 708 TP-B7, TU 102/43-1), AiF and the SIGMA common
research project is gratefully acknowledged. Calculations have been carried out on the
LiDOng cluster at TU Dortmund. We would like to thank the LiDOng cluster team for
their help and support.

References

[1] Alsteens B., Legat V. and Avalosse Th., Parametric study of the mixing efficiency in
a kneading block section of a twin-screw extruder, University of Louvain, 2004.

[2] Bayraktar E., Mierka O., Turek S., Benchmark Computations of 3D Laminar
Flow Around a Cylinder with CFX, OpenFOAM and FeatFlow, International Jour-
nal of Computational Science and Engineering, 7-(3), pp:253–266, 2012, doi:
10.1504/IJCSE.2012.048245

18



[3] Bertrand F., Thibault F., Delamare L. and Tanguy P.A., Adaptive finite element sim-
ulations of fluid flow in twin-screw extruders, Computers & Chemical Engineering,
27-(4), pp:491–500, 2003, ISSN 0098-1354, doi: 10.1016/S0098-1354(02)00236-3.

[4] Booy, M.L., Geometry of Fully Wiped Twin-Screw Equipment, Polymer Engineering
& Science, 18, pp:973984, 1978, doi: 10.1002/pen.760181212

[5] Damanik, H., Hron, J., Ouazzi, A., Turek, S., A monolithic FEM approach for the log-
conformation reformulation (LCR) of viscoelastic flow problems , J. Non-Newtonian
Fluid Mech., 165(19-20), pp: 1105–1113, 2010, doi:10.1016/j.jnnfm2010.05.008.

[6] Damanik, H., Hron, J., Ouazzi, A., Turek, S., Monolithic Newton–multigrid solu-
tion techniques for incompressible nonlinear flow models, International Journal for
Numerical Methods in Fluids, 71, pp: 208–222, 2012, doi: 10.1002/fld.3656.

[7] Erdmenger R., Mehrwellen Schnecken in der Verfahrenstechnik, Chem. Ing. Tech.,
36, pp:175–185, 1964.

[8] Hétu J.-F., Ilinca F., Immersed boundary finite elements for 3D flow simula-
tions in twin-screw extruders, Computers & Fluids, 87-(25), pp:2–11, 2013, doi:
10.1016/j.compfluid.2012.06.025
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