Deutsche Forschungsgemeinschaft DFG

Numerical Simulation of Monodisperse Droplet Generation in Nozzles

DFG – SPP 1423 "Prozess-Spray"

Prof. Dr. Stefan Turek Angewandte Mathematik und Numerik, LS III Technische Universität Dortmund ture@featflow.de Dr. Otto Mierka Angewandte Mathematik und Numerik, LS III Technische Universität Dortmund omierka@mathematik.uni-dortmund.de

<u>http://www.featflow.de</u> <u>http://www.mathematik.tu-dortmund.de/LS3</u>

Otto Mierka | TU Dortmund

Motivation

Accurate, robust, flexible and efficient simulation of multiphase problems with dynamic interfaces, particularly in 3D, is still a challenge!

Specific Application: droplet generation in pneumatic jets

Problem: The results (dispersity, droplet generation frequency, stream length) are due to many parameters, i.e., density (ratio), viscosity (ratio), rheological behaviour, surface tension, flow conditions,...

Methods

• Mass conservative FEM levelset approach with "exact" interphase reconstruction. Implicit treatment of the surface tension force term

- Fast solvers (parallel multigrid) for scalar equations and for the Pressure-Poisson equation supporting large density jumps
- Systematic validation and benchmarking (CFX, FEMLAB, FLUENT).
- Incorporation of adaptive grid deformation techniques (ALE approach)

Governing Equations

Otto Mierka | TU Dortmund

Efficient Flow Solver

Main features of the FeatFlow approach:

- Parallelization based on domain decomposition
- High order discretization schemes
- Use of unstructured meshes
- Newton-Multigrid solvers
- FCT & EO stabilization techniques
- Adaptive grid deformation

Discretization:

- Navier-Stokes: FEM Q_2/Q_1 in space
- Level Set: DG-FEM P₁
- Crank-Nicholson scheme in time

Efficient Interphase Capturing

Level Set Method (\rightarrow "smooth" distance function)

$$\frac{\partial \phi}{\partial t} + \mathbf{v} \cdot \nabla \phi = 0$$

Benefits:

- Provides an accurate representation of the interphase
- Provides other auxiliary quantities (normal, curvature)
- Allows topology changes
- Treatment of viscosity, density and surface tension without explicit representation of the interphase
- Adaptive grid advantageous, but not necessary

Problems:

- It is not conservative \rightarrow mass loss
- Needs to be reinitialized to maintain its distance property
- Higher order discretization: possible, but necessary?

Problems and Challenges

• **Steep gradients** of the velocity field and of other physical quantities near the interphase (oscillations!)

 Reinitialization (smoothed sign function, artificial movement of the interphase (→ mass loss), how often to perform?)

• **Mass conservation** (during advection and reinitialization of the Level Set function)

• Representation of **interphacial tension**: CSF, Line Integral, Laplace-Beltrami, Phasefield, *etc.*

• Explicit or implicit treatment (→ Capillary Time Step restriction?)

Reinitialisation

Alternatives

- Brute force (introducing new points at the zero level surfaces)
- Fast sweeping (applying "advancing front" upwind type formulas)
- Fast marching
- Algebraic Newton method
- Hyperbolic PDE approach
- many more.....

Maintaining the signed distance function by PDE reinitialization $\frac{\partial \phi}{\partial \tau} + \mathbf{u} \cdot \nabla \phi = S(\phi) \qquad \mathbf{u} = S(\phi) \frac{\nabla \phi}{|\nabla \phi|} \iff |\nabla \phi| = 1$

Problems:

- What to do with the sign function at the interphase? (smoothing?)
- How often to perform? (expensive \rightarrow steady state)

Globally defined normal vectors

Otto Mierka | TU Dortmund

Fine-tuned reinitialisation

Treatment of surface tension

Convergence analysis for density jumps

Otto Mierka | TU Dortmund

Validation and benchmarking

Experimental Set-up with AG Walzel (BCI/Dortmund)

Validation parameters:

- frequency of droplet generation
- droplet size
- stream length

Otto Mierka | TU Dortmund

Benchmarking of the dripping mode

Benchmarking of the dripping mode

Jetting mode extension

Comparison with experimental results

Otto Mierka | TU Dortmund

In case of monodisperse droplets:

 $\dot{V}_D = f V_{\text{droplet}}$

Geometrical parameters:

- Capillary diameter
- Outer pipe diameter
- Contraction ratio and angle

Alternatives of regulations:

- Dispersed phase
- Continuous phase
- a) Mean flowrate
- b) Regulation frequency
- c) Regulation characteristics

Small capillary $\dot{V}_{D,\text{mean}} = 0.75 \dot{V}_{STD}$

Smaller capillary $\dot{V}_{D,\text{mean}} = 0.75 \dot{V}_{STD}$ 0.00999999998

 $d_{\rm drop} = 4.5\,mm$

Future tasks

Mathematical model Application Numerical experiments for cases Solver adjustment for large jump with large jumps of the physical of physical paramters quantities Grid deformation method Influence of the operation conditions on the performance of Keep mass conservation under the process control Influence of flowrate modulation of •Software performance (speed up) the phases Influence of non-Newtonian fluid models Comparisons, validation, benchmarking