

CFD simulation of monodisperse droplet generation by means of jet break-up

DFG – SPP 1423 "Prozess-Spray"

Prof. Dr. Stefan Turek Angewandte Mathematik und Numerik, LS III Technische Universität Dortmund ture@featflow.de

Dr. Otto Mierka Angewandte Mathematik und Numerik, LS III Technische Universität Dortmund omierka@mathematik.uni-dortmund.de

<u>http://www.featflow.de</u> <u>http://www.mathematik.tu-dortmund.de/LS3</u>

Motivation and Goals

CFD simulation tool: Controlled droplet generation in jets Simulation results: dispersity, droplet generation frequency, jet length Simulation parameters: physical parameters, rheological properties, modulation parameters

1) Jetting simulations with Newtonian fluids

3) Modulation analysis of jetting simulations

2005 NOVA Chemicals Corporation

2) Non-Newtonian fluids ...

Chhabra: Bubbles, Drops and Particles in Non-Newtonian Fluids

Otto Mierka | TU Dortmund

Increasing pressure

Methods

• Mass conservative FEM levelset approach with "exact" interphase reconstruction. Implicit treatment of the surface tension force term

• Fast solvers (parallel multigrid) for scalar equations and for the Pressure-Poisson equation supporting large density jumps

- Systematic validation and benchmarking (CFX, FEMLAB, FLUENT, OpenFOAM).
- Incorporation of adaptive grid deformation techniques (ALE approach)

Governing Equations

Efficient Flow Solver

Efficient Interphase Capturing

Level Set Method (\rightarrow "smooth" distance function)

$$\frac{\partial \phi}{\partial t} + \mathbf{v} \cdot \nabla \phi = 0$$

Benefits:

- Provides an accurate representation of the interphase
- Provides other auxiliary quantities (normal, curvature)
- Allows topology changes
- Treatment of viscosity, density and surface tension without explicit representation of the interphase
- Adaptive grid advantageous, but not necessary

Problems:

- It is not conservative \rightarrow mass loss
- Needs to be reinitialized to maintain its distance property
- Higher order discretization: possible, but necessary?

Problems and Challenges

• **Steep gradients** of physical quantities at the interphase

• **Reinitialization** (smoothed sign function, artificial movement of the interphase)

• Mass conservation (during advection and reinitialization of the Level Set function)

• Representation of **interphacial tension**: CSF, Line Integral, Laplace-Beltrami, Phasefield, *etc.* Cellwise averaging $\rho_e = x\rho_1 + (1-x)\rho_2, \quad \mu_e = x\mu_1 + (1-x)\mu_2$ PDE based reinitialization $\frac{\partial \phi}{\partial \tau} + \mathbf{u} \cdot \nabla \phi = S(\phi) \qquad \mathbf{u} = S(\phi) \frac{\nabla \phi}{|\nabla \phi|} \iff |\nabla \phi| = 1$

CSF smoothening with Dirac δ function $\mathbf{f}_{\text{ST}} = \sigma \kappa \mathbf{n} \delta(x, \varepsilon)$

Validation for the rising bubble problem

Free parameters to adjust Eo and Mo: $g_z \sigma_{gl}$

- 1) Clift R., Grace J.R., Weber M. *Bubbless, Drops and Particles*. 1978, Academic Press, New York.
- 2) Annaland M. S., Deen N. G., Kuipers J. A. M., *Numerical simulation of gas bubbles behaviour using a three-dimensional volume of fluid method. Chem. Eng. Sci.,* 2005, 60(11):2999–3011, DOI: 10.1016/j.ces.2005.01.031

Rising bubble – Case B

Rising bubble – Case C

Rising bubble – Case D

Benchmarking on experimental results

Experimental Set-up with AG Walzel (BCI/Dortmund)

Validation parameters:

- frequency of droplet generation
- droplet size
- stream length

Benchmarking on experimental results

Benchmarking on experimental results

iRMB - Ying Wang, Institute for Computational Modeling Civil Engineering, TU Braunschweig Mühlenin pfordtstraße 4-5 D-38106, Braunschweig, Germany

	Separation frequency [Hz]	Droplet size [dm]	Stream Length [dm]
Exp	0,58	0,062	0,122
Sim	0,37	0,068	0,113

 $[\]frac{\text{Exp. results} \rightarrow \frac{\text{Group of Prof. Walzel}}{\text{BCI/Dortmund}}$

Validation for wide range of experiments

Experimental results: Group of Prof. Walzel BCI/Dortmund

Example 1: $\dot{V}_D = 1,1 \text{ ml/min}$ $\dot{V}_C = 13,0 \text{ ml/min}$ $\dot{V}_D / \dot{V}_{tot} = 0,08$

Example 2: \dot{V}_{D} = 1,5 ml/min \dot{V}_{C} = 41,1 ml/min $\dot{V}_{D}/\dot{V}_{tot}$ = 0,04

Effects of contact angle?

Example 3: \dot{V}_{D} = 2,5 ml/min \dot{V}_{C} = 123,2 ml/min \dot{V}_{D} / \dot{V}_{tot} = 0,02

Validation of non-Newtonian rheological models

		Shear thining n=0,75				Shear thickening n=1,50			
		Damanik*		Our results		Damanik*		Our results	
Power law model 2D reference data Same discretization Same convergence	level	C _D	CL	C _D	CL	C _D	CL	C _D	CL
	1	3,20082	-0,01261	3,20450	-0,01215	13,6209	0,34250	13,6233	0,34347
	2	3,26433	-0,01342	3,26637	-0,01347	13,7380	0,35052	13,7379	0,35037
	3	3,27739	-0,01342	3,27755	-0,01343	13,7688	0,34941	13,7688	0,34928

n=0,75 n=1,50 Cells pressure Cells pressure -0.0993 -0.243 -0.0867 -0.219 -0.0741 -0.195 -0.0614 - 0.17 -0.0488 -0.146 -0.0362 -0.122 -0.0236 -0.0974 -0.011 -0.073 -0.00163 -0.0487 -0.0142 -0.0243 -0.0269 -4.84e-0 Cells Vect Ma Cells Vect Mag -0.416 -0.428 -0.385 -0.374 -0.333 -0.343 -0.291 - 0.3 -0.249 -0.257 -0.214 -0.208 -0.166 -0.171 -0.128 -0.125 -0.0856 -0.0831 -0.0416 -0.0428 0 Cells viscosity Cells viscosity -0.00998 -0.00942 -0.009 -0.00848 -0.00801 -0.00754 -0.00702 -0.0066 -0.00603 -0.00566 -0.00504 -0.00472 -0.00405 -0.00378 -0.00306 -0.00284 -0.00207 -0.0019 -0.00108 -0.000963 -2.27e-05 -9.36e-05

Monodisperse droplet generation

Monodisperse droplet generation in nozzles

Conclusions and future tasks

- CFD solver improvement:
 - Non-Newtonian rheological model (Power law) 🗸
 - More realistic ratios of physical properties (Validation for Rising Bubble)
 - Implementation of a contact angle model
 - Adaptivity (grid deformation, hanging nodes)
 - HPC (GPU) parallelization
- Application of the developed CFD tool:
 - Testing in wider range of operation conditions 🛛 🕅
 - Modulation estimation of ranges for generation of monodisperse droplets
 - Preliminary simulations for non-Newtonian fluids

Validated prediction tool for tailor-made droplet generation <u>Comparisons, validation, benchmarking</u>

Thank You for Your attention!

