

# Numerical simulation techniques for the efficient and accurate treatment of local fluidic transport processes together with chemical reactions

Stefan Turek, Otto Mierka,

Chair of Applied Mathematics and Numerics, LS III





## **Scientific goals**

Extend the up-to-now developed and validated methodology and realize the corresponding software implementation in the CFD package FEATFLOW.

The main numerical ingredients to be combined/extended are the following:

- high-resolution <u>Algebraic Flux Correction (AFC)</u> stabilization schemes to suppress numerical diffusion and to prevent nonphysical oscillations
- locally adaptive <u>Grid Deformation (GD)</u> techniques applied on (general) unstructured meshes with the aim to obtain high-resolution computational meshes satisfying additional requirements on the relative orientation with respect to local velocity fields in order to further decrease the extent of numerical diffusion
- time-scale independent reaction modules for the treatment of mutually coupled <u>fast chemical reactions</u> supplemented with appropriate models to reflect the extent of segregation of the individual species



## **High-resolution AFC stabilization**

$$\frac{\partial c}{\partial t} + \nabla \cdot (\mathbf{v}c) - \alpha \Delta c = f(c) \qquad \text{with} \quad \alpha \to 0$$

Standard discretizations face shortcomings for nonsmooth solutions

- Low order methods lead to smearing
- High order methods introduce unphysical oscillations (potentially leading to simulation blowup)

Remedy: Algebraic Flux Correction method

- Local extremum diminishing (+)
- Positivity preserving (+)
- Transforms the linear problem to a non-linear one (-)
- Robust and highly accurate (+)



enströmungen

Otto Mierka 🔟 technische universität



## **PDE-free mesh deformation method**

- Construction of (dynamic) monitor function (distance to interface, curvature, concentration gradients, vorticity
- Anisotropic Laplace smoothening (fast)
- Arbitrary Lagrangian-Eulerian Method (ALE) for non-stationary problems
- Handling geometrically complex/dynamic problems in the framework of FBM



Otto Mierka tu technische universität

### Ses Reaktive Blasenströmungen

## Simulation of chemical reactions (preliminary work within the SPP 1740)

 $A + B \xrightarrow{k \to \infty} P \qquad \partial_t \phi + u \cdot \nabla \phi = \nabla \cdot (d\nabla \phi) \text{ with } \phi = c_A - c_B \text{ Toor and Chiang}$ Adopted simulation technique: Simultaneous use of two meshes /discretizations: - equidistant, structured, low resolution for velocity - deformed, structured, high resolution for passive/active scalar Efficient and robust interpolation from mesh to mesh in parallel framework Transported scalar field  $\phi$  Monitor function Computational mesh figure q = 0 Monitor function Computational



Otto Mierka 🔟 technische universität



#### Simulation of the super-focus mixer (SFM)



Geometry of the final SFM with visualization of the reactants

#### Intermediate SFM geometry and operation conditions

Mixing chamber: length: 22.5 mm initial width: 19.9 mm height: 500 µm opening angle: 50°



Intantaneous reaction scheme:  $A + B \xrightarrow{k \to \infty} P$ 

Investigated flowrates: 100 mL/h 250 mL/h 500 mL/h

$$D_{A,B} = 3.0 \cdot 10^{-10} \ m/s^2$$

Otto Mierka 🔟 technische universität



## **Computationally obtained flowfield in the Superfocus mixer**

![](_page_6_Figure_4.jpeg)

Flowrate:  $\dot{V} = 100 \ mL/h$ 

Otto Mierka 🔟 technische universität dortmund

![](_page_7_Picture_2.jpeg)

## **Computationally obtained flowfield in the Superfocus mixer**

![](_page_7_Figure_4.jpeg)

Flowrate:  $\dot{V} = 250 \ mL/h$ 

Otto Mierka tu technische universität

![](_page_8_Picture_2.jpeg)

## **Computationally obtained flowfield in the Superfocus mixer**

![](_page_8_Figure_4.jpeg)

Flowrate:  $\dot{V} = 500 \ mL/h$ 

Otto Mierka tu technische universität

Exploiting the two-fold symmetry only the  $\frac{1}{4}$  of the domain needs to be meshed. NEL( $\frac{1}{4}$ ) = 1.2·10<sup>6</sup> elements. Velocity is interpolated in an  $L_2$  sense to the deformed mesh.

Reaktive

Blasenströmungen

![](_page_9_Figure_3.jpeg)

![](_page_9_Figure_4.jpeg)

![](_page_10_Picture_1.jpeg)

Otto Mierka tu technische universität

![](_page_10_Picture_3.jpeg)

![](_page_11_Picture_1.jpeg)

Otto Mierka tu technische universität

![](_page_11_Figure_3.jpeg)

![](_page_12_Picture_1.jpeg)

Otto Mierka tu technische universität

![](_page_12_Picture_3.jpeg)

![](_page_13_Picture_0.jpeg)

# Numerical simulation techniques for the efficient and accurate treatment of local fluidic transport processes together with chemical reactions

Stefan Turek, Otto Mierka,

Chair of Applied Mathematics and Numerics, LS III

![](_page_13_Picture_4.jpeg)